
 Center for Bioinformatics

 Technical Guide

August 13, 2008

caArray 2.1

i

CREDITS AND RESOURCES

caArray Development and Management Teams

Development Quality Assurance Documentation
Project and
Product
Management

Eric Tavela2 Tom Boal5 Eric Tavela2 Mervi Heiskanen1

Bill Mason2 Ron Keene5 Brent Gendleman2 Anand Basu1

Todd Parnell2 Xiaopeng Bian1 Todd Parnell2 Brent Gendleman2

Dan Kokotov2 Paul Duvall4 Juli Klemm1

Rashmi Srinivasa2 Levent Gurses4

Scott Miller2 Jill Hadfield1

Systems and Application Support Training

Sriram
Kalyanasundaram3

Don Swan3

Andrea Johnson

Paul Duvall4

1 National Cancer Institute Center for
Bioinformatics (NCICB)

2 5AM Solutions 3 Terrapin Systems

4 Stelligent 5NARTech

Contacts and Support

NCICB Application Support http://ncicbsupport.nci.nih.gov/sw/
Telephone: 301-451-4384
Toll free: 888-478-4423

http://ncicbsupport.nci.nih.gov/sw/

caArray 2.1 Technical Guide

ii

iii

TABLE OF CONTENTS
Credits and Resources .. i
Using the caArray Technical Guide ..1

Introduction to caArray .. 1
Purpose of this Manual ... 1
Definitions and Acronyms ... 2
References ... 2
Organization of the Manual ... 2
Document Text Conventions ... 3

Chapter 1
Architectural Representation of caArray ..5

Architectural Representation ... 5
Architectural Goals and Constraints .. 6

Chapter 2
Use Case View ...7

caArray Use Cases ... 8

Chapter 3
Logical View ..11

Overview .. 11
Architecturally Significant Design Elements ... 13
caarraydb .. 32
Use-Case Realizations ... 33

Chapter 4
Implementation View ..37

Overview .. 37
Artifacts ... 38

caArray 2.1 Technical Guide

iv

Chapter 5
Deployment View ...39

Index ..41

1

USING THE CAARRAY TECHNICAL GUIDE
This chapter contains an overview of the technical guide.

Topics in this chapter include:

Introduction to caArray on this page
Purpose of this Manual on this page
References on page 2
References on page 2
Document Text Conventions on page 3

Introduction to caArray

The caArray Technical Guide describes the aspects of caArray’s design that are con-
sidered to be architecturally significant; that is, those elements and behaviors that are
most fundamental for guiding the construction of caArray and for understanding caAr-
ray as a whole. Stakeholders who require a technical understanding of caArray are
encouraged to start by reading this document, then reviewing the caArray UML model,
and then by reviewing the source code. Please note that all diagrams represented in
this document are taken from the caArray UML model; for more detail about the ele-
ments in these diagrams, consult the source model. See https://gforge.nci.nih.gov/svn-
root/caarray2/trunk/docs/analysis_and_design/models/caarray.EAP.

Purpose of this Manual

The caArray Technical Guide provides a comprehensive architectural overview of the
caArray system, using a number of different architectural views to depict different
aspects of the system. It is intended to capture and convey the significant architectural
decisions which have been made on the system.

Existing caArray documentation can be found on the caArray page of the NCICB web-
site: http://caarray.nci.nih.gov/documentation. This guide does not duplicate documents
found independently at that website, but contains ancillary technical documentation
contributing to the successful utilization of caArray.

Note: Uniform Resource Locators (URLs) are used throughout the document to provide
sources for more detail on a subject or product.

http://caarray.nci.nih.gov/documentation
https://gforge.nci.nih.gov/svnroot/caarray2/trunk/docs/analysis_and_design/models/caarray.EAP
https://gforge.nci.nih.gov/svnroot/caarray2/trunk/docs/analysis_and_design/models/caarray.EAP

caArray 2.1 Technical Guide

2

Definitions and Acronyms

DAO – Data Access Object
EJB – Enterprise JavaBeans
J2EE – Java 2 Enterprise Edition
Java SE – Java Standard Edition
JDK – Java Development Kit
JPA – Java Persistence API
JSP – JavaServer Pages
MAGE-TAB – Microarray Gene Expression Object Model
POJO – Plain Old Java Object
RUP – Rational Unified Process
UML – Unified Modeling Language

References

caArray UML Models
https://gforge.nci.nih.gov/svnroot/caarray2/trunk/docs/analysis_and_design/
models/caarray.EAP

caArray Use Case Summary
https://gforge.nci.nih.gov/svnroot/caarray2/trunk/docs/requirements/
caarray_use_case_summary.doc

Philippe Kruchten 1995, "The 4+1 view model of architecture," IEEE
Software. 12(6), November 1995.
https://gforge.nci.nih.gov/svnroot/caarray2/trunk/docs/analysis_and_design/
references/architecture/Kruchten4+1.pdf

Organization of the Manual

The caArray Technical Guide contains the following chapters:

Using the caArray Technical Guide
Chapter 1, Architectural Representation of caArray, on page 5
Chapter 2, Use Case View, on page 7
Chapter 3, Logical View, on page 11
Chapter 4, Implementation View, on page 37
Chapter 5, Deployment View, on page 39

https://gforge.nci.nih.gov/svnroot/caarray2/trunk/docs/requirements/caarray_use_case_summary.doc
https://gforge.nci.nih.gov/svnroot/caarray2/trunk/docs/analysis_and_design/models/caarray.EAP

Chapter : Using the caArray Technical Guide

3

Document Text Conventions

Table 1.1 illustrates how text conventions are represented in this guide. The various
typefaces differentiate between regular text and menu commands, keyboard keys, tool-
bar buttons, dialog box options and text that you type.

Convention Description Example

Bold & Capitalized Command
Capitalized command > Capi-
talized command

Indicates a Menu command
Indicates Sequential Menu com-
mands

New Array Design

TEXT IN SMALL CAPS Keyboard key that you press Press ENTER

TEXT IN SMALL CAPS + TEXT IN
SMALL CAPS

Keyboard keys that you press simulta-
neously

Press SHIFT + CTRL and then
release both.

Monospace type Used for filenames, directory names,
commands, file listings, and anything
that would appear in a Java program,
such as methods, variables, and
classes.

ExperimentData

Boldface type Options that you select in dialog
boxes or drop-down menus. Buttons
or icons that you click.

From the Experiment Details
page, click Generate MAGE-
ML.

Italics Used to reference other documents,
sections, figures, and tables.

caArray User’s Guide

Boldface monospace
type

Text that you type In the New Subset text box,
enter Array Manufacture
Software.

Note: Highlights a concept of particular
interest

Note: This concept is used
throughout the installation man-
ual.

Warning! Highlights information of which you
should be particularly aware.

Warning! Deleting an object will
permanently delete it from the
database.

{ } Curly brackets are used for replace-
able items.

Replace {root directory}
with its proper value, such as
c:\caarray

Table 1.1 caArray Guide Text Conventions

caArray 2.1 Technical Guide

4

5

CHA PTE R

1
ARCHITECTURAL REPRESENTATION OF

CAARRAY

Architectural Representation

The caArray architecture is represented in the caArray Technical Guide and in the UML
design models as a set of views of the system from different but complementary per-
spectives. These views are:

The Use-Case View – Describes the functional requirements of the system. See
Chapter 2, Use Case View, on page 7.
The Logical View – Describes the organization of the system design into sub-
systems, interfaces, and classes and how these elements collaborate to provide
the functionality described in the use-case view. See Chapter 3, Logical View, on
page 11.
The Process View - Illustrates the process decomposition of the system, includ-
ing the mapping of classes and subsystems on to processes and threads.
The Deployment View – Describes how the processes are allocated to hard-
ware and execution environments and the communication paths between hard-
ware nodes. Chapter 5, Deployment View, on page 39.
Τhe Implementation View – Describes the software components that realize
the elements from the logical view and the dependencies between these compo-
nents. Chapter 4, Implementation View, on page 37.

This style of describing software architecture is the approach recommended by the
Rational Unified Process and is based on Philippe Kruchten’s work, “The 4+1 view
model of architecture” (http://portal.acm.org/citation.cfm?id=625529) and is refined in
the Rational Unified Process [RUP].

http://portal.acm.org/citation.cfm?id=625529

caArray 2.1 Technical Guide

6

Architectural Goals and Constraints

The following factors are key considerations beyond the functional requirements that
are guiding the design of caArray 2.0.

caBIG Silver Compliance
caArray must be implemented in such a way that it may be certified caBIG Silver com-
pliant. While Silver compliance is the requirement, caArray will provide a grid interface
in anticipation of a possible move to Gold level compliance when the criteria for Gold
compliance are established.

.Remote API Usability
One of the major flaws in releases of caArray prior to 2.0 has been the requirement to
use the MAGE-OM to access annotation and data. Navigation between key classes in
the MAGE is inefficient, difficult to understand, and difficult to implement. The object
API exposed by the new evolution of caArray is designed to be easily-understandable
and navigable by remote clients, whether they access the API via the grid or using a
Java programmatic interface.

High Performance Data Parsing, Storage and Retrieval
Given that data storage and retrieval is the principal functionality of caArray, array data
parsing, storage, and retrieval performance is key to a successful design.

7

CHA PTE R

2
USE CASE VIEW

The use cases represented in Figure 2.1 contain the functionality that have the greatest
impact on the design of the caArray architecture. In brief, the use cases described in
this chapter require implementation of mechanisms for security, validation, file manage-
ment, data storage and retrieval, and API design. Brief descriptions of each of these
use cases are provided below as extracted from the model.

caArray 2.1 Technical Guide

8

For information on the complete use-case model see the caArray Use-Case Summary
document: https://gforge.nci.nih.gov/svnroot/caarray2/trunk/docs/requirements/
caarray_use_case_summary.doc...

Figure 2.1 Use case summary

caArray Use Cases

Login
Initiated by any Registered User, the login use case allows for the validation of the
authenticity and authority of the given user either against a networked (LDAP) set of
users or a local set (database). As a result of a successful login, the registered user is
presented with their home space and the set of operations they have been granted priv-
ileges to perform.

Manage Experiment Data Files
Initiated by a data owner, this use case enables the uploading of annotation and array
content collectively and independently into a caArray project and then provides the abil-
ity to validate, import and/or delete the uploaded files and records each action taken.
Due to the large file size of array data and to a lesser extent, the annotation, the trans-
fer of the file from the client to the server may take minutes or even hours to complete.

https://gforge.nci.nih.gov/svnroot/caarray2/trunk/docs/requirements/caarray_use_case_summary.doc
https://gforge.nci.nih.gov/svnroot/caarray2/trunk/docs/requirements/caarray_use_case_summary.doc
https://gforge.nci.nih.gov/svnroot/caarray2/trunk/docs/requirements/caarray_use_case_summary.doc
https://gforge.nci.nih.gov/svnroot/caarray2/trunk/docs/requirements/caarray_use_case_summary.doc

Chapter 2: Use Case View

9

Therefore, the ability to offer to run the upload in the background (allowing the user to
perform other functions inside caArray) is desirable.

Validate Experiment Data Files
Initiated by a data owner, this use case allows for the validation of file structure and
content for annotation of array data, with a future intent to import the data into the
project. The content validation is not to determine the scientific validity of the informa-
tion; rather it is to ensure that the data files loaded comply with a pre-defined format for
importing into the system. This use case will also be invoked when a data owner
chooses to import non-validated data.

Import Experiment Data
Initiated by a data owner, this use case enables the import of annotation and array data
from previously-uploaded files.

Manage Array Designs
Initiated by a curator, this use case allows for the uploading of array designs on an as-
needed basis. No array designs will be pre-loaded. This supports the flexibility for any
particular organization to upload only the designs they use. This also reduces the over-
head introduced by having to load unnecessary designs, which are often of significant
size (100's of megabytes or more).

Manage Experiment Permissions
Initiated by a data owner, this use case allows for the promotion of an experiment’s vis-
ibility. This action can apply to an entire project or to specific samples within the project.
The basic visibility states of the project are: restricted, institution, group, public and col-
laborator. There is no restriction on changing a project's visibility, though it is not advis-
able once a publication has been published against the project.

Acquire Experiment Data via API
Initiated by an external system, this use case enables programmatic extraction of anno-
tation and array content from caArray using an API. The use case also includes extrac-
tion of data from caArray by a grid client through a caGrid service. caBIG Analysis
Services is the primary External System targeted and public and protected data should
be available provided appropriate authorization is used. The use case may expand to
include external systems such as GEO or Array Express or other systems that are local
to the installer or NCICB that may have an interest in the data contained in caArray.

caArray 2.1 Technical Guide

10

11

CHA PTE R

3
LOGICAL VIEW

Overview

The design model (from which the logical view is taken) is the most significant model,
requiring the most effort and containing the majority of the content. Accordingly, the
description of the logical view of caArray’s architecture receives the most attention
here. This chapter of the caArray Technical Guide first describes the structural hierar-
chy of the system in layers, packages, and subsystems and then describes how these
elements collaborate to provide the most architecturally significant functionality. Figure
3.1 illustrates the top-level structural organization of caArray. The major dependencies
between subsystems are represented as well, though it should be noted that some sup-
porting dependencies have been elided to enhance readability of the diagram.

The only subsystems that are accessible to external systems are the subsystems rep-
resented in the Grid API layer and the Remote Java API layer. All subsystems imple-
mented in the Application Logic and Business Logic layers are internal to the
application and do not expose remote interfaces. The User Interface layer is accessible
to web clients via HTTPS.

caArray is implemented as a J2EE 1.4 application built on top of Java SE 5 (JDK ver-
sion 1.5.0_10) employing the following core J2EE technologies:

SP 2.0
Servlet 2.4
JMS 1.1
EJB 3.0.

Only EJB session and message-driven beans are employed; persistence is being man-
aged directly with Hibernate 3.2 rather than EJB’s persistence API (JPA). JPA provides
no significant advantages over Hibernate at this point, and Hibernate provides addi-
tional extended functionality not included in JPA.

Clients of caArray can be characterized as either web UI clients or API clients.

caArray 2.1 Technical Guide

12

Each of the subsystems shown in Figure 3.1 is described briefly following the diagram.
The functionality of each of these subsystems is described in the following section,
Architecturally Significant Design Elements, and the context of their use is given in
caarraydb on page 32 which documents the use-case realizations that employ these
subsystems.

Figure 3.1 Architecturally Significant Design Elements

Chapter 3: Logical View

13

Architecturally Significant Design Elements

User Interface Layer
The caArray user interface is accessed as a standard web application via HTTPS. It is
implemented as a J2EE web application employing Struts 2 as the Model-View-Control-
ler implementation. This layer provides presentation, navigation and validation func-
tionality only. Validation logic at this level is limited to standard form-based validation
(for example, checking for appropriate field formats) and is implemented using Strut2 2
validation. Furthermore, a bridge from Struts 2 validation to the Hibernate Validator
framework was implemented that allows the definition of these constraints to come
straight from the data model. This ensures that the UI enforces the same constraints
applied by the underlying storage mechanism. All application logic is implemented in
the lower layers of caArray.

The pages presented to the web client use HTML and JavaScript only; no applets or
other client-side component technologies are used. Many pages are dynamically
updated based on user input without a complete page refresh using Ajax. This allows
us to improve responsiveness, implement tabbed interfaces, and improve application
usability. Ajax functionality is provided using the Prototype and Scriptaculous JavaS-
cript libraries and the Ajaxtags tag library.

The User Interface layer also includes the login authentication classes CaArrayDBLog-
inModule and CaArrayDBLoginModule. These classes are used to integrate CSM
authentication into the J2EE standard security model, allowing for both database- and
LDAP-based authentication. The classes and their relationships to authentication
classes from CSM and the Java security API are shown in Figure 3.2.

caArray 2.1 Technical Guide

14

Figure 3.2 Authentication classes

Grid API
The caArray Grid API is a Grid 1.1 compliant data service with several analytical ser-
vices. The service was created via the Introduce Toolkit, and then modified to improve
performance and add additional features. The service connects, via JNDI and RMI, to
a running instance of the caArray Remote Java API. The service connects to the web
app at startup and uses the remote EJB API to service all requests received from the
grid.

The grid service provides both the standard data query (CQLQuery) method and sev-
eral analytic services. All data in caArray is available via the data service, but opti-
mized data access is available via the analytic services. In particular, access to
ArrayDesignDetails is best accomplished via the analytic services. This design choice
was driven by the team’s experience with caArray 1.x.

To perform CQL searches, the service uses the API method List<AbstractCaAr-
rayObject> search(CQLQuery) exposed by the CaArraySearchService EJB.
After passing the CQLQuery to the EJB API, additional transformations are applied to
generate a CQLQueryResults object for the grid client. The EJB search API performs
the bulk of the work for grid clients. The search method accepts the CQLQuery object
and returns matching objects from the domain model, ignoring any query modifiers in
the original CQLQuery. caArray uses the CQL2HQL class provided by the core, which
is immediately runnable in Hibernate.

Before any object or list of objects is returned, the server performs object graph cutting
on the returned objects. This cutting prevents large, fully connected object graphs from
being returned to clients and potentially overwhelming network, memory, or other

Chapter 3: Logical View

15

resources. The graph cutting first initializes the root objects and all directly associated
objects. Then, for each directly associated object, the associations from those objects
to their directly associated objects are all set to null. As a result, remote clients, includ-
ing the grid service itself, receive a limited set of data, and enough information about
the dependent objects to continue to fill out the object graph to an arbitrary depth.

The grid service receives the list of matching domain objects from the search API and
transforms those results into the CQLQueryResults expected by the grid client. To
assist in this translation, caArray utilizes the CQLResultsCreationUtil from the
SDK. Depending on query modifiers, the system either (1) translates whole objects, (2)
translates [unique] specific properties, or (3) returns the count of objects in the list.

One of the analytical services, createFileTransfer, deserves special mention.
This service takes advantage of the Grid Transfer framework introduced in caGrid 1.2
to provide efficient retrieval of the contents of a file stored in caArray. Retrieval of large
binary data was problematic in earlier versions of the caGrid framework, due to the
extremely high serialization overhead. In fact, the previous version of this analytical ser-
vice, readFile, that returned the byte array for the file directly, was non-performant.

The Grid Transfer framework solves the serialization problem by providing an out of
band channel for retrieving the binary data. Instead of returning the data directly and
serializing it inside the SOAP response, the data is staged on the server, a WS-RF
resource is created for the data, and a reference to this resource is returned to the cli-
ent. The client then uses this reference to initiate a transfer of the actual data over a
separate HTTP connection. If Grid Transfer is used in conjunction with Grid Security,
then an HTTPS connection is used and all security credentials held by the client are
applied. For more on Grid Transfer, see its page on the caGrid wiki at http://
www.cagrid.org/wiki/CaGridTransfer.

The Introduce generated components include all of the classes in Figure 3.3, with the
exception of CaArraySvcImpl and provide the standard marshalling and query function-
ality of a standard caGrid data service. Delegation to the Java Remote API is handled

http://www.cagrid.org/wiki/CaGridTransfer
http://www.cagrid.org/wiki/CaGridTransfer

caArray 2.1 Technical Guide

16

by the CaArraySvcImpl class, which wraps access to the EJB remote session beans
that expose array annotation and data retrieval functionality.

Figure 3.3 CaArraySvc Grid API implementation

Remote Java API
The Remote Java API is implemented as a façade (the CaArrayServer class) repre-
senting a connection to caArray and a set of several stateless session EJBs with
remote visibility. Clients instantiate a CaArrayServer instance, call the connect method
and can then access the session EJB interfaces through accessor methods exposed by
the CaArrayServer. These EJBs provide simplified, efficient access to caArray entities
and data. Special consideration was given to the DataRetrievalService API to enable
clients to retrieve only the data they require. Clients may select data for specific Quanti-
tationTypes, Hybridizations, and AbstractDesignElements by configuring a DataRe-

Chapter 3: Logical View

17

trievalRequest object and passing it as an argument to the getDataSet() method. The
remote interfaces and their exposed operations are shown in the class diagram pro-
vided in Figure 3.4.

As discussed above, each remote Java API method performs object graph cutting to
minimize data transmissions. The DataRetrievalService’s cutting is more sophisti-
cated: instead of performing cutting at the child object level, all information about the
DataSet is returned in a single request.

Figure 3.4 caArray Remote Java API

caArray Domain Classes
This section describes the classes used to model the microarray experiment and data
that caArray is designed to manage. Since these classes are employed by all of the
caArray subsystems and also must be understood by remote caArray clients (for exam-
ple, Java RMI clients1). Classes that represent important data constructs are given
detailed description here.

1. Grid clients do not need the domain classes, since our domain model is registered in caDSR. How-
ever, grid clients that do use our domain classes can make user of our Castor XML mapping
classes.

caArray 2.1 Technical Guide

18

The underlying business object model is implemented as a set of POJOs that model
the domain of microarray experiments and data. Whereas earlier versions of caArray
used MAGE-OM 1.1 as the basis for the underlying object and data model, the new
caArray implementation is based on a completely revised, simplified object model.
Although MAGE-OM is a published standard, there are significant disadvantages in
using it as an underlying object model; it is complicated to understand, its complexity
makes data storage inefficient, its structure does not permit useful object graph naviga-
tions, and many common relationships cannot be stored when complete experiment
annotation is not available. For these reasons, we have chosen to produce a new, sim-
plified object model for domain data representation. caCORE was used for the initial
generation of these POJOs.

The domain classes are principally designed to support the entity model described by
the MAGE-TAB 1.0 specification. The underlying object model described by MAGE-
TAB is considerably more understandable than MAGE-OM while still providing a com-
plete enough model to support MIAME compliance. The most central entities in the
domain model are pictured in Figure 3.5.

Annotation for array design elements are represented by a hierarchy of annotation
classes based on the array design type. Each array design element that reports on a
biological sequence is related to an instance of AbstractProbeAnnotation. The hierar-
chy of annotation information is shown in Figure 3.7

As has been noted earlier, array data needs to be represented in way that allows for
efficient storage and transport when required by remote clients. The classes used to
represent array data are shown in Figure 3.8. caArray is designed to represent array
data at two levels:

The AbstractArrayData hierarchy represents individual data files that have
been imported into caArray, describing their type and relationships to hybridiza-
tions. These are high level representations that do not contain the actual data
values.
The DataSet class and the classes it is related to by composition (Hybrid-
izationData and the AbstractDataColumn hierarchy). These classes ulti-
mately contain the array data values, specifically as arrays of primitive or string
values within the AbstractDataColumn subclasses.

The DataSet classes are used both to persist the data contained in array data files and
as a container for custom data sets requested by clients. As an example, a given
Affymetrix CEL file imported into the system will have a single persistent DataSet con-
taining a single persistent HybridizationData instance that contains several Abstract-
DataColumn instances (IntegerColumns for CELX and CELY, FloatColumn for
CELIntensity, etc.). If a remote API client requests the data for all CEL files within an
experiment, a transient, compound DataSet is created that contains multiple Hybridiza-
tionDatas where each HybridizationData is retrieved from persistent storage.

A columnar approach to data representation allows for efficient retrieval and storage
when compared with a row-based representation. This represents a significant change
from caArray 1.x where an entire BioDataCube must be retrieved in its entirety, allowing
for a significant reduction of network transfer overhead. This columnar approach is
preferable for two reasons:

1. Array data files typically contain relatively few columns but a large number of
rows, typically in the tens of thousands or larger. When returning data to remote

caArray 2.1 Technical Guide

19

clients, it is far more efficient to serialize a large array of primitives when com-
pared to returning a large object graph.

2. Clients typically require only a small subset of the columns represented by an
array data file, so organizing data by column allows for much more efficient cus-
tom DataSet assembly. Clients may indicate which columns to select by specify-
ing QuantitationTypes to retrieve. The semantics of the various
QuantitationTypes will be registered in caDSR to make them meaningful and
comparable to clients that don’t have advance knowledge of the context of spe-
cific QuantitationTypes.

In addition to efficient storage and transfer, this approach is also intended to meet the
needs of caB2B and other tools that need everything navigable in the model (for exam-
ple, require the domain model semantics -- aren't aware of the data retrieval API). Mak-
ing the columns themselves persistent with their data allows these clients to navigate to
the raw data values while we still retain an efficient mechanism for storage and retrieval
(the columns' compressed, serialized value arrays are transparently expanded on
request).

Figure 3.5 Experiment Overview

caArray 2.1 Technical Guide

20

Figure 3.6 caArray Array Design Classes

Chapter 3: Logical View

21

Figure 3.7 caBIO Array Reporter Annotation Object Model

caArray 2.1 Technical Guide

22

Figure 3.8 Array Data Classes

Access Control using CSM 4.0
caArray allows experiment owners to define fine grained access constraints on both
whole experiments and individual samples (and the BioSources and Hybridization data
derived from those samples). By default, non-experiment owners (including anony-
mous, non-logged in users) have access to a small set of overview information about
an experiment. Read access to experiments and/or samples can be granted to the pub-
lic as well as to defined groups of users (known as collaboration groups). The collabo-
ration groups can also be granted write permissions to experiments and/or individual
samples. Finally, an experiment can be removed from visibility entirely, making it com-
pletely inaccessible to users who have not been granted special permissions as
described above.

Chapter 3: Logical View

23

This permissions system is implemented via integration with CSM 4.0. CSM provides a
rich, fine grained domain model for expressing security constraints, including instance
and attribute level security. The concepts described above map nicely onto the classes
available in CSM in a very natural way. The architecturally interesting points about the
integration, described below, involve synchronization between the caArray and CSM
data models and the enforcement of the security constraints defined in the model.

Synchronizing the caArray and CSM data models requires creation and modification of
CSM data structures expressing appropriate security constraints in response to corre-
sponding operations on the caArray data model. This is accomplished via Security-
Interceptor, which takes advantage of a Hibernate API that allows application code
to respond to Hibernate lifecycle events. SecurityInterceptor detects creation,
modification and deletion of caArray domain objects and in response creates or modi-
fies the CSM data structures which store security constraints on those objects.

Enforcement of the security constraints is done in two ways. Hibernate filters are used
to enforce read permissions and visibility control for experiments. The filters are defined
for any caArray domain classes which are covered by the security model, and act as
essentially additional WHERE clauses that limit any queries against those classes to
instances to which the user has access. These filters are applied transparently by
Hibernate, and are automatically parameterized by CSM with the current user. This pro-
vides for a clean separation of concerns, as business logic can be written without the
clutter of security considerations.

To enforce write permissions, we instead use the API provided by CSM's Authoriza-
tionManager class. The logic for doing so is centralized in the SecurityUtils
class.

It is important to note that security constraints are checked twice. First, during display of
data, security constraints are checked to determine whether to display certain user
interface elements. For instance, on the Work Queue page, the edit link is only dis-
played for an experiment if the current user has write permissions to the experiment.
Second, security constraints are checked and enforced before any actual operations
against protected data are performed. This ensures that the user interface shows the
user only the actions they have permissions to perform, but still enforces those permis-
sions if a malicious user circumvents the normal user interface (for instance by URL
hacking).

ProjectManagementService
The ProjectManagementService subsystem is implemented as a façade to allow the
user interface to create and retrieve experiments. The implementation of this sub-
system delegates directly to the CaArrayDataAccess service for entity management

caArray 2.1 Technical Guide

24

and to the FileAccessService for file management. The subsystem contents are shown
in Figure 3.9.

Figure 3.9 ProjectManagementService implementation

FileAccessService
The FileAccessService subsystem is implemented as a stateful session bean and is
responsible for storage of all files managed within caArray (annotation, array design
and data). Files that are uploaded to caArray are registered with the FileAccessService
which reads the files, compresses the contents and stores the contents as BLOB(s) (in
the database) associated with a CaArrayFile instance. Due to limitations in MySQL
when storing very large blobs (>250MB), caArray breaks very large files into multiple
blobs for storage in the database. The storage of multiple blobs is transparent to users
of the CaArrayFile class.

Chapter 3: Logical View

25

File retrieval is performed through the TemporaryFileCache interface. The imple-
mentation of this interface is stored in a ThreadLocal and maintains a Map of opened
files so that any given client only needs to retrieve file contents from the database once
per overall client transaction. Client subsystems that require access to file contents call
the getFile(caArrayFile : CaArrayFile) : File method which performs the
inverse operation; reading the contents from the BLOB(s), decompressing the contents
and writing them to temporary file reading area. Clients are expected to call close-
File(file : File) when done using files so that the subsystem can remove the
files from temporary file system storage, but the subsystem also performs clean up
when it is finalized. The static structure of the FileAccessService subsystem is
shown in Figure 3.10 and the act of storing file contents is shown in Figure 3.11..

This TemporaryFileCache implementation extracts each requested file to a different
temporary location. This does mean potentially having duplicates of temporarily uncom-
pressed files, but this should be the exception as files are only needed on download
and when parsed. After weighing the potential approaches, the minor overhead of tem-
porary duplicates was definitely preferable to the overhead of maintaining file reference
counters across multiple sessions.

Figure 3.10 FileAccessService implementation class diagram

caA
rray 2.1 Technical G

uide

26

Figure 3.11 FileAccessService operation AddFile(file : File)

FileManagementService
Whereas the FileAccessService handles the lower level functionality of file storage and retrieval, the FileManagementService
subsystem is responsible for performing higher level logical file operations, specifically, the validation and import of MAGE-
TAB annotation, array design files and array data files. The implementation of the subsystem does this through delegation to
subsystems responsible for handling these various types of data. The organization of the FileManagementService implemen-
tation is shown in Figure 3.12 where the central bean delegates import and validation functionality to a set of importer classes
that in turn delegate to the lower-level subsystems.

Chapter 3: Logical View

27

Validation results are instantiated by the lower-level subsystems and then the FileMan-
agementService associates these with the CaArrayFile object that represents the vali-
dated annotation or data file.

Figure 3.12 FileManagementService implementation

ArrayDataService
The ArrayDataService subsystem is responsible for validating array data files, storing
array data and retrieving array data when requested by clients. The typical order of
events related to a given array data file is as follows:

Αn array data file is validated using the validate(arrayDataFile : CaAr-
rayDataFile) : ValidationResult operation. Only the generated Fil-
eValidationResult is created and persisted.
The data file is imported using the import(arrayData : AbstractArray-
Data) : void operation. At this point, a DataSet and associated Hybridiza-
tionData and AbstractDataColumn instances are created, but individual data
values are not retrieved or persisted.
A client requests data via the getData(arrayData : AbstractArray-
Data, types : List<QuantitationType>) : DataSet method. If this is
the first request for the AbstractDataColumns associated with the provided
QuantitationTypes, the requested data is parsed from the files as columnar
arrays of primitives and stored persistently as serialized, GZipped byte[] repre-
sentations of the arrays. The data is then returned to the client. If the data had

caArray 2.1 Technical Guide

28

previously been loaded as a result of earlier calls to getData the existing serial-
ized byte[] is deserialized1.

Though caArray 1.x and 2.0 do ultimately use the database to persist array data, the
approaches are radically different. The 2.0 design does not exhibit the same perfor-
mance and resource consumption when compared to 1.x. For illustration purposes, the
1.x design stores the array data from a file as a large number of rows (one per design
element) with a column per data value, maintaining a complete relational representa-
tion of the entire data set. caArray 2.0 uses a single BLOB entry to store a large primi-
tive array of data corresponding to a complete column's worth of data from a data file.
For example, whereas a CEL file consumes hundreds of thousands of rows of seven
columns apiece in 1.x, the new design creates 7 rows, each with a single serialized,
compressed representation of hundreds of thousands of data points.

The method import(arrayData : AbstractArrayData) : void is illustrated in Figure 3.13 .

Figure 3.13 Import Operation implementation

1. The delayed parsing of the data sets was deferred from the initial release of caArray 2.0. The data
sets are stored as part of the import process. After delayed parsing is implemented, additional
space savings will be achieved; only requested columns of data will be parsed and persisted. This
is important since only a small subset of the quantitation types of a given data type are of interest to
clients (for example, 2 columns out of 20 such as "detection' and "chip signal" of a .chp file in an
Affymetrix experiment).

Chapter 3: Logical View

29

ArrayDesignService
The ArrayDesignService is responsible for parsing, persisting, and retrieving array
design annotation from the various array annotation file types. In the implementation of
the subsystem, each file format is handled by a specific subclass of AbstractArray-
DesignHandler. These subclasses contain the logic to parse, validate, and persist the
details of a given format. The array annotation is stored in the ArrayDesignDetails and
caBIO reporter annotation structures described earlier in the section on the caArray
Domain Classes package. The major classes and dependencies are represented in
Figure 3.14

Figure 3.14 ArrayDesignService subservice implementation

caArray 2.1 Technical Guide

30

MageTabParser
The MageTabParser subsystem is responsible for reading a set of files in MAGE-TAB
format, validating the files and ultimately representing the contents of the files in object
model based on MAGE-TAB concepts. The major implementation classes are shown in
Figure 3.15..

Figure 3.15 MageTabParser Subsystem implementation

MageTabTranslation
The MageTabTranslation subsystem of caArray is invoked to translate from the MAGE-
TAB object model generated by the MageTabParser system to a corollary caArray
Domain Class representation. It implements a set of translator classes for each MAGE-

Chapter 3: Logical View

31

TAB document type and for shared data types (i.e. Terms and TermSources). The
major classes and dependencies are represented in Figure 3.16.

Figure 3.16 MageTabTranslator Subsystem implementation

CaArrayDataAccess
caArray uses the standard Data Access Object pattern to provide data updates and
retrievals. The DAOs are exposed as Java interfaces accessed through a Factory
class. The implementations of the DAOs use Hibernate 3.2 as the underlying persis-
tence mechanism.

VocabularyService Subsystem
The VocabularyService subsystem is implemented as a façade to allow the user inter-
face to manage controlled vocabularies. The implementation of this subsystem dele-
gates directly to the CaArrayDataAccess service for entity management. The data
model accessed by this service represents a subset of concepts present in external
vocabularies such as the MGED Ontology. These concepts provide a consistent Term
and Category view of vocabularies, and allow the service to manage both locally and
externally controlled vocabularies. However, at this time, external vocabularies are not
communicated with directly. Instead, both local and external vocabularies are stored
within the caArray database for maximum efficiency. The user interface and mage tab
translation both access this service to store and retrieve terms as needed.

caArray 2.1 Technical Guide

32

The subsystem contents are represented in Figure 3.17.

Figure 3.17 VocabularyService implementation

caarraydb

The caarraydb component represents the MySQL database schema that is used to
store all of caArray’s persistent data. The schema is generated directly from Hibernate
annotations recorded in the caArray Domain Classes so that the schema and domain
classes are kept easily synchronized. caArray supports MySQL version 5.0 and uses
InnoDB tables for transactional behavior.

C
hapter 3: Logical V

iew

33

Use-Case Realizations

Manage Experiment Data Files

Figure 3.18 Manage Experiment Data Files basic flow sequence diagram

caA
rray 2.1 Technical G

uide

34 Import Data Files

Figure 3.19 Import Data Files basic flow sequence diagram

C
hapter 3: Logical V

iew

35

Acquire Experiment Data via API

Figure 3.20 Acquire Experiment Data via API basic flow

Grid access follows a similar flow, with the CaArraySvc delegating calls to these same remote session beans.

caArray 2.1 Technical Guide

36

37

CHA PTE R

4
IMPLEMENTATION VIEW

Overview

The major physical artifacts that comprise the caArray software deployment units are
illustrated in Figure 4.1. The major artifacts and their relationships to the subsystems
they realize are described in the following section, Artifacts.

Figure 4.1 Architecturally significant implementation elements

caArray 2.1 Technical Guide

38

Artifacts

caarray.ear
The caarray.ear artifact is the J2EE Enterprise Application Archive (EAR) that contains
all of the web portal application and EJB components that make up the User Interface,
Remote Java API, Application Logic, and Business Logic layers of the application. The
EAR also contains the third-party JARs necessary to support the Application and Busi-
ness Logic Layers of the application.

caarray.war
The caarray.war artifact packages the JSPs and caArray Struts 2 classes that comprise
the User Interface layer of caArray. The WAR also contains the Struts 2 third-party
JARs and necessary supporting JARs.

caarray-ejb.jar
The caarray-ejb.jar packages the implementation of all of the EJB subsystems and the
implementation of the remote API interfaces defined in caarray-client.jar. This includes
all of the subsystems in the Application Layer and VocabularyService subsystem from
the Business Logic Layer of the logical model. The important third-party dependency to
note is the dependency on AffxFusion.jar which provides Affymetrix file format parsing
support.

caarray-common.jar
The caarray-common.jar contains the caArray Domain Classes packages, the CaArray
Data Access subsystem and the MageTabParser subsystem. The major third-party
component dependencies noted are hibernate3.jar and hibernate-annotations.jar to
support annotation-based Hibernate ORM mapping and to csmapi.jar to support entity
access authorization.

caarray-client.jar
The caarray-client.jar contains the remote EJB interfaces required by Java Remote API
clients and the caArray Grid Service. This JAR also repackages other third-party
classes required by remote clients.

CaArraySvc-service.jar
The CaArraySvc-service.jar contains the caGrid API implementation classes.

39

CHA PTE R

5
DEPLOYMENT VIEW

The typical deployment configuration for caArray is documented in Figure 5.1. The
NCICB deployment of caArray is similar to the scenario modeled in the figure, with the
addition of a front-end Apache web server that receives the HTTPS requests and then
delegates these requests to the JBoss server where caArray is deployed. The JBoss
container configures the datasource (for db connections) and SMTP information (for
email).

While Globus is shown as the grid service execution environment, the NCICB deploy-
ment environment uses JBoss 4.0.4 as the container and Globus runs inside of JBoss

caArray 2.1 Technical Guide

40

4.0.4. External adopters might also choose to deploy application components and exe-
cution environments to a single server.

Figure 5.1 Architecturally Significant Deployment Elements

41

INDEX
A
access control, CSM 4.0 22
Acquire Experiment Data via API 35
acquire experiment data via API, use case 9
API

grid 14
Remote Java 16

API, extracting data using 9
architectural

constraints 6
goals 6

architecture
description of views 5
logical view overview 11
use case view 7

ArrayDataService 27
ArrayDesignService 29

C
caArray

description 1
domain classes 17
Technical Guide description 1
User’s Guide text conventions 3

caarray.ear 38
caarray.war 38
caarray-client.jar 38
caarray-common.jar 38
CaArrayDataAccess 31
caarraydb 32
caarray-ejb.jar 38
CaArraySvc-service.jar 38
caBIG silver compliance 6
CSM 4.0 access control 22

D
data retrieval 6
data storage 6
deployment view 39
document conventions 3

domain classes 17

E
extracting data via API 9

F
FileAccessService 24
FileManagementService 26

G
grid API 14

H
High Performance Data Parsing 6

I
Import Data Files 34
import experiment data, use case 9

J
J2EE 1.4 application 11

L
logical view, overview 11
login use case 8

M
manage array designs 9
Manage Experiment Data Files 33
manage experiment data files, use case 8

P
ProjectManagementService 23

R
remote API usability 6
Remote Java API 16

caArray 2.1 Technical Guide

42

S
silver compliance, caBIG 6
structural hierarchy 11
subsystems

dependencies 11
description 11
figure 12

T
text conventions in user guide 3

U
use case

acquire experiment data via API 9
import experiment data 9
login, description 8
manage array designs 9
manage experiment data files 8
validate experiment data files 9

use case view 7
user interface layer 13

V
validate experiment data files, use case 9
view, architecture descriptions 5

	Credits and Resources
	Table of Contents
	Using the caArray Technical Guide
	Introduction to caArray
	Purpose of this Manual
	Definitions and Acronyms
	References
	Organization of the Manual
	Document Text Conventions

	Chpt 1 - Architectural Representation of caArray
	Architectural Representation
	Architectural Goals and Constraints

	Chpt 2 - Use Case View
	caArray Use Cases
	Login
	Manage Experiment Data Files
	Validate Experiment Data Files
	Import Experiment Data
	Manage Array Designs
	Manage Experiment Permissions
	Acquire Experiment Data via API

	Chpt 3 - Logical View
	Overview
	Architecturally Significant Design Elements
	User Interface Layer
	Grid API
	Remote Java API
	caArray Domain Classes
	Access Control using CSM 4.0
	ProjectManagementService
	FileAccessService
	FileManagementService
	ArrayDataService
	ArrayDesignService
	MageTabParser
	MageTabTranslation
	CaArrayDataAccess
	VocabularyService Subsystem

	caarraydb
	Use-Case Realizations
	Manage Experiment Data Files
	Import Data Files
	Acquire Experiment Data via API

	Chpt 4 - Implementation View
	Overview
	Artifacts
	caarray.ear
	caarray.war
	caarray-ejb.jar
	caarray-common.jar
	caarray-client.jar
	CaArraySvc-service.jar

	Chpt 5 - Deployment View
	Index

