\TONAL
r CANCER
INSTLTULE

caArray 2.1

Technical Guide

Center for Bioinformatics

August 13, 2008

CREDITS AND RESOURCES

caArray Development and Management Teams

Project and

Development Quality Assurance Documentation Product

Management
Eric Tavela? Tom Boal® Eric Tavela? Mervi Heiskanen!
Bill Mason? Ron Keene® Brent Gendleman? Anand Basu?

Todd Parnell?

Xiaopeng Bian!

Todd Parnell?

Brent Gendleman?

1

Dan Kokotov? Paul Duvall* Juli Klemm
Rashmi Srinivasa? Levent Gurses®

Scott Miller? Jill Hadfield*

Systems and Application Support Training

Stiram Don Swan®

Kalyanasundaram?

Andrea Johnson

Paul Duvall*

1 National Cancer Institute Center for

Bioinformatics (NCICB)

2 5AM Solutions

3 Terrapin Systems

4 Stelligent

SNARTech

Contacts and Support

http://ncicbsupport.nci.nih.gov/sw/
Telephone: 301-451-4384
Toll free: 888-478-4423

NCICB Application Support

http://ncicbsupport.nci.nih.gov/sw/

caArray 2.1 Technical Guide

TABLE OF CONTENTS

Credits and ReSOUICESuureiiiinriiniiiiniiinsiiceninnensesesessesnseans i

Using the caArray Technical Guidecveevrvinuiinncnncnncnncnnnene 1
Introduction t0 CAATTAYccooviiiiiiiiiiiiiiiiiicce e 1
Purpose of this Manual ..., 1
Definitions and ACTONYMScccocuiiiiiiiiiiiiiiiiiiciiecccee e 2
References ..o 2
Organization of the Manualc.cccocociiiiiiiiiiiice, 2
Document Text CONVENtIONS ..o 3

Chapter 1

Architectural Representation of CAATIayccvvvcvvcrnccnsenncressennnn 5
Architectural Representation ... 5
Architectural Goals and Constraintsc.cccccviiiiiiiiiiniiiicccce, 6

Chapter 2

Use Case VIEW ...iiiiiiiciiicininieiencininisisesesenenssssessessessessessesees 7
CAATTAY USE CaSEScuoviiiiiiiiiiiiiccic s 8

Chapter 3

| T =4 T ¥ B V4 T3 T OO 11
OVEIVIEW .ot 11
Architecturally Significant Design Elementsccccccccoeiiiiniinninne. 13
CAATITAYAD .o 32
Use-Case Realizations ...t 33

Chapter 4

Implementation VIEeWiiinninninininiininncnninnnienennesenenns 37
OVEIVIEW .t 37

A TEI AICES ettt nnneennnnnnnnnnn 38

caArray 2.1 Technical Guide

Chapter 5
Deployment VIEW ...,

USING THE CAARRAY TECHNICAL GUIDE

This chapter contains an overview of the technical guide.
Topics in this chapter include:

e Introduction to caArray on this page

e Purpose of this Manual on this page

e References on page 2

e References on page 2

e Document Text Conventions on page 3

Introduction to caArray

The caArray Technical Guide describes the aspects of caArray’s design that are con-
sidered to be architecturally significant; that is, those elements and behaviors that are
most fundamental for guiding the construction of caArray and for understanding caAr-
ray as a whole. Stakeholders who require a technical understanding of caArray are
encouraged to start by reading this document, then reviewing the caArray UML model,
and then by reviewing the source code. Please note that all diagrams represented in
this document are taken from the caArray UML model; for more detail about the ele-
ments in these diagrams, consult the source model. See https://gforge.nci.nih.gov/svn-
root/caarray2/trunk/docs/analysis_and_design/models/caarray.EAP.

Purpose of this Manual

Note:

The caArray Technical Guide provides a comprehensive architectural overview of the
caArray system, using a number of different architectural views to depict different
aspects of the system. It is intended to capture and convey the significant architectural
decisions which have been made on the system.

Existing caArray documentation can be found on the caArray page of the NCICB web-
site: http://caarray.nci.nih.gov/documentation. This guide does not duplicate documents
found independently at that website, but contains ancillary technical documentation
contributing to the successful utilization of caArray.

Uniform Resource Locators (URLs) are used throughout the document to provide
sources for more detail on a subject or product.

http://caarray.nci.nih.gov/documentation
https://gforge.nci.nih.gov/svnroot/caarray2/trunk/docs/analysis_and_design/models/caarray.EAP
https://gforge.nci.nih.gov/svnroot/caarray2/trunk/docs/analysis_and_design/models/caarray.EAP

caArray 2.1 Technical Guide

Definitions and Acronyms

References

DAO - Data Access Object

EJB — Enterprise JavaBeans
J2EE — Java 2 Enterprise Edition
Java SE - Java Standard Edition
JDK — Java Development Kit

JPA — Java Persistence API

JSP — JavaServer Pages
MAGE-TAB — Microarray Gene Expression Object Model
POJO - Plain Old Java Object
RUP — Rational Unified Process
UML - Unified Modeling Language

caArray UML Models
https://gforge.nci.nih.qgov/svnroot/caarray2/trunk/docs/analysis _and design/
models/caarray.EAP

caArray Use Case Summary
https://gforge.nci.nih.gov/svnroot/caarray2/trunk/docs/requirements/
caarray use case summary.doc

Philippe Kruchten 1995, "The 4+1 view model of architecture," IEEE
Software. 12(6), November 1995.
https://gforge.nci.nih.gov/svnroot/caarray?2/trunk/docs/analysis_and_design/
references/architecture/Kruchten4+1.pdf

Organization of the Manual

The caArray Technical Guide contains the following chapters:

Using the caArray Technical Guide

Chapter 1, Architectural Representation of caArray, on page 5
Chapter 2, Use Case View, on page 7

Chapter 3, Logical View, on page 11

Chapter 4, Implementation View, on page 37

Chapter 5, Deployment View, on page 39

https://gforge.nci.nih.gov/svnroot/caarray2/trunk/docs/requirements/caarray_use_case_summary.doc
https://gforge.nci.nih.gov/svnroot/caarray2/trunk/docs/analysis_and_design/models/caarray.EAP

Chapter : Using the caArray Technical Guide

Document Text Conventions

Table 1.1 illustrates how text conventions are represented in this guide. The various
typefaces differentiate between regular text and menu commands, keyboard keys, tool-
bar buttons, dialog box options and text that you type.

Convention

Description

Example

Bold & Capitalized Command
Capitalized command > Capi-
talized command

Indicates a Menu command
Indicates Sequential Menu com-
mands

New Array Design

TEXT IN SMALL CAPS

Keyboard key that you press

Press ENTER

TEXT IN SMALL CAPS + TEXT IN
SMALL CAPS

Keyboard keys that you press simulta-
neously

Press SHIFT + CTRL and then
release both.

Monospace type

Used for filenames, directory names,
commands, file listings, and anything
that would appear in a Java program,
such as methods, variables, and
classes.

ExperimentData

Boldface type

Options that you select in dialog
boxes or drop-down menus. Buttons
or icons that you click.

From the Experiment Details
page, click Generate MAGE-
ML.

Italics

Used to reference other documents,
sections, figures, and tables.

caArray User’'s Guide

Boldface monospace
type

Text that you type

In the New Subset text box,
enter Array Manufacture
Software.

able items.

Note: Highlights a concept of particular Note: This concept is used
interest throughout the installation man-
ual.
Warning! Highlights information of which you Warning! Deleting an object will
should be particularly aware. permanently delete it from the
database.
{} Curly brackets are used for replace- Replace {root directory}

with its proper value, such as
c:\caarray

Table 1.1 caArray Guide Text Conventions

caArray 2.1 Technical Guide

CHAPTER

ARCHITECTURAL REPRESENTATION OF

CAARRAY

Architectural Representation

The caArray architecture is represented in the caArray Technical Guide and in the UML
design models as a set of views of the system from different but complementary per-
spectives. These views are:

The Use-Case View — Describes the functional requirements of the system. See
Chapter 2, Use Case View, on page 7.

The Logical View — Describes the organization of the system design into sub-
systems, interfaces, and classes and how these elements collaborate to provide
the functionality described in the use-case view. See Chapter 3, Logical View, on
page 11.

The Process View - lllustrates the process decomposition of the system, includ-
ing the mapping of classes and subsystems on to processes and threads.

The Deployment View — Describes how the processes are allocated to hard-
ware and execution environments and the communication paths between hard-
ware nodes. Chapter 5, Deployment View, on page 39.

The Implementation View — Describes the software components that realize
the elements from the logical view and the dependencies between these compo-
nents. Chapter 4, Implementation View, on page 37.

This style of describing software architecture is the approach recommended by the
Rational Unified Process and is based on Philippe Kruchten’s work, “The 4+1 view
model of architecture” (http://portal.acm.org/citation.cfm?id=625529) and is refined in
the Rational Unified Process [RUP].

http://portal.acm.org/citation.cfm?id=625529

caArray 2.1 Technical Guide

Architectural Goals and Constraints

The following factors are key considerations beyond the functional requirements that
are guiding the design of caArray 2.0.

caBIG Silver Compliance
caArray must be implemented in such a way that it may be certified caBIG Silver com-
pliant. While Silver compliance is the requirement, caArray will provide a grid interface
in anticipation of a possible move to Gold level compliance when the criteria for Gold
compliance are established.

.Remote API Usability
One of the major flaws in releases of caArray prior to 2.0 has been the requirement to
use the MAGE-OM to access annotation and data. Navigation between key classes in
the MAGE is inefficient, difficult to understand, and difficult to implement. The object
API exposed by the new evolution of caArray is designed to be easily-understandable
and navigable by remote clients, whether they access the API via the grid or using a
Java programmatic interface.

High Performance Data Parsing, Storage and Retrieval

Given that data storage and retrieval is the principal functionality of caArray, array data
parsing, storage, and retrieval performance is key to a successful design.

CHAPTER

USE CASE VIEW

The use cases represented in Figure 2.1 contain the functionality that have the greatest
impact on the design of the caArray architecture. In brief, the use cases described in
this chapter require implementation of mechanisms for security, validation, file manage-
ment, data storage and retrieval, and API design. Brief descriptions of each of these
use cases are provided below as extracted from the model.

caArray 2.1 Technical Guide

For information on the complete use-case model see the caArray Use-Case Summary
document: https://gforge.nci.nih.gov/svnroot/caarray2/trunk/docs/requirements/

caarray_use_case_summary.doc...

cd Architecturally Significant Use Cases /

Acquire Experi ment
Data wia AFI
fros Uer Wanagenment)
External System

o Extrzction)

Registered User

wos Actors) fom Actors)

requires

Man=zge Array

Import Data Files
Designs

o Swhmizsion)

o Swheission)

“walidate Experi ment
Data Files

tanage Experiment

Permissions

o S EEdoe)

%//’/

Data Owner

From Ackors) from Experment Wanagemrant)

Manage Experiment

Dzta Files

o Sl ssion,)

Figure 2.1 Use case summary

caArray Use Cases

Login

Initiated by any Registered User, the login use case allows for the validation of the
authenticity and authority of the given user either against a networked (LDAP) set of
users or a local set (database). As a result of a successful login, the registered user is
presented with their home space and the set of operations they have been granted priv-

ileges to perform.

Manage Experiment Data Files

Initiated by a data owner, this use case enables the uploading of annotation and array
content collectively and independently into a caArray project and then provides the abil-
ity to validate, import and/or delete the uploaded files and records each action taken.
Due to the large file size of array data and to a lesser extent, the annotation, the trans-
fer of the file from the client to the server may take minutes or even hours to complete.

https://gforge.nci.nih.gov/svnroot/caarray2/trunk/docs/requirements/caarray_use_case_summary.doc
https://gforge.nci.nih.gov/svnroot/caarray2/trunk/docs/requirements/caarray_use_case_summary.doc
https://gforge.nci.nih.gov/svnroot/caarray2/trunk/docs/requirements/caarray_use_case_summary.doc
https://gforge.nci.nih.gov/svnroot/caarray2/trunk/docs/requirements/caarray_use_case_summary.doc

Chapter 2: Use Case View

Therefore, the ability to offer to run the upload in the background (allowing the user to
perform other functions inside caArray) is desirable.

Validate Experiment Data Files

Initiated by a data owner, this use case allows for the validation of file structure and
content for annotation of array data, with a future intent to import the data into the
project. The content validation is not to determine the scientific validity of the informa-
tion; rather it is to ensure that the data files loaded comply with a pre-defined format for
importing into the system. This use case will also be invoked when a data owner
chooses to import non-validated data.

Import Experiment Data

Initiated by a data owner, this use case enables the import of annotation and array data
from previously-uploaded files.

Manage Array Designs

Initiated by a curator, this use case allows for the uploading of array designs on an as-

needed basis. No array designs will be pre-loaded. This supports the flexibility for any
particular organization to upload only the designs they use. This also reduces the over-
head introduced by having to load unnecessary designs, which are often of significant

size (100's of megabytes or more).

Manage Experiment Permissions

Initiated by a data owner, this use case allows for the promotion of an experiment’s vis-
ibility. This action can apply to an entire project or to specific samples within the project.
The basic visibility states of the project are: restricted, institution, group, public and col-
laborator. There is no restriction on changing a project's visibility, though it is not advis-
able once a publication has been published against the project.

Acquire Experiment Data via API

Initiated by an external system, this use case enables programmatic extraction of anno-
tation and array content from caArray using an API. The use case also includes extrac-
tion of data from caArray by a grid client through a caGrid service. caBIG Analysis
Services is the primary External System targeted and public and protected data should
be available provided appropriate authorization is used. The use case may expand to
include external systems such as GEO or Array Express or other systems that are local
to the installer or NCICB that may have an interest in the data contained in caArray.

caArray 2.1 Technical Guide

10

CHAPTER

LOGICAL VIEW

Overview

The designh model (from which the logical view is taken) is the most significant model,
requiring the most effort and containing the majority of the content. Accordingly, the
description of the logical view of caArray’s architecture receives the most attention
here. This chapter of the caArray Technical Guide first describes the structural hierar-
chy of the system in layers, packages, and subsystems and then describes how these
elements collaborate to provide the most architecturally significant functionality. Figure
3.1 illustrates the top-level structural organization of caArray. The major dependencies
between subsystems are represented as well, though it should be noted that some sup-
porting dependencies have been elided to enhance readability of the diagram.

The only subsystems that are accessible to external systems are the subsystems rep-
resented in the Grid API layer and the Remote Java API layer. All subsystems imple-
mented in the Application Logic and Business Logic layers are internal to the
application and do not expose remote interfaces. The User Interface layer is accessible
to web clients via HTTPS.

caArray is implemented as a J2EE 1.4 application built on top of Java SE 5 (JDK ver-
sion 1.5.0_10) employing the following core J2EE technologies:

e SP20
e Serviet2.4
e JMS1.1

e EJB3.0.

Only EJB session and message-driven beans are employed; persistence is being man-
aged directly with Hibernate 3.2 rather than EJB’s persistence APl (JPA). JPA provides
no significant advantages over Hibernate at this point, and Hibernate provides addi-
tional extended functionality not included in JPA.

Clients of caArray can be characterized as either web Ul clients or API clients.

11

caArray 2.1 Technical Guide

Each of the subsystems shown in Figure 3.1 is described briefly following the diagram.
The functionality of each of these subsystems is described in the following section,
Architecturally Significant Design Elements, and the context of their use is given in
caarraydb on page 32 which documents the use-case realizations that employ these
subsystems.

class A

ifi Design EI /

alayars
Grid API slayars
User Interface

CaArraySvec

wweb senices

CsArraysve | | ________ 1

JSP
Struts 2

(]
[

o Rt WL ~0 o) . —
ArrayDesignDetailsService CaArrayS i D ievalService FileRetrievalService !
‘ | |— / caArray Struts2 Classes I

g] g areslizax H
E E:l \eafmray Domain Classes
b b b iis a global dependency.

ice

rrayDesignDetails Servicg CaArraySearchServicg | DataRetrieval Service FileRetrieval Servi Wl layers of the
1. i

uze thesze

i
:objecﬁto
[commuinicate

wlayar
Application Logic

caArray Domain Classes

8]

]

«Subsystems «subsystems
ArmayDksignService ArrayDesignSeryige drzp Transistor | MageTabTranslation

T +
1

1 1

1 1

I 1

e ! wuses H !

alaysrs | T | !

Busine§|5 Logic : } 1

1

I 1

1

1

1

1

1

1

1
1
______ 1
:’ L= «subsystems 1
L 1
1 . B AmsyDats Service | ArrayDataService |
1 asubsystems J !
Fiieh ! e |Filem Service | $:|
______________ |
: T T : Y) «subsystems
i ! ! i Projecth: v [Service|
1 i i 1
1 1 u
! 1 1 ! ! ==
1 1
i ! ! i i
1 _; L 1 r—==-- ==c=c)
T - 1 1
o 1 ! :]
0 : : L_____________gé)_ asubsystems
\ ! ! Fi i FileAccess Service
1
o |
: ! !
1

| v
\6 &] (% &)

— CaArrayDaoFactory
MageTabParsgr .subsystams | wsubsystems
MageTabParser $:| VocabularyService [| |
wsubsystems
F==-=-—--—1 CaArrayDataAccess --—----—- 1

ﬁ Vaﬁ;\

wdatabases
caarraydb

Figure 3.1 Architecturally Significant Design Elements

12

Chapter 3: Logical View

Architecturally Significant Design Elements

User Interface Layer

The caArray user interface is accessed as a standard web application via HTTPS. It is
implemented as a J2EE web application employing Struts 2 as the Model-View-Control-
ler implementation. This layer provides presentation, navigation and validation func-
tionality only. Validation logic at this level is limited to standard form-based validation
(for example, checking for appropriate field formats) and is implemented using Strut2 2
validation. Furthermore, a bridge from Struts 2 validation to the Hibernate Validator
framework was implemented that allows the definition of these constraints to come
straight from the data model. This ensures that the Ul enforces the same constraints
applied by the underlying storage mechanism. All application logic is implemented in
the lower layers of caArray.

The pages presented to the web client use HTML and JavaScript only; no applets or
other client-side component technologies are used. Many pages are dynamically
updated based on user input without a complete page refresh using Ajax. This allows
us to improve responsiveness, implement tabbed interfaces, and improve application
usability. Ajax functionality is provided using the Prototype and Scriptaculous JavaS-
cript libraries and the Ajaxtags tag library.

The User Interface layer also includes the login authentication classes CaArrayDBLog-
inModule and CaArrayDBLoginModule. These classes are used to integrate CSM
authentication into the J2EE standard security model, allowing for both database- and
LDAP-based authentication. The classes and their relationships to authentication
classes from CSM and the Java security APl are shown in Figure 3.2.

13

caArray 2.1 Technical Guide

Grid API

14

od Authentication
CEMLoginModwle T
LoginMadu!
+ initializerSubject, CallbackHandler, Map, ap] : void PR
+ logint: boolean Mo ___ {:;,
+ commit): boolean
+ abor): boolean
+ logout): boolean
FLOEMMSLoginkodul =
LOAPLogintodule
CaArrayDELoginhodule CafrrayL DAFLoginModule
+ initialize{Subject, CallbadkHandler, Map, Map): woid + initialize(Subject, CallbadiHandler, Map, Map): woid

Figure 3.2 Authentication classes

The caArray Grid APl is a Grid 1.1 compliant data service with several analytical ser-
vices. The service was created via the Introduce Toolkit, and then modified to improve
performance and add additional features. The service connects, via JNDI and RMI, to
a running instance of the caArray Remote Java API. The service connects to the web
app at startup and uses the remote EJB API to service all requests received from the
grid.

The grid service provides both the standard data query (CQLQuery) method and sev-
eral analytic services. All data in caArray is available via the data service, but opti-
mized data access is available via the analytic services. In particular, access to
ArrayDesignDetails is best accomplished via the analytic services. This design choice
was driven by the team’s experience with caArray 1.x.

To perform CQL searches, the service uses the APl method List<AbstractCalAr-
rayObject> search (CQLQuery) exposed by the CaArraySearchService EJB.
After passing the CQLQuery to the EJB API, additional transformations are applied to
generate a CQLQueryResults object for the grid client. The EJB search API performs
the bulk of the work for grid clients. The search method accepts the CQLQuery object
and returns matching objects from the domain model, ignoring any query modifiers in
the original CQLQuery. caArray uses the CQL2HQL class provided by the core, which
is immediately runnable in Hibernate.

Before any object or list of objects is returned, the server performs object graph cutting
on the returned objects. This cutting prevents large, fully connected object graphs from
being returned to clients and potentially overwhelming network, memory, or other

Chapter 3: Logical View

resources. The graph cutting first initializes the root objects and all directly associated
objects. Then, for each directly associated object, the associations from those objects
to their directly associated objects are all set to null. As a result, remote clients, includ-
ing the grid service itself, receive a limited set of data, and enough information about
the dependent objects to continue to fill out the object graph to an arbitrary depth.

The grid service receives the list of matching domain objects from the search API and
transforms those results into the CQLQueryResults expected by the grid client. To
assist in this translation, caArray utilizes the CQLResultsCreationUtil from the
SDK. Depending on query modifiers, the system either (1) translates whole objects, (2)
translates [unique] specific properties, or (3) returns the count of objects in the list.

One of the analytical services, createFileTransfer, deserves special mention.
This service takes advantage of the Grid Transfer framework introduced in caGrid 1.2
to provide efficient retrieval of the contents of a file stored in caArray. Retrieval of large
binary data was problematic in earlier versions of the caGrid framework, due to the
extremely high serialization overhead. In fact, the previous version of this analytical ser-
vice, readFile, that returned the byte array for the file directly, was non-performant.

The Grid Transfer framework solves the serialization problem by providing an out of
band channel for retrieving the binary data. Instead of returning the data directly and
serializing it inside the SOAP response, the data is staged on the server, a WS-RF
resource is created for the data, and a reference to this resource is returned to the cli-
ent. The client then uses this reference to initiate a transfer of the actual data over a
separate HTTP connection. If Grid Transfer is used in conjunction with Grid Security,
then an HTTPS connection is used and all security credentials held by the client are
applied. For more on Grid Transfer, see its page on the caGrid wiki at http://
www.cagrid.org/wiki/CaGridTransfer.

The Introduce generated components include all of the classes in Figure 3.3, with the
exception of CaArraySvclmpl and provide the standard marshalling and query function-
ality of a standard caGrid data service. Delegation to the Java Remote API is handled

15

http://www.cagrid.org/wiki/CaGridTransfer
http://www.cagrid.org/wiki/CaGridTransfer

caArray 2.1 Technical Guide

by the CaArraySvcimpl class, which wraps access to the EJB remote session beans
that expose array annotation and data retrieval functionality.

class Grid APl 7

sinteraces
CaArraySve wweb senvices
- - 5 CaArraySve
+ createFieTy vFile) : TranaferS: -
+ getDataSetfdataRetrievalRequest) : DataSet + cresteFieT e
+ getDesignDetais(smsyDesign) - gov nif noi cssmsy domsin smsy ArsyDesignDetails + getDataSetireque) i
+ guenycgiQuery) - gov.ninnci cagnd. cgiresuitzet COL QueryResults i EE’DEf‘E"‘DE‘EUS 5] : AmayDesignDetais
+ readFile(caAmayFie) - bytel] + readFils(caArsyFie) - byte]

A

1
1
1 1
1
arzalizex |
1
1
1
1

Service SecurityCiient
CaArraySveClient !

poriType: CaAmaySvcPoriType
- portTypeMutex: Object

CaAmaySveClient{ur)
CaAmaySve
CeAmaySvel
CeAnmaySveClie
createFileT
crestePoriType
eticlient, ty

getDataSet(dstaRetreval
getDesignDetails(amray

R

yFike) : T

vcPoriType

j .Object

gov.nih.ncicaamay.domsin.data DataSet

nih.nci caamay. domain amay AmrayDesignDetails
yQName) : Gel pe

+ ok ok

ge
initialize() : void wrzalizexs

+ main{args) : void :
+ guery(eqiQuery) : gov.nih.neicagrd cqiresultset COLQuaryRe I
+ readFile{caAmayFik) : byte[] H
+ usage() : void :
1
1
CaArraySvcimplBase H
1
1
+ CaAmsySvelmplBaza() |
+ getConfiguration() : ServiceConfig \
getDomsinModeNslua() : gov.nih.nci esgrid d ice DomainhModel !
getMetsdsta(metadstaQMName) @ Object 1
+ g jome(] : gov.nih.nci.cagnd.caamay.service.globus.resource. BaseResourceHome :
ge 0 ey) some !
getSeniceMstsdstsValus() : gov.nih.ncicagnd Seni !
1
1
1
1
1
1
[‘X I
CaArraySvclmpl CaArraySvcProviderimpl
~ anayDesignDetaisSernice: AmayDesignDetsisSenvice {readOniy} ~ impl: CaAmaySvclmp
~ dstaRetrievalService: DstaRetievalService freadOnhy} ~impl
~ fileRetriavalService: FileRatievalService fresdOnhy} =+ cCaAmaySveProviderimpl)
- LOG: Log = LogFactory.getl... freadOnly} + Fi fari: /File) : TransferServiceConte:
+ getDatsSet(psrams) : gov.ninncicagrd caamay stubs GatDatsSatResponse
+ CaAmaySvelmpl) + getDesignD:) : gov.nih.nci.cagnd.casmay. stubs. GetDesignDetaisResponse
+ createFileTr yFike) : T e + readFik() gov.nin.nel.eagnid casmay stubs ReadFis
+ getDataSet(dataRetre uest) : DataSet
+ getDesignDetsils{arrsyDesign) : ArsyDesignDetsils
+ readFile(caAmayFile) : byte]]
~amayDesignDetaisService ~dataRetrevalService ~file RetrizvslSenice
«interfaces «interfaces cinterfaces
ArrayDesignDetails Service DataRetrievalService FileRetrievalService

~ JNDI_NAME: Sting = "caamay/AmayD...

~ JNDI_NAME: Sting = "caamay/DataRe. ..

~ JMDI_NAME: Sting = "caamay/FieRe...

~ getDesignDetails(design) : AmsyDesignDetails

~ getDataSetfrequest) : DataSet

~ readFis(iiie) - bytef]

Figure 3.3 CaArraySvc Grid APl implementation

Remote Java API

The Remote Java API is implemented as a facade (the CaArrayServer class) repre-
senting a connection to caArray and a set of several stateless session EJBs with
remote visibility. Clients instantiate a CaArrayServer instance, call the connect method
and can then access the session EJB interfaces through accessor methods exposed by
the CaArrayServer. These EJBs provide simplified, efficient access to caArray entities
and data. Special consideration was given to the DataRetrievalService API to enable
clients to retrieve only the data they require. Clients may select data for specific Quanti-
tationTypes, Hybridizations, and AbstractDesignElements by configuring a DataRe-

16

Chapter 3: Logical View

trievalRequest object and passing it as an argument to the getDataSet() method. The
remote interfaces and their exposed operations are shown in the class diagram pro-
vided in Figure 3.4.

As discussed above, each remote Java APl method performs object graph cutting to
minimize data transmissions. The DataRetrievalService’s cutting is more sophisti-
cated: instead of performing cutting at the child object level, all information about the
DataSet is returned in a single request.

od Remate Java ARl 7

CafrrayServer

fleaf}

CaArmaySenerhostname String, jndiPort :int)
connect() : void
connectiusername :String, pasavord (String) : woid
getHostname() : Giring
getindiPord) : int

+ h 00
gettrrayDesignbetailsSendce]) : AravDesignDetailss envice
getl i ice): [i i
getFileRetrisvalSericar) FileRetrievalSer 0.1

ok o+ o+ o+

0.1 0.1 0.1

-dataRetrievalSenice

-fileRetrievalSenice

winterfaces wintarfaces
DaizRefrievaliervice FileRefrievalService
~ JNDI_MNAME: Stiing ="caamay/DataRe... ~ JNDI_MAME: String = "caarawFileRe...

~ getlata Set 0 d 1R) - Data Sef ~ madFilefile CaAmayFile) hytel}

-searchSenice

-arraylesignDetailss enice

winterfaces winterfaces
CahrraySearchService ArrayDesignDeiailsService
~ JINDI_NAME: String = "caarawCahra ~ JINDI_NAME: String = "caanayémayD
~ seamhiertityExanple |T) :List<Ts ~ gedlesigrOstzilzflesign ArayDesign) : AmayDesignletaily
~ ERAMRR Guery (OO Ckery) | ListaTe

v

DataRetrieval Request

- gerialfersionlID: long = 40891801361024347 31

- id: Long

. designElements: ArrayList<AbstraciDesignElements = new AnayList<A...
- AuraylList<k = new ArayListaH...

- quantitationTypes: ArayList<Quantitation Types = new AnaylList<...

+ DataRetrievalRequest

+ getld): Long

+ setldiid :Long) : void

+ addDesignElement{element :AbstractDesignElement) : void

+ addHybri idization :Hybridization) : void

+ addQuantitation Typeiquantitation Type :Quantitation Type) : void

+ getbesignElements]) : List<AbstractCesignElement=

+ getybridizations) : List<Hybridizat

+ getQuantitationTypead : List<Quantitation Type>

- setQuanti Typest List<QuantitationType=) : woid

. setDesignElementgelements :List<AbstractDesignElements) : void
th idizati sList=t izati 1 woid

Figure 3.4 caArray Remote Java API

caArray Domain Classes

This section describes the classes used to model the microarray experiment and data
that caArray is designed to manage. Since these classes are employed by all of the
caArray subsystems and also must be understood by remote caArray clients (for exam-
ple, Java RMI clients?). Classes that represent important data constructs are given
detailed description here.

1. Grid clients do not need the domain classes, since our domain model is registered in caDSR. How-
ever, grid clients that do use our domain classes can make user of our Castor XML mapping
classes.

17

caArray 2.1 Technical Guide

18

The underlying business object model is implemented as a set of POJOs that model
the domain of microarray experiments and data. Whereas earlier versions of caArray
used MAGE-OM 1.1 as the basis for the underlying object and data model, the new
caArray implementation is based on a completely revised, simplified object model.
Although MAGE-OM is a published standard, there are significant disadvantages in
using it as an underlying object model; it is complicated to understand, its complexity
makes data storage inefficient, its structure does not permit useful object graph naviga-
tions, and many common relationships cannot be stored when complete experiment
annotation is not available. For these reasons, we have chosen to produce a new, sim-
plified object model for domain data representation. caCORE was used for the initial
generation of these POJOs.

The domain classes are principally designed to support the entity model described by
the MAGE-TAB 1.0 specification. The underlying object model described by MAGE-
TAB is considerably more understandable than MAGE-OM while still providing a com-
plete enough model to support MIAME compliance. The most central entities in the
domain model are pictured in Figure 3.5.

Annotation for array design elements are represented by a hierarchy of annotation
classes based on the array design type. Each array design element that reports on a
biological sequence is related to an instance of AbstractProbeAnnotation. The hierar-
chy of annotation information is shown in Figure 3.7

As has been noted earlier, array data needs to be represented in way that allows for
efficient storage and transport when required by remote clients. The classes used to
represent array data are shown in Figure 3.8. caArray is designed to represent array
data at two levels:

e The AbstractArrayData hierarchy represents individual data files that have
been imported into caArray, describing their type and relationships to hybridiza-
tions. These are high level representations that do not contain the actual data
values.

e The Dataset class and the classes it is related to by composition (Hybrid-
izationData and the AbstractDataColumn hierarchy). These classes ulti-
mately contain the array data values, specifically as arrays of primitive or string
values within the AbstractDataColumn subclasses.

The DataSet classes are used both to persist the data contained in array data files and
as a container for custom data sets requested by clients. As an example, a given
Affymetrix CEL file imported into the system will have a single persistent DataSet con-
taining a single persistent HybridizationData instance that contains several Abstract-
DataColumn instances (IntegerColumns for CELX and CELY, FloatColumn for
CELIntensity, etc.). If a remote API client requests the data for all CEL files within an
experiment, a transient, compound DataSet is created that contains multiple Hybridiza-
tionDatas where each HybridizationData is retrieved from persistent storage.

A columnar approach to data representation allows for efficient retrieval and storage
when compared with a row-based representation. This represents a significant change
from caArray 1.x where an entire BioDataCube must be retrieved in its entirety, allowing
for a significant reduction of network transfer overhead. This columnar approach is
preferable for two reasons:

1. Array data files typically contain relatively few columns but a large number of
rows, typically in the tens of thousands or larger. When returning data to remote

caArray 2.1 Technical Guide

19

clients, it is far more efficient to serialize a large array of primitives when com-
pared to returning a large object graph.

2. Clients typically require only a small subset of the columns represented by an
array data file, so organizing data by column allows for much more efficient cus-
tom DataSet assembly. Clients may indicate which columns to select by specify-
ing QuantitationTypes to retrieve. The semantics of the various
QuantitationTypes will be registered in caDSR to make them meaningful and
comparable to clients that don’t have advance knowledge of the context of spe-
cific QuantitationTypes.

In addition to efficient storage and transfer, this approach is also intended to meet the
needs of caB2B and other tools that need everything navigable in the model (for exam-
ple, require the domain model semantics -- aren't aware of the data retrieval API). Mak-
ing the columns themselves persistent with their data allows these clients to navigate to
the raw data values while we still retain an efficient mechanism for storage and retrieval
(the columns' compressed, serialized value arrays are transparently expanded on
request).

cd gow.nih.nci caarray.domain project Significant Classes /
[AbstactBiolfateds! e
- ractBio. fig
AbstractCadmayEntity pr————— Seurce el Extract
Array
-anayDesigns/[t = -sourcesSh* -samples edracts
-amays
1 ® 1 1
(Abstract CaAT2 yERtity
Froject +rexperiment AbstractCa Ara yEatity
Experi ment
1 1
- fitle: String 1
‘} - description: String N abeledEadrat
- experimentDesignDescription: String
-project S 1 - dateOfExperiment: [ate 1 LabeledEudract
- qualityContralDescription: String
- replicateDescription: String 1
- publicReleazelate: Date
- assayType: String P =
- publicldentifier: String ~hybridizations
ApstractCa Ara YEntity
+ gett s ¢ List=t Hybori dization
. B - name: Sting
Ailesy /8. - amountOfhdaterial: float
(Abstot Ca Ama yErtity
" + getfrrayDesignd : ArayDesign
CSALSYile + getDerived Datag) : Derived [iata
- name: String
- status: String
- type: String

Figure 3.5 Experiment Overview

caArray 2.1 Technical Guide

20

cd govw . nih.nci .caarray.domain.array /

[AbstactCaAra yOhfect
ArrayGroup

name: String

edu.georgetowm.pir:
Organism

id: Long
nchiTaxonomyld: Long
scientificMame: String

-annotationFile

AbstactCa Ama yEntity
gow.nih.nci.caarray.

domain file::
CaArrayFile

commonMame: String

name: String
status: String

-arrayGroup £[40..1 taxonomyRank: String a type: String
ethnicityStrain: String
-designFil 0.1
-organism/P 0.1 ssignrile
-arraysy[f1.7 . AbstactContact
AbstrctCaAma yEmbity) 0.4 gov nihnei.
) ArrayDesign caarray.domain.
Array -design
q contact:
- [name: String 0.1 Organization
bat.ch: String X 1 wersion: String -provider g
serialMumber: String assayType: String| name: Sting
- = 1
¢ 0.1 [
1 q gow.nih.nci .cabio.domain:
:Microarray
-productions (0.1 _printi
= printing annotationlate: [Late
AbstractGadmayEntity [- -designDetailsy |1 -microaray |- bigid: Stiing
gow.nih.nci.caarray. - - dbSMPWersion: String
domain protoc AbstractCaAmay Ciyect 0.1 id: Long
Protocaol Application ArrayDesignDetails name: String
N) . platform: String
notes: Strin -arrayDesignbetailz A .
9 -arayDesignDetails -> type: Stnng. i
> o ‘} ‘} 1 genometfersion: String
-arrayDesignbetailz
1 1
-arrayDesignbetailz
-features’ 0."
-probeGroupsy| 0.7
Feature
(AbstactCa Ama yEntity
::oigolumr: ;h”t FrobeGroup
ockRow: sho
-probesy | /0.7
column: shart -features P name: String
v short 0= 0.7| PhysicalProbe |-prebes-prabeGroup
1.7 1 h
-logicalProbesy (0.7
-probes
Logical Probe
o.r o.r
AeElERREtn AbstractCadma yEntity
Abs{mctcaﬂnayoq"ectd—_ name: Sting AbsfraciProh i
AbstraciDesignElement 1 a1

Figure 3.6 caArray Array Design Classes

Chapter 3: Logical View

od gow .nib.nci .caarray.domain.array Annotations /

AbstractDesignElement AbstractCaAra yEntity
AbsfraciProbe - annotation | ABSiraciProbeArroiation
name: String q 0.1 <}
ExpressionProbefnnotation SHPProbesnnotation
ExonProbe Annotation - dbSMPId: String
dbSHPVersion: int
;“”‘j t°“9 alleles: String
op: ongl alleleB: String
- strand: String i
inratld: St chromozome: Integer
opn + unipretld: =tring flank: String
physicalFosition: Long
0.1
a.7 0.1
-genet|/0-gene | 0.1
-expressionArayReportery | /0.1 ApstractCa Ama yErtity-exonfrayReportery | /0.1 -snpArrayReportery | /0.1
Treaseiotdrs yFepoiter Gens TreasedotArs yRepoter ArzyReporter
gow .nih.nci .cabio.domain:: - symbol: String gow .nih.nci .cabio.domain:: gow .nih.nci .cabio.domain::
ExpressionfrrayReporter - fullName: String ExonArrayReporter SNPArrayReporter
- branbot, ion: St
sequenceSource: String genzan ccess!on r.lng. " - pmobeSelectionRegionld: Laong - phastConsensation: String
. ! - genbankfccessionWersion: String X
sequenceType: String . ensemblgenell: Stin - pmobeCount: Long
targetDescription: String : unigenec?lusterlb' Stril‘glg - strand: String
ErEkE g entrezgenell: String

Figure 3.7 caBIO Array Reporter Annotation Object Model

21

caArray 2.1 Technical Guide

5d gov mib nci caarray domain dats /
AbstractGa AmyEntity
-hybridizations e
-labeledExtractsy | /0.7 ® P
Jf [——— “hybridizations
[AbstretEioltztenal - amountOfMaterial; float =
LabeledExtract
hybridization |+ DetAnavbesion : AnayDesign
+ geth atai: D ata
1
L] [
-labeledEstract |\ 1
1 1
[AbstractCadma yEmtity -derivedDataCellection | o -
Abstractirraylata
- name: Sting -dervedFromAnayDataCollestion |DerlvedArrayData
|
-arayDatay|r0..1 - I~ 0.r
imagesy|s0. {} 04| 0.1] 0.
RarwAr D=t:
[abstractCadmayEatity i 0.1
“sourcelmages
Image
- o= a1
® MERISE SHIG P2 [h ctractCa Ay Olject
7| ArrayDataType
T }
- name: Sting
0.1 - wersion: String
; -protabolApplications 1.
-protocalApplications1| 0. 0.7 P pe
| atstractia Arayentity
Protocol Application SRR e =k
AbstraciDesignElement
- netes: Sting
~designElements A\ 1.7
-dataFileyfr0.1 .
—— {orderedp |”
HimageFile ;=
- CaArrayFile
AhstactCaAmayEatit
 name: Sting IS ook iy
" status sting DesignEle mentList
= (ypes Eling . designElementType: Shing
~designElementList A 1
oo - -dataSety[r1
|Abstract Cadmay Ciyject | . . plskEoEeArz rEe
tybridizationD ataList ataset o
HybridizationData -dataze & 1.7 -quantitationTypes
- 0s
b {ordered} 1 -quantitation Types
bstract G Ay Olyect
0.x {ordered} 17)
’ -quantitationType | AuamtitationType
+hybridizationbata /i1)- e Sy
- type: Sting
AbstractCaAmayoyet |07
\columns | AbstraciDataColuma
fordered} 0
BooleanCalumn ShortColumn Integer Calurn LangCalumn FlaatCalumn DoubleCalumn StringCalumn
- walues boslean] | |- walues: short] - values: intd - values: longll| |- values: fleatl| |- walues: doutten| |- values: stingg

Figure 3.8 Array Data Classes

Access Control using CSM 4.0

22

caArray allows experiment owners to define fine grained access constraints on both
whole experiments and individual samples (and the BioSources and Hybridization data
derived from those samples). By default, non-experiment owners (including anony-
mous, non-logged in users) have access to a small set of overview information about
an experiment. Read access to experiments and/or samples can be granted to the pub-
lic as well as to defined groups of users (known as collaboration groups). The collabo-
ration groups can also be granted write permissions to experiments and/or individual
samples. Finally, an experiment can be removed from visibility entirely, making it com-
pletely inaccessible to users who have not been granted special permissions as
described above.

Chapter 3: Logical View

This permissions system is implemented via integration with CSM 4.0. CSM provides a
rich, fine grained domain model for expressing security constraints, including instance
and attribute level security. The concepts described above map nicely onto the classes
available in CSM in a very natural way. The architecturally interesting points about the
integration, described below, involve synchronization between the caArray and CSM
data models and the enforcement of the security constraints defined in the model.

Synchronizing the caArray and CSM data models requires creation and modification of
CSM data structures expressing appropriate security constraints in response to corre-
sponding operations on the caArray data model. This is accomplished via Security-
Interceptor, which takes advantage of a Hibernate API that allows application code
to respond to Hibernate lifecycle events. SecurityInterceptor detects creation,
modification and deletion of caArray domain objects and in response creates or modi-
fies the CSM data structures which store security constraints on those objects.

Enforcement of the security constraints is done in two ways. Hibernate filters are used
to enforce read permissions and visibility control for experiments. The filters are defined
for any caArray domain classes which are covered by the security model, and act as
essentially additional WHERE clauses that limit any queries against those classes to
instances to which the user has access. These filters are applied transparently by
Hibernate, and are automatically parameterized by CSM with the current user. This pro-
vides for a clean separation of concerns, as business logic can be written without the
clutter of security considerations.

To enforce write permissions, we instead use the API provided by CSM's Authoriza-
tionManager class. The logic for doing so is centralized in the SecurityUtils
class.

It is important to note that security constraints are checked twice. First, during display of
data, security constraints are checked to determine whether to display certain user
interface elements. For instance, on the Work Queue page, the edit link is only dis-
played for an experiment if the current user has write permissions to the experiment.
Second, security constraints are checked and enforced before any actual operations
against protected data are performed. This ensures that the user interface shows the
user only the actions they have permissions to perform, but still enforces those permis-
sions if a malicious user circumvents the normal user interface (for instance by URL
hacking).

ProjectManagementService

The ProjectManagementService subsystem is implemented as a facade to allow the
user interface to create and retrieve experiments. The implementation of this sub-
system delegates directly to the CaArrayDataAccess service for entity management

23

caArray 2.1 Technical Guide

and to the FileAccessService for file management. The subsystem contents are shown
in Figure 3.9.

=d gow.nel nih.caarray application project /

winterface:
FrojeciManagementservics
~ UNGI_NAME: Sting = "caanawFrojec...

getPmjectid Jorg) : Project
getFrjectByFublich puhlictl Sting) - Project
unlnad Filesiamyect Frjact, fles 4ist=Files, 4 ist=Sting =, confictagFiles £ ist<Sting=) - it
addFilefomject Prject, fle File) : CaAmayFile
addFile fomject Project, fle File, Mlenzime Stimg) GaAmayfile
sauepmyecemmyece Frject, omkansTolelete Faristertyact) * woid
iect Statusiompectt! Jomg, mewStatus Foposal Status) : void
gefMyPrqecfsfk.‘rowPub.'rc shoolean, page SortPamns Page SotPemms <Pryects) : List=Projects
getifyPmjectCauntshawPuhiic “haolean) - int
sedilse TegaPolicpipmpectt! Jomg, vse FegaPolicy hoolean) : Prject
zdd GroupPmiile fpmyect Prject, gmup GollahomtorGmin) | AccessPmdle
AEpaEFoawnioad files Callection =CaAra pFila=) - File
prepareHybsForDownload o Prject, kybridizations Collection <Hyhridization=) | File
sony Szmple (roject Prject, sampledd fomg) | Samole
coaySoume pmyect Pofect, sowmest Jomg) © Soume
copyFactoriomyject Froject, factord dorg) : Factor
sopyExtmobiamiect Prect, extactil domg) ; Exbact
coaylpeled Extrachpmyect Pryect, extrach lorg) | LabeledExtaot

hEyCategany (o, Page SortP: Projects, beywor :Shing, categories (Seamh Category) : List<Frojects
seamh Countfheywond (Sting, categaries :Seamh Gategory) - int
et eswe StesFo K i 4 st T

Hifaterial Type sk et urait imemd) : List< Tams
getCell Type s firet, + firent) ; List=Tem=
petlizesse StatesFo d i E d) ListE T R

A
wreaiizen

ProjestManagement ServiceBean

getProjectid :long) : Froject
getPrajectByPublicldipublicld -String) : Praject
uploadFiles(project :Project, files :List<File>, filaMames :List<String>, conflictingFiles :List<String>1 : int
addFile(project :Project, file :File] : CafmayFile
addFilelpraject ‘Praject, file File, filaname “String) - CaAnayFila
changeP roje ctStatus(projectld lang, newStatus :ProposalStatus) : void
saveProjectiproject :Project, orphansToDelete :PemsistentObjecd) : void
gethdyProjectstshamPublic shanlean, pageSatFarams ‘PageSatFaramssFrajects) - ListzFrojects
gethtyProjectC ountizhowPublic tboalean] : int
setllseTogaPolicy(projectd :long, useTegaPolicy hoolean): Project
addsraupFratila(praject ‘Praject, group ‘CallabaratarGroup) - AocessP ofile
praparaF orDownloadifilas :Collaction=CakmayFila=) : Fila
le(project :Project, leld tlong) : Sample
copyExtractiproject :Project, extractld :long) : Extract
copyLabeledEsxtrack(project :Project, extractld :long) : LabeledExtract
sopyFactarproject (Project, factard :long): Factor
copySource(project :Project. sourceld :long) : Sounce
searchByCategory(params :PageSontParams<Projects, keyword :String, categories :SearchCategory) : List<Projects
searchCountkeyword :String, categories SealchCategory) int

R e

prepareHybsForDownload[p F'ro]ect il F i 7 File
getCellTypesForExperi P t:Experi ‘) ListzTarm:
getl tatesF orExp Hexp t :Experiment) : ListTerms
getMatanalTypesF i i H) List< Term=
getT periment{experiment :Experiment) : List<Terms=
-daoF actory
-fileAccessSenice
CahrrayDzoFaciory
FileAccessService
asubsystems
CafrrayDatafccess RS
FileAccess Service

Figure 3.9 ProjectManagementService implementation

FileAccessService

The FileAccessService subsystem is implemented as a stateful session bean and is
responsible for storage of all files managed within caArray (annotation, array design
and data). Files that are uploaded to caArray are registered with the FileAccessService
which reads the files, compresses the contents and stores the contents as BLOB(s) (in
the database) associated with a CaArrayFile instance. Due to limitations in MySQL
when storing very large blobs (>250MB), caArray breaks very large files into multiple
blobs for storage in the database. The storage of multiple blobs is transparent to users
of the CaArrayFile class.

24

Chapter 3: Logical View

File retrieval is performed through the TemporaryFileCache interface. The imple-
mentation of this interface is stored in a ThreadLocal and maintains a Map of opened
files so that any given client only needs to retrieve file contents from the database once
per overall client transaction. Client subsystems that require access to file contents call
the getFile (caArrayFile : CaArrayFile) : File method which performs the
inverse operation; reading the contents from the BLOB(s), decompressing the contents
and writing them to temporary file reading area. Clients are expected to call close-
File(file : File) when done using files so that the subsystem can remove the
files from temporary file system storage, but the subsystem also performs clean up
when it is finalized. The static structure of the FileAccessService subsystem is
shown in Figure 3.10 and the act of storing file contents is shown in Figure 3.11..

This TemporaryFileCache implementation extracts each requested file to a different
temporary location. This does mean potentially having duplicates of temporarily uncom-
pressed files, but this should be the exception as files are only needed on download
and when parsed. After weighing the potential approaches, the minor overhead of tem-
porary duplicates was definitely preferable to the overhead of maintaining file reference
counters across multiple sessions.

od gow nci nih.caarray.application fileaccess /
TermporaryFileCache Locator
fleaf} «interfaces
+ DEFAULT: TemporargFilsCacheFactory = new TemparanFi TemporaryFileCacher actory
-tempFileCasheFastory| ~ create Temafite Cache() Femporemyile Cachie
+ getTemporanFileCasher): TemporanFileCache
+ resetTemporanFileCache(: waid
+ zetTemporanFileCacheF astorgTemporanFileCacheF astory) : void
winterfaces -
FileAccessService io:File : wintertaces
~ JNDI_NAME: Sting = "caarrayFileAs.. : TemporaryFileCashe
) . . ~ getFile(CaAmayFile) | Fite
~ FddiFile) : CadmapFite -sessioniifodingDirectory : o clEAee s]
~ zddiFile, Sting) : CzAmayFile ~ closefile(CadmayFile) : vaid
~ sddnoutStream, Sting) | CadmayFile T
~ O (GE ATSEERE) © void f H
~ smve(CadmayFile) : vaid .
~ unzipFilesilist=File, List=Shing=) - woid [T e
«leai\ze» E P '
Filefncess ServiceBazn boeeeat Cutput Strean TemporaryFileCache lmpl
o {leaft
....... == FileOutput Straam
+ add(File): CaArayFile
+ add(File, Sting) : CafnayFile ~ TemporanFileCachelmpl(
+ add(InputStream, Stiing) | CafrayFile + gefFile(CafrayFile) : File
+ remove(CatmayFile) : void + closeFilest): void
+ save(CafrayFile] : void + closeFile(CaAmayFile : void
~ getDanFacton) : CamayDaoF actory M‘;’E"?_"J“m’“”
~ setlacF actery(CadmayDaoFactory) : woid [~=--"-- = zip::
+ unzipFiles(List<File, List=Sting=): void GEZIFInput Stream
W W [o —ys—
- ! AbstractCadma yEmtit Ems
io:l0Ltils Ao o GZIPOutpUE Straam
file::CasrrayFile
1
-multiPartBloby| 0.1
domain:Multi FartElob domain: ElobHolder ainterfaces
sgl:Blab
P ; -blobParts tents
+ setBlobSizedint : void _ + getld): Lang
+ writeDatalinputStream) : waid "1 fordered} =+ setldiLong): void 0.1 0.4
+ readDataf): InputStream + getContents) : Blob
+ cleardndEvicth atar) : void + setContents(Blob) : oid

Figure 3.10 FileAccessService implementation class diagram

25

14

=d =ddiFile] 7

FileAccessSeniceBean :FileUtils hibernate::Hibernate

D CaarrayFile= addifile)

Y

:CaArrayFile

. . FilelnputStream= openlnputStreamfile]
The FileAccessSeniceBean opens an 4'[;]
InputStream to read the contents of the file T

to add.

write ContentsinputStream)

The FileAccessSeniceBean passes the
InputStream to the CafAmrayFile to be ! | e ———
persisted. ' GZIF OutputStreampouty T JUtpUtStream
The CaAmayFiles creates a tempaorany file N kbbbl =

containing the GZipped contents H

e L
||

:MultiPartBlob

' MultiP artBlabi)
oA Qr ______ .

writelr atatd ata)

The CaAmayFiles passes the compressed ' ' - |
data itto a new MultiPartBlob to persist it. 1 H 1 bufferedDat
H H H huﬁeredlnputstream(in) \eredvata

:BufferedInputStream

* : ;
loop) !
[while (flen = bufferedD ata.readibuffer) = Dj]
! 1 :BlobHalder
! BlabHolder .
‘o __________BlebRolder .
Blob= createBlob(bytes) H
setContentscontents) | -
T

Figure 3.11 FileAccessService operation AddFile(file : File)

FileManagementService

Whereas the FileAccessService handles the lower level functionality of file storage and retrieval, the FileManagementService
subsystem is responsible for performing higher level logical file operations, specifically, the validation and import of MAGE-
TAB annotation, array design files and array data files. The implementation of the subsystem does this through delegation to
subsystems responsible for handling these various types of data. The organization of the FileManagementService implemen-
tation is shown in Figure 3.12 where the central bean delegates import and validation functionality to a set of importer classes
that in turn delegate to the lower-level subsystems.

apIng [esluydsa] T°g Aelyed

Chapter 3: Logical View

Validation results are instantiated by the lower-level subsystems and then the FileMan-
agementService associates these with the CaArrayFile object that represents the vali-
dated annotation or data file.

cd gow.nci.nih.caarrayapplication files /

winterfaces
FileManagemeniService
~ JNDI_MNAME: String ="caamrawFiletda...

ralid gte File siomyect Fryect, fle Set -Cadmz pFile Set) - woid
inmpotFilestametPmyect Froject, e Set [CadAra yFile Set) [woid

~ god SupolesentalFiles fametPmyect Pmyect, fle Set (O3 Ara wFite Sei) - woid tageTablmporter _translator
~ s@ueArs e sigr @rE ylesign Araylesion, desigrFile (CadAmarFile) & uoid
~impodtdrayDesigr Detailsfzme yDesige ArzyDesign) & woid MageTabTranslatar
i P REEEPFTPTEEE B '
T ! wlEEn
H wsubsystema

wredlizexn MageTabTrans=lstion

FileManagement ServiceBean
-amaybezignSemice

+ imponFilestargetProject :Pmject, fileSet :CafmrayFileSet) : vaid ey esionlmeottsy Arra;%es.‘gns‘ervice
+ walidateFiles{project :Project, fileSet :CafAmayFileSet):waid ~ p-o---2 "
+ savefnaybesigniaraybesign Araybesign, designFile :CafmayFile) : woid wliZen
+ importAraylesignDetailsarraybesign sArrayDesign) @ void
+ addSupplementalFilesitargetFroject :Froject, fileSet :CafmayFileSet) : void
wsubsyste ma
ArrayDesign Service
AbstractCa Ama yEntity
(FProtectzblelescendent !
CaArrayFile S

pirrayDatalmporter)
fleaf} -amaybataSenrice

ArrapDafalervice

-validationResult

File“alidationResult ‘alidationhMessage
lleaft "“‘93559,_:95 fleaf} wsubsystema
1 o= ArrayDataService

Figure 3.12 FileManagementService implementation

ArrayDataService

The ArrayDataService subsystem is responsible for validating array data files, storing
array data and retrieving array data when requested by clients. The typical order of
events related to a given array data file is as follows:

e An array data file is validated using the validate (arrayDataFile : CaAr-
rayDataFile) : ValidationResult operation. Only the generated Fil-
eValidationResult is created and persisted.

e The data file is imported using the import (arrayData : AbstractArray-
Data) : wvoid operation. At this point, a DataSet and associated Hybridiza-
tionData and AbstractDataColumn instances are created, but individual data
values are not retrieved or persisted.

e A client requests data via the getData (arrayData : AbstractArray-
Data, types : List<QuantitationType>) : DataSet method. If thisis
the first request for the AbstractDataColumns associated with the provided
QuantitationTypes, the requested data is parsed from the files as columnar
arrays of primitives and stored persistently as serialized, GZipped byte[] repre-
sentations of the arrays. The data is then returned to the client. If the data had

27

caArray 2.1 Technical Guide

28

previously been loaded as a result of earlier calls to getData the existing serial-

ized byte[] is deserialized?.
Though caArray 1.x and 2.0 do ultimately use the database to persist array data, the
approaches are radically different. The 2.0 design does not exhibit the same perfor-
mance and resource consumption when compared to 1.x. For illustration purposes, the
1.x design stores the array data from a file as a large number of rows (one per design
element) with a column per data value, maintaining a complete relational representa-
tion of the entire data set. caArray 2.0 uses a single BLOB entry to store a large primi-
tive array of data corresponding to a complete column's worth of data from a data file.
For example, whereas a CEL file consumes hundreds of thousands of rows of seven
columns apiece in 1.x, the new design creates 7 rows, each with a single serialized,
compressed representation of hundreds of thousands of data points.

The method import(arrayData : AbstractArrayData) : void is illustrated in Figure 3.13 .

=d ArrayDataService.import Data(arrayData @ AbstractArrayData]/

ArnaylataSeniceBean| [AbstractérrayDataHandle winterfaces winterfaces

FileAcoessSeice :CafrrayDan

D importDatatarayData)

File= getFile(cafmayFile] H
Retrieve the underlying data 0 g (¥File) "r"l_'l

file for validation and reading
az necessany during DataSet ...

AbstractarayDataHandler= getHandlenarrayData,
Retrieves the handler type for file)y H

the specific aray data file
type and wersion.

. FileValidationResult= \ralidat.eO
The handler validates the

data file according to rules
appropriate to the data type.
Az an example, the handler

subclass AffymetrixCelHandler ... DataSet= createD ataSet]) E
-
:DataSet
DataSet)
-------- >

T _:— ‘Hybridization D ata

! ' HybridizationD ata
Creates a HybridizationData H Mr------- yoridizanonds T'Q""':E’
instance for each |

Hybridization associated with
the Abstract®rayData (1 for
RavuArrayData, potentially
mamy for DerivedAraylata)

'
r—addQuantitation Typelquantitation Type)

The handler adds ! loop ~

QuantitationTypes to the E [for each|Quantitation Type]

DataSet. This may be a static
set (e.g. Affymetrizwhere the
columns are always known) or
it may involuve parsing the file
(e.q. for GenePixzwhere data
columns may wany). H
addCqumn(quantitationTy:pe)

Adds a new !
AbstractlataColumn instance ' T T T
(e.g. FloatColumn) bazed on H . i e
the data type described by the .. H H

zave(cafmrayEntity)

Figure 3.13 Import Operation implementation

1. The delayed parsing of the data sets was deferred from the initial release of caArray 2.0. The data
sets are stored as part of the import process. After delayed parsing is implemented, additional
space savings will be achieved; only requested columns of data will be parsed and persisted. This
is important since only a small subset of the quantitation types of a given data type are of interest to
clients (for example, 2 columns out of 20 such as "detection' and "chip signal" of a .chp file in an
Affymetrix experiment).

Chapter 3: Logical View

ArrayDesignService

The ArrayDesignService is responsible for parsing, persisting, and retrieving array
design annotation from the various array annotation file types. In the implementation of
the subsystem, each file format is handled by a specific subclass of AbstractArray-
DesignHandler. These subclasses contain the logic to parse, validate, and persist the
details of a given format. The array annotation is stored in the ArrayDesignDetails and
caBIO reporter annotation structures described earlier in the section on the caArray
Domain Classes package. The major classes and dependencies are represented in
Figure 3.14

cd gow .ncinih.caarray application.arraydesign /

cinterfaces
Arraylesignervice

~ impoitfesigr ifesigrfile (CaArarFile) @ ArsyDesion
~ getlesigrletailsizme yDesign AmayDesign) @ ArayDesignletails

£

wredlize s
.

ArrayDesignServiceBean

LOdG: Log= LogFacton.getl...

dacFacton: CafmayDbaoFactory = CafAmnaybaoFacta...
wocdbulangSemice: WocabulanSenice
fileAocessSenrice: FileAocessSenrice

+ importDesignidesignFile :CafmayFile) @ Arraylesign

+ gethesignbetailsgaraylesign Arawbesign) : ArayDesignbetails

- getHandlendesignFile :CaArayFile) : AbstractamraybesignHandler
~ gethaoFacton) : CafrawbaoFactans

~ zetDaoFactongdacF actony :CafmraybacFactond ; void
getfrraylran) : Arraylan
getWocabulaneSenice) : WocabulanrSenrice
setWocabularySenicefrocabulangSenice MocabularngSenice]) @ woid
getFileforeszSenvicel) : Filefceasss enioe
setFilefooessSenicelfilefomessSamice FileAomessService) @ woid

'

AbstracfirrayDesigntandier

designFile: CadfrrayFile
vocabulagSenice: WocabulanSenice
fileAccessSenice: FileAocessSenice

AbstractirrayDesignHandlendesignFile :CadrayFile, wocabularySemice WocabulanSenice, fileAmessSerice (FileAccessSanrice)
getbesignFilel) : CaAmayFile

getWocabulamSenice) : VWocabulanSenice

getfrraybesign) - ArayDesign

getFilefcatrayFile :CafmrayFile) : File

load [@ra yDesipn Araylesign) o uoid

getlesigrletaile] @ ArayDesignletails

AffyretrixCdfHandler Gene PixGal Handlar llluminaCswHandler

Figure 3.14 ArrayDesignService subservice implementation

29

caArray 2.1 Technical Guide

MageTabParser

The MageTabParser subsystem is responsible for reading a set of files in MAGE-TAB
format, validating the files and ultimately representing the contents of the files in object
model based on MAGE-TAB concepts. The major implementation classes are shown in
Figure 3.15..

cd MAGE-TAE

sinterfaces
MageTebParser

m INSTAMCE: MageTabParsermplementation = new MageTabPars...

validate (Wage TabirputFile Set) ; ValidationAesult
~ pame (Wege Tehinputfile Sat) - ege Faslocumant Sat

8

MageTabFarserimplementation

T

walidateihtage T abinputFileSet) Valid ationResult
parse(MageTablnputFileSet): MageTabbocumentSet

T

AbsiraciMage TabDocument

+ gefFile): Fila
W ki 4 St 4 |t aetn 102 MageTabD be—
MageTablInputFile Set MageTabDocurment Set

fleaf] fleaf]

addIdiFile) : void
addAdf(File) : void
addsdmiFile) : woid
addlataMatrizgFile) : void
addMativeD ataiFile) : void

getldfbocuments]) : Set<ldfDacuments
getSdflocuments]) : Set<SdrfDocument>
getadiDocumentst) : Set<AdiDocuments
getDatabdatries() : Set<Databd atri:
getMativelataFiles) : Set<MativeDataFilex
getT =0): Collection<T
getTerms(): Collection<OntalogyTerms
getldfDocument(String) : Idfhocument
getSdibacument(String) : Sdrlocument (e
getddfDocument(String) | AdfDocument Ileat}
a tahdatrizgString) : D atabatr

getMativeDataFile(String) : NativeDataFile
getialid) : Valid

PR —

R

ldfDocumentMageTabDocumentSet, File)
getinvestigation() : Investigation
getSdrflocuments]) : List<SddDocuments
getFactorString) : ExperimentalF actor

+ o+ o+t

Abstactiage TahDocumeant 1
SdrfDocurnant -idfDocument
{leaf}

SdiDocumentiMageTabbocumentSet, File)
getl <01 ¢ List=. amplelataRel
getillArayDesigna)) : List< ArayDesigns

getéllDerive dirrayDataFiles) : ListzDerivedAnayD ataFiles:
qetallExtracts) : List<Extract> BotDociiment
et bridizations) : List<Hybridizati {lear}
getAlllmages): List<image>

gettllLabeledExdracts): List<LabeledExdract + AdibocumentMageTabhocumentSet, File)
getdlINormalizationa] : List<Narmalization=

getallSamples)) : List<Sample=

gettllSoans) : List<Seans

getAllSources) : List<Source>

getéllArayDataFiles] : List<ArayDataFile>

getldfDocument) : 1400 cument

setldfDocumentldfCocument) woid

getallArayD atabd atrisF iles0) : ListsArrayDatabdatricFiles

aetdlIDerive dfrrayDatatdatrizFileal) « List<Derive dfrrayDatahd atrisFila =
getallF actorvalues]) : ListsFactorvalues

getAllComments() : List<Comment>

e

Figure 3.15 MageTabParser Subsystem implementation

MageTabTranslation

The MageTabTranslation subsystem of caArray is invoked to translate from the MAGE-
TAB object model generated by the MageTabParser system to a corollary caArray
Domain Class representation. It implements a set of translator classes for each MAGE-

30

Chapter 3: Logical View

TAB document type and for shared data types (i.e. Terms and TermSources). The
major classes and dependencies are represented in Figure 3.16.

od gove .nci nibcaarray. application transiation. magetab /

sinterfaces
Mage TabTranslafor

o fEnslate (Wage Tahlocument bel) | CaAmay TanslationAesult

n

aimports
' ¥
«realizes

Serdalizanle

«interfaces

MageTabTrans|ator Bean Cahrray TranslationResult

~ getfems] @ Collection <Temr =

+ translate(tdageTabDocumentSet, CasrayFileSet) | CaArmayTranslationResult ~ getivvestigations) | Collection ivve shigation =
. ~ getdreyOesigrs] | Collechor Ama e sion =
| Z:E.
“u”
.

AbsfraciTranslator

documentSet: MageTabDocumentSet '
translationResult: hageTabTranslationRezult «rea!ize»
dacFactory: CafrrayDaoFactony

AbstractTranslatonhiageTabocumentSet, MageTabTranslationResult, CafrayD aoF acton
getlraoFactony) : CafmavlaoFactony

getbocumentSet]: MageTablocumentSet MageTabTranslationResult
getTranslationResult) : WageTabTranslationResult fleaft
getTermaList<OntologyTerm=) : Collection<Term:
getTermiOntalogyTearm): Term

transiate) void

gedlog) o Log

replacelfExistAbstractCairavEntity) : AbstractCasravEntity
getProjecthac) : Projecthan

1 11

SdrfTranslator IdfTransl=tor TermTranslator Term SourceTrans|ator

{leaf} {leaf} {leaf} {leaf}

-tranzlationResult

"I T T |

Figure 3.16 MageTabTranslator Subsystem implementation

CaArrayDataAccess

caArray uses the standard Data Access Object pattern to provide data updates and
retrievals. The DAOs are exposed as Java interfaces accessed through a Factory
class. The implementations of the DAOs use Hibernate 3.2 as the underlying persis-
tence mechanism.

VocabularyService Subsystem

The VocabularyService subsystem is implemented as a fagade to allow the user inter-
face to manage controlled vocabularies. The implementation of this subsystem dele-
gates directly to the CaArrayDataAccess service for entity management. The data
model accessed by this service represents a subset of concepts present in external
vocabularies such as the MGED Ontology. These concepts provide a consistent Term
and Category view of vocabularies, and allow the service to manage both locally and
externally controlled vocabularies. However, at this time, external vocabularies are not
communicated with directly. Instead, both local and external vocabularies are stored
within the caArray database for maximum efficiency. The user interface and mage tab
translation both access this service to store and retrieve terms as needed.

31

caArray 2.1 Technical Guide

The subsystem contents are represented in Figure 3.17.
cd Vocabulary

«interfaces
Vocabulary Service

o JMDI_MWAME: String = "caarayfocabu...
UNENOWHN_PROTOCOL_TWFE_MAME: String = "unknown_protoe...

et Teme(Categony) @ SeteTam =

get Teme(Category, Shing) @ Set=Tem =
getOmanisme]) List=0mganisg =

getSoume (Shing, Shieg) @ Tem Soume
getSowmes(Shing) © Set<Tem Soume =
getSoume By LR (Shing, Shing) @ Tem Sowme
getSoumes8 yU (Shing) o SeteTem Soume =
getCategon(Tem Sowme, Shing) @ Categony

et Term (Tem Sowme, Shing) @ Tem

et T fLorg) - Temr

gedOmamiz (Lomrg) © O anism

ety mi (Tem Sowme, Shieg) @ Omanisg

=3 ue Tewmr (Tem) o woid

gedtAll Sovmes() - List=Tem Soume =
getPmitocol 8 yPmitocol Nioe (Tem) List=Pmboco! =
gedtPmitocol (Shirg, Tem Sowme) - Fmotocol

fimd Temir AN Tewmr Sowme Versions(Tem Soume, Shimg) © Tem

I

wredlizes

“ocabularyServiceBean

getTermsCategony] : Set<Term=
getTerms(Categony, String) : Set<Term=
getTerm({TermSouree, String): Term
getOrganizmiTermSource, String) : Organism
getOrganisma] : List<Organism:=
getSource(String, String) : TermSource
getSources(String) : Set<TermSource:
getSourceBylr(String, String) : TermSource
getSourcesByUr(String) : Set<TermSource>
getall 0 ListsT

getCategongTermSource, String) : Categony
getTermiLong) : Term

getProtocolByProtocol Type(Term) : List<Protocals
getProtocol(String, TermSource) @ Protocal
getOrganizmiLong) : Organism
savaTerm(Term) : vaid

find T InAlT Wersions T L String) : Term

T,

-daoFactony wlEEn «usle»

CaArrayDacFaciony Organismiao
VocabularyDao

: wredlizes
wredlizes L

g

CafrrayDatafccess

Figure 3.17 VocabularyService implementation

caarraydb

The caarraydb component represents the MySQL database schema that is used to
store all of caArray’s persistent data. The schema is generated directly from Hibernate
annotations recorded in the caArray Domain Classes so that the schema and domain
classes are kept easily synchronized. caArray supports MySQL version 5.0 and uses
InnoDB tables for transactional behavior.

32

€€

Use-Case Realizations

Manage Experiment Data Files

=d Manage Project Data Files: Basic Flnw/

1. Data Dwner navigates to and selects the project of
interest from their projectwomkepacs in the System
that contains no upleaded data

2. The System opens the project and indicstes the
ability to upload data ta the project

3. The Data Owner chosses to upload data files.

4. The System presents 3 dialogue that allows for
multiple files to be selected fiam a local or
netwotked location withe ut restriction on the size o
type tfile extension independent) of files in addition
to the ability to run the job in the foreground or .

5. The Dats Dwnersslects the file orset of files of
interest and shaoses to upload in the farzground

6. The System indicates the progress of zach file a
they are uploaded tsee Spesial Requitements

7. The System indicates to the Data Ownerwhen all
files have made it and displays the list of files, their
status (Uploading, Uploadsd, Validating, Validated,
Importing and Imported), the ability to select or
deselect any one or all of the files and these astions:
3. Return to Project

b. Upload Files —which retuns the Data Duner to
Step 4

o Delete Files— see Altemate Flon: Delete Files

o, Validate —see Validate Data Files Use Case

& Import—see Import Data Files Use Case

Figure 3.18 Manage Experiment Data Files basic flow sequence diagram

2 wserver pagen [ProjectManagementBaan et pagen subsystams ‘ esubsystams | et pagen subsystemn
M workspase jsp “project jsp P F i Ailes jsp CammayDatahcoess
Data Dwner ‘ |
H apEnProject) h h h ' '
Sting= openFrojeckid) |
Project= getProjectd) - | |
: Project= getPoject(id) | -
: : : ' TH
opengy . : : :
| Project getProjeciy) ; ; ;
manageFiles) ! o ! ! !
i ; apeng L i
' ' . '
| uploadFiles) | - |
: : : displayliploadbislagy) |
: selectlosalFilesy : o
displayUploadProgress) |
[| addFilesifiles) |
ListsCaAnayFile= addFilexfiles) o :
; CaArayFile= adddile) ;
: save(cahmmayEntity) o
; =0
: : : displayFiles) :
. | List<CafrayFile>= getFiles()
L= ' ' '
| retumn to project) ' - |
' : ' s :
: imporig : - |
H H H) '
e i i i i i
| | Import Data Files: Basic Flgw | |
H uplaadFiles) i - |
U : : : s :

A [e21607 € Ja1deyd

Mal

Import Data Files

=d Import Dizta Files: Basic Flow 7

1. Data Owiner selects Import fram the contexd of 3
uploaded fil set as described in Use Case: Manage Project Data

2. The System performs validation as described in Use Case
Walidate Files

3. Ifvalidation completes successtully and the status of the file set
is Walidated, then System updates cafrray with the data contained
in the file set.

4. System perindically auto-refreshes status of the file set until
sompletion. The status can be Imporing or Impored. (See Use
Case: Manage Praject Data)

Ouiner can delete the file set as described in Use Case: Manage
Fraject Data

ref
5. When import completes sucsessfully (status = Imported), Data —/

JE S

UMMM MY P

g aserier pages Prajectht CakrayFileSet
I files.jep Filehd MageTabParser | |:MageTabTranslstion| | :AmayDataSendice | |:Camnaybatatecess
:Data Owner
| import() H H H | | | H
Sting= H H H H H H
importProjectFilesy) : : : : : :
mporFilagtargetProjectfileSet) |
- . . . H
| FileStatus= | | -
; getStatus) ; g
Ana- mponDesign(designFiley
[for eash file etTypequistayPesign] : : : :
et 7 | : : :
MageTabDocumentSets parsefileSet) | ' ' !
i g 1 1 e
ret H i i |
CaAmrayTranslationResult= translateldocumentSet) - H H
H ; =0 ' H
[l T T savelcaAnayEntity) | T
HD at: Data), H - H
loop ; j g ;
[for each file where|igh ataF ile() == true] | | | H
ref 7 H H H H
| FileStatus= getStatus)) | -
i ; i g
L ; ;
delate) &

Figure 3.19 Import Data Files basic flow sequence diagram

apIng [esluydsa] T°g Aelyed

G€

Acquire Experiment Data via API

=d Acquire Project Dats vis APl Basic Flow/

E LoginContext © 4 4 -AnrayDesignD D,
A AnayDesignSenice AnayDataSenice
Extemal System

H ‘CaknaySermver

CanaySemerhostname por)

esseren e :

List<AbstrastCasuayEntity== search(zgiQueny)

B : :

connec{usemame.pasanord) _ | L ;

1. The Extemal System connects to the remate - ret f '
API, providing the user credentials to use for H '
acvess, Autherticgtion: Java Remaote AFI |
login 2 :

2. The System authenticates the provided L0 L] .
credentials. T T
5 t ice() |

3. The External System submits 2 search for
objects of interest (experiments, samples, H
hybridizations, ete.) H |

List<Hybridization>= gethybridizationa)

4. The Extemal System intenogates and
navigates the object graph starting with one of
the entities retumed in the search, ultimately
locating hybridization data of interest,

AnayDesign= gettnaybesign)

¥

gettmayDesignDetailss enicel)

ArayDesignDetails= getDesignDetailgidesign)

5. The Extenal System requests the details of
the design elements forthe array design

o

i1 I

DerivedanrayData= getDerivedAnaybatan)

¥

[i getl, 0
"

DataSets getDataSetirequesty

6. The External System requests a subset of the
hybridization data for further analysis.

Araybatavalues getDataVialues(araybata,designElements, types)

disconnect)

|t

X

Figure 3.20 Acquire Experiment Data via API basic flow

Grid access follows a similar flow, with the CaArraySvc delegating calls to these same remote session beans.

M3IA [ea1boT g J1ardey)d

caArray 2.1 Technical Guide

36

CHAPTER

IMPLEMENTATION VIEW

Overview

The major physical artifacts that comprise the caArray software deployment units are
illustrated in Figure 4.1. The major artifacts and their relationships to the subsystems
they realize are described in the following section, Artifacts.

id Architecturally Significart Implementation Elements /

wartifacts wartifacts

caarray-client.jar ez CafraySve-senrice. jar

sartitacts

caarnay.ear

aartifacts

caarray.war

« artifacts
struts2-core-2.0.9 jar

Yooy Vo

wartifacts wartifacts
caamay-ejb.jar | L __.__._._ :_:bcaarray-cornmon.jar
W vy
wartifacts wartifacts H w artifacts
Aff«Fusion.jar csmapi.jar E hibernate3.jar
: Y
wartifacts

CEh version 4.0 hibernate-annotation=.jar

Figure 4.1 Architecturally significant implementation elements

37

caArray 2.1 Technical Guide

Artifacts

caarray.ear

The caarray.ear artifact is the J2EE Enterprise Application Archive (EAR) that contains
all of the web portal application and EJB components that make up the User Interface,
Remote Java API, Application Logic, and Business Logic layers of the application. The
EAR also contains the third-party JARs necessary to support the Application and Busi-
ness Logic Layers of the application.

Caarray.war

The caarray.war artifact packages the JSPs and caArray Struts 2 classes that comprise
the User Interface layer of caArray. The WAR also contains the Struts 2 third-party
JARs and necessary supporting JARS.

caarray-ejb.jar

The caarray-ejb.jar packages the implementation of all of the EJB subsystems and the
implementation of the remote API interfaces defined in caarray-client.jar. This includes
all of the subsystems in the Application Layer and VocabularyService subsystem from
the Business Logic Layer of the logical model. The important third-party dependency to
note is the dependency on AffxFusion.jar which provides Affymetrix file format parsing
support.

caarray-common.jar

The caarray-common.jar contains the caArray Domain Classes packages, the CaArray
Data Access subsystem and the MageTabParser subsystem. The major third-party
component dependencies noted are hibernate3.jar and hibernate-annotations.jar to
support annotation-based Hibernate ORM mapping and to csmapi.jar to support entity
access authorization.

caarray-client.jar

The caarray-client.jar contains the remote EJB interfaces required by Java Remote API
clients and the caArray Grid Service. This JAR also repackages other third-party
classes required by remote clients.

CaArraySvc-service.jar

38

The CaArraySvc-service.jar contains the caGrid APl implementation classes.

CHAPTER

DEPLOYMENT VIEW

The typical deployment configuration for caArray is documented in Figure 5.1. The
NCICB deployment of caArray is similar to the scenario modeled in the figure, with the
addition of a front-end Apache web server that receives the HTTPS requests and then
delegates these requests to the JBoss server where caArray is deployed. The JBoss
container configures the datasource (for db connections) and SMTP information (for
email).

While Globus is shown as the grid service execution environment, the NCICB deploy-
ment environment uses JBoss 4.0.4 as the container and Globus runs inside of JBoss

39

caArray 2.1 Technical Guide

4.0.4. External adopters might also choose to deploy application components and exe-
cution environments to a single server.

cd Architecturally Significant Deployment Elements /

Grid Serwver J

— wexecution environments
caArray Grid J Globus
Cliert SOAP wartifacts
C afuraySw-senice. jar
Application Sefver J J'
Database Server =
—_— JHDL,
—|_J RII
-
caArray Web =
Client
aexecution environments
WAL JBos=s 405 gexecution environments
MyS0L Server 5.0
hfy G L
wartifacts dotab
J sdatabases
_| caanay.ear f---- N -
cafrray RMI & INDIRMI caarraydb
Client s

Figure 5.1 Architecturally Significant Deployment Elements

40

A

access control, CSM 4.0 22
Acquire Experiment Data via API 35
acquire experiment data via API, use case 9
API

grid 14

Remote Java 16
AP, extracting data using 9
architectural

constraints 6

goals 6
architecture

description of views 5

logical view overview 11

use case view 7
ArrayDataService 27
ArrayDesignService 29

C

caArray

description 1

domain classes 17

Technical Guide description 1

User’s Guide text conventions 3
caarray.ear 38
caarray.war 38
caarray-client.jar 38
caarray-common.jar 38
CaArrayDataAccess 31
caarraydb 32
caarray-ejb.jar 38
CaArraySvc-service.jar 38
caBIG silver compliance 6
CSM 4.0 access control 22

D

data retrieval 6

data storage 6
deployment view 39
document conventions 3

INDEX

domain classes 17

E
extracting data via API 9

F

FileAccessService 24
FileManagementService 26

G
grid API 14

H
High Performance Data Parsing 6

I

Import Data Files 34
import experiment data, use case 9

J

J2EE 1.4 application 11

L

logical view, overview 11
login use case 8

M

manage array designs 9
Manage Experiment Data Files 33
manage experiment data files, use case 8

P

ProjectManagementService 23

R

remote API usability 6
Remote Java API 16

41

caArray 2.1 Technical Guide

S

silver compliance, caBIG 6
structural hierarchy 11
subsystems

dependencies 11

description 11

figure 12

T

text conventions in user guide 3

U

use case
acquire experiment data via API 9
import experiment data 9
login, description 8
manage array designs 9
manage experiment data files 8
validate experiment data files 9
use case view 7
user interface layer 13

\"

validate experiment data files, use case 9
view, architecture descriptions 5

42

	Credits and Resources
	Table of Contents
	Using the caArray Technical Guide
	Introduction to caArray
	Purpose of this Manual
	Definitions and Acronyms
	References
	Organization of the Manual
	Document Text Conventions

	Chpt 1 - Architectural Representation of caArray
	Architectural Representation
	Architectural Goals and Constraints

	Chpt 2 - Use Case View
	caArray Use Cases
	Login
	Manage Experiment Data Files
	Validate Experiment Data Files
	Import Experiment Data
	Manage Array Designs
	Manage Experiment Permissions
	Acquire Experiment Data via API

	Chpt 3 - Logical View
	Overview
	Architecturally Significant Design Elements
	User Interface Layer
	Grid API
	Remote Java API
	caArray Domain Classes
	Access Control using CSM 4.0
	ProjectManagementService
	FileAccessService
	FileManagementService
	ArrayDataService
	ArrayDesignService
	MageTabParser
	MageTabTranslation
	CaArrayDataAccess
	VocabularyService Subsystem

	caarraydb
	Use-Case Realizations
	Manage Experiment Data Files
	Import Data Files
	Acquire Experiment Data via API

	Chpt 4 - Implementation View
	Overview
	Artifacts
	caarray.ear
	caarray.war
	caarray-ejb.jar
	caarray-common.jar
	caarray-client.jar
	CaArraySvc-service.jar

	Chpt 5 - Deployment View
	Index

