

Programmer’s Guide

Center for Biomedical Informatics
and Information Technology

CACORE OBJECT CART
VERSION 1.0

This is a U.S. Government work. November 11, 2008

Revision History
The most current version of this document is located on the MDR GForge website:
https://gforge.nci.nih.gov/docman/?group_id=369. Other related documents can also
be found at this location on the GForge

Revision History
Revision Date Author Summary of Changes

05/07/2008 Denis Avdic Initial Draft of document

06/04/2008 Denis Avdic Final Draft of document

11/10/2008 Bronwyn Gagne Conversion of document to
CBIIT standard.

11/11/2008 Bronwyn Gagne Final Release of document

https://gforge.nci.nih.gov/docman/?group_id=369

Table of Contents

About This Guide.. 1
Purpose...1
Scope..1
Topics Covered...1
Text Conventions Used ..2
Credits and Resources ...2

Chapter 1 Object Cart Overview ... 3
Object Cart Features ..3

Object Cart Service ..4
Serializer/Deserializer ..4
Classification/Typing ..4
Cart Manager ...4

Architecture Overview...4
Persistence and Application Service Tiers ...5

Chapter 2 Workflow for Object Cart Integration... 7
Integrating the Object Cart Client ...7

CartManager ..8
ObjectCartClient ...9
Using the Cart ..9
Using Object Cart with Java Objects..9
Using Object Cart with XML data ...10
Expiration Date and Deleting Carts..10

Chapter 3 Deployment Model ... 11
Thin Client Deployment ..11

Configuration ..11
Service Deployment..11

Configuration ..12
Thick Client Deployment...12

i

caCORE Object Cart v1.0 Programmer's Guide

ii

About This Guide
This preface introduces you to the caCORE Object Cart v1.0 Programmer's Guide.

Topics in this section include:

• Purpose on this page.

• Scope on this page.

• Topics Covered on this page.

• Text Conventions Used on page 2

• Credits and Resources on page 2

Purpose
This document provides all the information application developers need to
successfully integrate their application with the caCORE Object Cart.

The Object Cart was developed to provide data caching and sharing capability
across applications. Since many applications and services rely on other services,
the Object Cart will improve workflow and data sharing among applications in a
seamless way.

Scope
This document shows how to deploy and integrate the Object Cart client with your
application. It covers basic configuration when deploying the thin (remote) client, the
service itself, and the thick client.

Topics Covered
This brief overview explains what you will find in each chapter of this guide.

• Chapter 1, Object Cart Overview provides an overview of the Object Cart
architecture and concepts and how they apply to your application.

• Chapter 2, Workflow for Object Cart Integration provides the necessary
information for successfully integrating your application with the Object Cart.

• Chapter 3, Deployment Model describes how to deploy your own Object Cart
service, including information on both Thin Client and Thick Client
deployments as well as deployment of the service itself.

1

caCORE Object Cart v1.0 Programmer's Guide

Text Conventions Used
This section explains conventions used in this guide. The various typefaces
represent interface components, keyboard shortcuts, toolbar buttons, dialog box
options, and text that you type.

Convention Description Example

Bold Highlights names of option buttons,
check boxes, drop-down menus, menu
commands, command buttons, or icons.

Click Search.

URL Indicates a Web address. http://domain.com

text in SMALL CAPS Indicates a keyboard shortcut. Press ENTER.

text in SMALL CAPS +
text in SMALL CAPS

Indicates keys that are pressed
simultaneously.

Press SHIFT + CTRL.

Italics Highlights references to other
documents, sections, figures, and
tables.

See Figure 4.5.

Italic boldface
monospace type

Represents text that you type. In the New Subset text box,
enter Proprietary
Proteins.

NOTE: Highlights information of particular
importance.

NOTE: This concept is used
throughout this document.

Credits and Resources
caCORE MDR Development and Management Teams

MDR Development
Team

Other Development
Teams

Documentation Program
Management

Denis Avdic1 Satish Patel1 Denis Avdic1 Bilal Elahi3

 Steve Hunter1 Charles Griffin1 Charles Griffin1

 Bronwyn Gagne4

1 Ekagra Software
Technologies

2 Science Applications
International
Corporation (SAIC)

3 National Cancer
Institute Center for
Bioinformatics

4 Lockheed Martin

Contacts and Support

NCICB Application Support
http://ncicb.nci.nih.gov/NCICB/support
Telephone: 301-451-4384
Toll free: 888-478-4423

2

http://ncicb.nci.nih.gov/NCICB/support

Chapter 1 Object Cart Overview
The caCORE Object Cart is a convenient service that enables access to a
shareable data cache. It provides a number of ways for this data to be stored, either
as a serialized Java Object or an XML document qualified with an XML schema
present in the Global Model Exchange (GME).

Figure 1‐1 Overview Diagram of Object Cart functionality

Object Cart Features
The Object Cart provides the following capabilities:

1. Creation of a unique cart within a classification scheme, based on a user id
and a cart name. The classification scheme, or type, is used to distinguish
groups of carts associated with a particular set of applications.

2. Association of a pre-existing cart with a different user id.

3. A serializer and a deserializer for Java objects following the Java Bean
pattern.

4. XML validation for XML data with a valid XML Schema present in the GME,
and identified with a GME namespace name.

5. Data persistence.

The Object Cart APIs provide the following major components of the Object Cart
feature set:

• Object Cart Service

3

http://projectmobius.osu.edu/overview.php#gme

caCORE Object Cart v1.0 Programmer's Guide

• Serializer/Deserializer

• Classification/Typing

• Cart Manager.

Each of these components is described briefly below.

Object Cart Service
The service used for all cart operations is specific to the classification of the carts
that are being manipulated. The operations include create, delete, and retrieve
actions for a particular cart. There are no update operations for the cart, as the API
encourages adding and removing objects from the cart using the Client methods.

Serializer/Deserializer
Data is stored in the carts in XML format and the Object Cart provides a simple
interface for serialization of Java objects. Specifically, the Object Cart supports
serialization of objects following the Java Bean specification.

The interface is positioned so that storing and retrieving a Java object is still only
one operation, where the serialization happens before the object is sent to the
service and after it is received from the service.

Classification/Typing
Along with the serialization support, the Object Cart provides classification of carts.
This enables separation of object collections based on application, usage, or other
criteria. In this first version of the Object Cart the classifications available are limited
to those present on the server.

Cart Manager
Cart manager is a singleton holder of multiple client services. This reduces the
number of open services to one per classification. While it is not necessary to use
the Cart Manager, it simplifies access to and containment of the underlying services.

Architecture Overview
Object Cart is a caCORE SDK 4.0 generated system, extended to allow writing to as
well as reading from the underlying service.

The infrastructure of an SDK generated system exhibits an n-tiered architecture with
client interfaces, server components, backend objects, data sources, and additional
backend systems. This allows the system to divide tasks or requests among
different servers and data stores, isolating the client from the details of where and
how data is retrieved from different data stores. The client receives information from
backend objects. These back-end objects then communicate directly with data
sources, in this case a relational databases (using Hibernate). SDK generated
systems also perform common tasks such as logging.

For more information on SDK generated systems please refer to the caCORE SDK
4.0 Developer’s Guide.

4

Chapter 1–Object Cart Overview

Persistence and Application Service Tiers
As mentioned before, the Object Cart API is an extension to an SDK generated
system. In addition to the SDK provided query capabilities, the Object Cart provides
write capabilities for its domain objects, namely the Cart and the CartObject.

class System

SDK Appl ication Service

«interface»
ApplicationService

+ search(String) : Col lection

«interface»
ApplicationServiceImpl

+ search(String) : Col lection

«interface»
ObjectCartService

+ addCartObjects(Col lection<CartObject>, Integer) : Cart
+ addObject(CartObject, Integer) : Cart
+ associateCart(String, String, String) : void
+ expi reCart(Integer) : void
+ getCart(Integer) : Cart
+ getCart(String, String, String) : Cart
+ getCartsByName(String) : Cart
+ getClassi ficationSchemeCarts(String) : Cart
+ getNew Cart(String, String, String) : Cart
+ getUserCarts(String) : Cart
+ removeObject(Integer, Integer) : Cart
+ removeObjects(Integer, Integer[]) : Cart
+ retrieveObject(Integer, Integer) : CartObject
+ retrieveObjects(Integer) : Col lection<CartObject>
+ retrieveObjectsByType(Integer, String) : Col lection<CartObject>

«interface»
ObjectCartServiceImpl

+ addCartObjects(Col lection<CartObject>, Integer) : Cart
+ addObject(CartObject, Integer) : Cart
+ associateCart(String, String, String) : void
+ expi reCart(Integer) : void
+ getCart(Integer) : Cart
+ getCart(String, String, String) : Cart
+ getCartsByName(String) : Cart
+ getClassi ficationSchemeCarts(String) : Cart
+ getNew Cart(String, String, String) : Cart
+ getUserCarts(String) : Cart
+ removeObject(Integer, Integer) : Cart
+ removeObjects(Integer, Integer[]) : Cart
+ retrieveObject(Integer, Integer) : CartObject
+ retrieveObjects(Integer) : Col lection<CartObject>
+ retrieveObjectsByType(Integer, String) : Col lection<CartObject>

«interface»
DAO

+ getAl lClassNames() : Col lection
+ query(Request) : Response

«interface»
ObjectCartDAO

+ cartSearch(Cart) : List<Cart>
+ query(Request) : Response
+ storeCart(Cart) : Cart
+ updateCart(Cart) : Cart

Client

Server

Obj ectCartClient

+ associateCart(Cart, String) : Cart
+ createCart(String, String) : Cart
+ deleteCart(Cart) : void
+ getObjectsByT ype(Cart, String) : Col lection<CartObject>
+ getPOJO(Class, CartObject) : Object
+ getPOJOCol lection(Class, Col lection<CartObject>) : Col lection<Object>
+ ObjectCartCl ient(String) : void
+ refreshCart(Cart) : Cart
+ rem oveObject(Cart, CartObject) : Cart
+ rem oveObjectCol lection(Cart, Col lection<CartObject>) : Cart
+ retrieveCart(String, String) : Cart
+ retrieveUserCarts(String) : Cart
+ storeCustom Object(Cart, Class, String, String, Object, Serial izer) : Cart
+ storeCustom ObjectCol lection(Cart, Class, M ap<String,String>, Map<String,Object>, Serial izer) : Cart
+ storeObject(Cart, CartObject) : Cart
+ storeObjectCol lection(Cart, Col lection<CartObject>) : Cart
+ storePOJO(Cart, Class, String, String, Object) : Cart
+ storePOJOCollection(Cart, Class, M ap<String,String>, Map<String,Object>) : Cart

Figure 1‐2 Object Cart Service and Client class diagram

5

caCORE Object Cart v1.0 Programmer's Guide

The ObjectCartClient, shown in the figure above, is used as the main interface to
the Object Cart Service and Server. The client contains all the methods related to
the lifecycle of the Cart and Cart Object, as well as customized retrieval methods
utilizing the SDK query system. Additionally the client has methods used for storing
and retrieving Java Objects utilizing either a custom or provided serializer.

6

Chapter 2 Workflow for Object Cart
Integration

This chapter outlines the fundamental steps, both strategic and technical, for
successful Object Cart integration.

In order to integrate the Object Cart into your application:

1. Decide which objects/data you would like to share with another
application or make available for storage in general.
If the data is already in XML format and has an XML schema present in the
GME, the application can use the Cart with its CartObjects as wrappers for
data. Otherwise you would be storing Java Objects, which would be
serialized to XML. If the Java objects being stored are not serializable by the
Castor API directly, you may need to write your own Serializer based on the
interface provided.

2. Determine an identification strategy.
Since the carts are identified by user id and name, the Object Cart functions
best within a Single Sign On environment. If the application is not part of
such an environment, then a strategy must be devised as to how the user
accessing the cart is being identified in all applications sharing the data. This
could be accomplished by drawing on a common user directory, using a
unique id sent between applications through URLs, or through another
technique altogether.

3. Create or adapt a user interface for browsing and interacting with the
cart.

4. Integrate Object Cart Client code with your application and the cart
user interface.

Integrating the Object Cart Client
The Object Cart stores data in its XML representation. Your application might
handle the data either as XML directly or represented in Java Objects. Thus there
are two possible paradigms for utilizing the Object Cart Client and the Object Cart
domain objects. With either approach it is recommended that you use the provided
Client Manager to manage Object Cart Clients and, in turn, Object Cart Services.
Additionally JavaDocs for Object Cart 1.0 are available on the GForge site at:
https://gforge.nci.nih.gov/docman/index.php?group_id=369&selected_doc_group_id
=4252&language_id=1.

7

https://gforge.nci.nih.gov/docman/index.php?group_id=369&selected_doc_group_id=4252&language_id=1
https://gforge.nci.nih.gov/docman/index.php?group_id=369&selected_doc_group_id=4252&language_id=1

caCORE Object Cart v1.0 Programmer's Guide

Figure 2‐1 Java API communication with Object Cart Service

CartManager
CartManager is a singleton that needs to be initialized with all the classification
schemes your application will be using in a String array. There is a minimum of one
scheme necessary to access Object Cart Services successfully, although there
might be many types already present in the system. Please contact the Object Cart
team in order to determine if there is a type already present that might fit your
needs.

The following is an example of initialization of the CartManager:

CartManager cartManager = CartManager.getInstance();
String[]classificationSchemes = {"First type", Constants.CARTSCHEME};
try{
 cartManager.initClients(classificationSchemes);
}catch(ObjectCartException oce){
 oce.printStackTrace();
}

8

Chapter 2–Workflow for Object Cart Integration

ObjectCartClient
Once the CartManager is initialized, you can start utilizing the ObjectCartClient. In
order to streamline the service calls, each client can interact with Carts classified
with one Classification Scheme. To access a client simply call the
CartManager.getClient method and supply it with the necessary classification
scheme type as determined by you or the Object Cart team.

ObjectCartClient client = cartManager.getClient("First Type");

Once you have a client, you can perform all cart operations as described in the
JavaDocs, located in GForge.

Using the Cart
Each cart within a particular classification scheme is uniquely identified by its name
and the associated user id. Thus, in order to create a cart or retrieve one, you must
simply supply the name/user id pair.

Depending on whether you are using the CartManager or the Client directly, your
createCart method call would look like either of the following:

Cart myCart = client.createCart(userId, cartName);

Cart mySecondCart =
cartManager.getClient(Constants.CARTSCHEME).createCart(userId, cartName);

There are two major ways of retrieving a cart. The first one relies on the same cart
name/user id pair, while the second one relies on the cart’s unique identifier. The
first method should be used if you do not have a reference to the cart needed. If the
reference is present, you can use the client method refreshCart, which refreshes
the cart based on the unique cart id.

Cart myCart = client.retireveCart(userId, cartName);

myCart = client.refreshCart(myCart);

Using Object Cart with Java Objects
The process for serializing Java Objects into the Object Cart is integrated into the
client by the way of the Serializer interface provided with the ObjectCart Client API.

If your objects follow the Java Bean specification you can use our Castor-based
serializer. Use the provided storePOJO and getPOJO methods. Otherwise you
should create your implementation of the Serializer interface and use the
storeCustomObject and getCustomObject methods to store and retrieve your
objects.

If you use the provided POJO methods, in addition to providing the actual object,
you will need to provide the Class of the object being used in the
serialization/deserialization process. Additionally you will need to provide the
nativeID and displayText that will be exposed in the CartObject enveloping the

9

caCORE Object Cart v1.0 Programmer's Guide

serialized data. The nativeID will assist in identifying the wrapped object and the
diaplayText should contain text used when displaying the object within ObjectCart
UI. This eliminates the need to deserialize the data for identification and display
purposes.

String displayText =
item.getItem().getLongName()+";"+item.getItem().getDescription();

myCart = client.storePOJO(myCart, CDECartItem.class, displayText,
item.getId(), item);

Collection<CDECartItem> myCollection = (Collection<CDECartItem>)
getPOJOCollection(CDECartItem.class, myCart.getCartObjectCollection());

Using Object Cart with XML data
If you have data that is already in XML format, you can use the ObjectCart domain
objects directly, without resorting to serialization. In this case use the CartObject
directly where you can set all attributes to the desired values. Thus setData is
used for actual XML payload whereas the nativeID is used to identify the wrapped
object within the application, and displayText contains the text used when
displaying the object within the ObjectCart UI. Then you can use the Client methods
setObject and getObject, along with their collection analogues to store your
data in a particular cart.

Expiration Date and Deleting Carts
The carts are not deleted directly by the client. Instead the client sets the expiration
date for a cart at the current time, and thus makes it eligible for deletion by the
maintenance thread that runs in parallel to the Object Cart service. The
maintenance thread deletes all expired carts that have been inactive for a period of
three days. By default, a cart does not have an expiration date. This allows the user
to have a permanent storage until such time as the (or underlying application)
decides to set an expiration date for that cart.

If using the cart for temporary storage, be sure to set the expiration date to either
the default (three days) or to a specific date provided through the client.

10

Chapter 3 Deployment Model
The Object Cart APIs facilitate the transmission of data across a network to a
central location. These APIs use Java, Spring, and Hibernate for this purpose.

Thin Client Deployment
The Object Cart APIs and domain objects are available as a JAR that needs to be
placed in the class-path of the application. Along with this JAR, there are many
supporting Jars on which the Object Cart API depends. These extra Jars are
supplied as part of the Object Cart distribution and should be added into the folder
<application-web-root>\WEB-INF\lib.

NOTE: The Object Cart service depends on having a correct version of Hibernate3.jar
on the client side. This means there may be a need for you to update your code if
you are using a different version of Hibernate. Similar constraints are present on
versions of Castor and Spring distributions. Additional changes may be necessary
to accommodate Object Cart if your application is using Castor and/or Spring.

Configuration
File Description

application-config-client.xml The XML file containing the configuration data for
the client service. This configuration data may
conflict with an existing configuration file if your
application is using another SDK generated
service. Should this conflict occur, merge the two
files. There should be no need for any other
adjustment.

Table 3‐1 Thin‐Client Configuration

Service Deployment
If you wish to deploy your own Object Cart service, once you have provided
configuration details specific to your own production environment, you can build
your own web archive file (WAR).

Once you’ve downloaded the ObjectCart source code, you will notice the
build.properties file in the root project folder. In this properties file, change the
database connection details for a particular environment to the one on which you
will be deploying your service. Below is an example:
PROD_DB_CONNECTION_URL=jdbc:mysql://hostname:portnumber/databasename
PROD_DB_USERNAME=databaseusername
PROD_DB_PASSWORD=mypasswordiscomplex

These correspond to the local, development, QA, stage, and production
environments, and have ant build targets to match (local-build, dev-build, qa-build,
stage-build, and prod-build).

11

caCORE Object Cart v1.0 Programmer's Guide

Additionally there is a property that identifies your service endpoint. Be sure to
match it to the URL of your web server (such as JBoss) as this is used to generate
configuration files for remote clients using your service.
PROD_SERVER_URL=http://hostname:portnumber/objectCart

In order to provide support for the persistence layer you will need to execute the
DBPrepMysql.SQL script on your database, found alongside the
build.properties file. This will create all necessary tables in the correct
configuration to support ObjectCart operations. Currently the Object Cart only
officially supports MySQL, however that is expected to change with further testing of
the current release or in a future release of the Object Cart.

Once you have provided the build properties and prepared the database, you can
use Ant to package your ObjectCart application. Execute ant on the target prod-
build (or other environment) and copy the objectCart.war file from the /dist
directory to your web server deployment directory (/{server
name}/default/deploy in the case of JBoss).

The Object Cart service will be available after restart.

In the /dist/remote directory you will find the files necessary for the remote (thin)
client deployment. After making the files available make sure to follow the
instructions outlined in the Thin Client Deployment section above.

Configuration
File Description

build.properties The XML file containing the database and server
properties information for the Object Cart service.

Table 3‐2 Service Configuration

Thick Client Deployment
If you are planning to deploy your application utilizing the Object Cart service in the
same web container as the Object Cart service itself, you can use the thick client
deployment configuration for your application.

After deploying the Object Cart service as described in the Service Deployment
section above, simply use the files from the /dist/local directory in your
application instead of the files provided in the /dist/remote directory. There is no
additional configuration necessary.

If deploying outside of the web container, make sure to implement the
ExpiredCartCleaner and the CleanerThread, which take care of removing
expired carts from the database. The ExpiredCartCleaner must be inside of the
web container to function, so in its absence the developer must create a mechanism
to start the CleanerThread on startup.

12

	Revision History
	About This Guide
	Purpose
	Scope
	Topics Covered
	Text Conventions Used
	Credits and Resources

	Chapter 1 Object Cart Overview
	Object Cart Features
	Object Cart Service
	Serializer/Deserializer
	Classification/Typing
	Cart Manager

	Architecture Overview
	Persistence and Application Service Tiers

	Chapter 2 Workflow for Object Cart Integration
	Integrating the Object Cart Client
	CartManager
	ObjectCartClient
	Using the Cart
	Using Object Cart with Java Objects
	Using Object Cart with XML data
	Expiration Date and Deleting Carts

	Chapter 3 Deployment Model
	Thin Client Deployment
	Configuration

	Service Deployment
	Configuration

	Thick Client Deployment

