
 Center for Bioinformatics

 CGEMS 1.0

 Technical Guide

December 13, 2006

i

TABLE OF CONTENTS
About This Guide ...1

Purpose ... 1
Release Schedule .. 1
Audience ... 1
Topics Covered .. 2
Additional CGEMS Documentation ... 2
Conventions Used ... 3
Credits and Resources .. 3

Chapter 1
Introduction to CGEMS ...5

About CGEMS .. 5
Additional CGEMS Resources ... 6

About caIntegrator .. 6
About caBIG ... 7
About caCORE ... 7

Chapter 2
CGEMS Architecture ..11

Clinical Genomic Object Model ... 11
CGEMS API Classes .. 14
Main CGEMS System Components .. 16

Chapter 3
Understanding the Object Query Service API 17

Querying CGEMS Objects .. 17
About the Service Layer ... 17
Accessing the Object Query Service ... 18

Installing and Configuring the Object Query Service API 18
Downloading and Installing the Client Package 19
Testing the System ... 20

Using the Object Query Service API ... 21

CGEMS 1.0 Technical Guide

ii

TestClient Example ... 21
Service Methods .. 23
Scenario One: Retrieve All SNPPanels ... 26
Scenario Two: Simple Search (Criteria Object Collection) to retrieve
SNPFrequencyFinding for the Gene “WT1” ... 27
Scenario Three: Nested Search to retrieve SNPAssays based on dbSnpId
29
Scenario Four: Detached Criteria Search .. 30
Scenario Five: HQL Search .. 32

Appendix A
UML Modeling ..33

UML Modeling .. 33
Use Case Documents and Diagrams .. 34
Class Diagrams .. 37
Relationships Between Classes .. 38
Sequence Diagrams ... 40

Appendix B
CGEMS Glossary ..43
Index ..45

1

ABOUT THIS GUIDE
This section introduces you to the CGEMS Technical Guide. It includes the following
topics:

Purpose on this page

Release Schedule on this page

Audience on this page

Topics Covered on page 2

Additional CGEMS Documentation on page 2

Conventions Used on page 3

Credits and Resources on page 3

Purpose
This guide provides an overview of the CGEMS architecture and explains how to use
the CGEMS Application Programming Interface (API).

Release Schedule
This guide is updated for each CGEMS release. It may be updated between releases if
errors and omissions are found. The current document refers to the 1.0 version of
CGEMS, which NCICB released in November 2006.

Audience
This guide is designed for experienced Java developers who are familiar with the
following J2EE technologies:

Unix/Linux environment (Configuring environment variables; Installing Ant, JDK,
and JBOSS server)

 Ant build scripts

J2EE web application development using the Struts framework, Servlet/JSPs,
JavaScript, AJAX, and XML/XSLT.

J2EE middle-ware technologies such as n-tier service oriented architecture and
software design patterns.

CGEMS 1.0 Technical Guide

2

In addition, you will need assistance / access from an Oracle 9i database administrator
to properly configure the database.

Topics Covered
If you are new to CGEMS, please read this brief overview, which explains what you will
find in each chapter and appendix.

This chapter provides an overview of the guide.

Chapter 1 introduces the CGEMS study and provides an overview of caIntegrator,
caBIG, and caCORE.

Chapter 2 describes the CGEMS architectural model and components.

Chapter 3 explains how to install, configure, and test the Object Query Service API and
provides examples of use.

Appendix A provides general information about the Unified Modeling Language (UML).

Appendix B is a glossary of terms related to CGEMS.

Additional CGEMS Documentation
The caIntegrator-CGOM API Software Design Description describes the design
decisions, architectural design, and the detailed design needed to implement the
caIntegrator’s Clinical Genomic Object Model (CGOM) Application Programming
Interface (API).

The CGEMS Requirements Specification includes the use cases that CGEMS
supports.

The CGEMS JavaDocs, which are included in the client package on the NCICB Web
site, contain the current CGEMS API specification.

http://cabigcvs.nci.nih.gov/viewcvs/viewcvs.cgi/caintegrator-spec/docs/caIntegrator/Design/caIntegrator_CGOM_API_Design_V2.doc?cvsroot=opendevelopment
http://cabigcvs.nci.nih.gov/viewcvs/viewcvs.cgi/cgems/docs/CGEMS_Use_Case.doc?cvsroot=opendevelopment

About This Guide

3

Conventions Used
This section explains conventions used in this document. The various typefaces
represent interface components, keyboard shortcuts, toolbar buttons, dialog box
options, and text that you type.

Credits and Resources
The following individuals contributed to the CGEMS project.

Convention Description Example

Bold Highlights names of option buttons, check
boxes, drop-down menus, menu
commands, command buttons, or icons.

Click Search.

URL Indicates a Web address. http://domain.com

text in small caps Indicates a keyboard shortcut. Press ENTER.

text in small caps +
text in small caps

Indicates keys that are pressed
simultaneously.

Press SHIFT + CTRL.

Italics Highlights references to other documents,
sections, figures, and tables.

See Figure 4.5.

Italic boldface
monospace type

Represents text that you type. In the New Subset
text box, enter
Proprietary
Proteins.

Note: Highlights information of particular
importance

Note: This concept
is used throughout
the document.

{ } Surrounds replaceable items. Replace {last name,
first name} with the
Principal
Investigator’s name.

Clinical Genetic Markers of Susceptibility (CGEMS)
Development and Management Teams

Product and Program
Management Development Quality Assurance Documentation

Liming Yang2 Himanso Sahni1 Jenny Glenn3 Carolyn Kelley Klinger4

Subhashree Madhavan2 Ram Bhattaru1 Ying Long1 Eddie VanArsdall4

Carl Schaeffer2 Michael Holck5 We Yu1 Jill Hadfield2

Dana Zhang1

Ryan Landy1

http://ncicb.nci.nih.gov/

CGEMS 1.0 Technical Guide

4

2 National Cancer
Institute Center for
Bioinformatics (NCICB)

1 Science Application
International
Corporation (SAIC)

3 NARTech, Inc,

4 Management System
Designers, Inc.

5 ScenPro

Clinical Genetic Markers of Susceptibility (CGEMS)
Development and Management Teams

Product and Program
Management Development Quality Assurance Documentation

Contacts and Support

NCICB Application Support http://ncicb.nci.nih.gov/NCICB/support
Telephone: 301-451-4384
Toll free: 888-478-4423

http://ncicbsupport.nci.nih.gov/sw/
http://ncicb.nci.nih.gov/NCICB/support

5

CHAPTER

1
INTRODUCTION TO CGEMS

This chapter introduces you to the CGEMS study. It includes the following topics:

About CGEMS on this page

About caIntegrator on page 6

About caBIG on page 7

About caCORE on page 7

About CGEMS
Cancer Genetic Markers of Susceptibility (CGEMS) is a three-year initiative of the
National Cancer Institute that will conduct scans of the entire human genome
(genotyping) to identify common, inherited gene mutations that increase the risks for
breast and prostate cancer. To access data from this initiative, visit the CGEMS data
access portal.

The CGEMS study uses cases and controls from well-designed epidemiological studies
to generate genotypes on over 500,000 genetic variants. As such, CGEMS is a
Genome-wide Association Study, or GWAS. The two cancers being studied by CGEMS
are prostate cancer and breast cancer.

For the prostate cancer study, the GWAS has been conducted in a large, national study
in the Prostate, Lung, Colorectal, and Ovary study (PLCO). The analysis includes 1,177
individuals who developed prostate cancer during the observational period and 1,105
individuals who did not develop prostate cancer during the same time period. The
prostate scan has been conducted in two parts, Phase 1A and Phase 1B.

The data generated by this CGEMS study can be accessed through this portal. The first
posting includes Phase 1A of the prostate cancer scan and includes over 300,000
SNPs. The results of Phase 1B will be available in 2007. The project team has
developed analytical tools that provide easy access to the data. The raw genotype data
will be available to accredited investigators who register individually and provide

https://caintegrator.nci.nih.gov/cgems/
https://caintegrator.nci.nih.gov/cgems/
http://www.cancer.gov/prevention/plco/

CGEMS 1.0 Technical Guide

6

institutional confirmation of research intent. The process to obtain approval for access
is under review and details will be posted by the end of November at this Web site.

The CGEMS study will test markers identified as promising in this scan of prostate
cancer in follow-up epidemiologic studies, including case-control studies and studies
that are members of the NCI Breast & Prostate Cancer Cohort Consortium, a multi-
center network of large prospective studies. Executive summaries of the results of the
follow-up studies will be posted on this Web site.

Finally, CGEMS is performing genome scan in a total of 1,200 breast cancer cases and
1,200 controls. The samples are from the Nurse’s Health Study. The genotyping of
these samples has been initiated and the data will be available in the 2007.

Additional CGEMS Resources
The following CGEMS resources are available online.

About caIntegrator
The caIntegrator knowledge framework provides researchers with the ability to perform
ad hoc querying and reporting across multiple domains. This application framework
comprises an n-tier service oriented architecture that allows pluggable web-based
graphical user interfaces, a business object layer, server components that process the
queries and result sets, a data access layer and a robust data warehouse.

The following principles guided the development of the caIntegrator framework:

User requirements

Design of a user-friendly interface for a wide-ranging audience
(i.e., physician scientists, programmers, and statisticians)

Standards-based and pattern-driven development

Extensibility and scalability

Reuse and extension of open source technologies

At the heart of caIntegrator is the Clinical Genomics Object Model (CGOM) that
provides standardized programmatic access to the integrated biomedical data collected
in the caIntegrator data system. Design of the CGOM is driven by use cases from two
critical NCI-sponsored studies, a brain tumor trail called GMDI (Glioma Molecular
Diagnostic Initiative) and a breast cancer study called I-SPY TRIAL (Investigation of
Serial Studies to Predict Your Therapeutic Response with Imaging And moLecular

Resource Description

CGEMS Public Web site Information about the CGEMS project and initiatives

CGEMS Investigator Portal Web portal for researchers

Related system documents Documents available on GForge:
caIntegrator-CGOM API Software Design Document
CGEMS Requirements Specification
Clinical Genomic Object Model (CGOM)

Table 1.1 CGEMS Resource List

http://epi.grants.cancer.gov/BPC3/
http://www.channing.harvard.edu/nhs/
http://gforge.nci.nih.gov/projects/caintegrator/
http://gforge.nci.nih.gov/projects/cgems/
http://gforge.nci.nih.gov/projects/cgems/
https://caintegrator.nci.nih.gov/cgems
http://cgems.cancer.gov/

Chapter 1: Introduction to CGEMS

7

analysis). The model represents data from clinical trials, microarray-based gene
expression, SNP genotyping and copy number experiments, and
Immunohistochemistry-based protein assays.

Clinical domain objects in CGOM allow access to clinical trial protocol, treatment arms,
patient information, sample histology, clinical observations and assessments. Genomic
domain objects allow access to biospecimen information, raw experimental data, in-
silico transformation and analyses performed on the raw experimental datasets and
biomarker findings. The clinical and genomic findings domain objects have
relationships to the FindingsOntology object, as the findings can be complex concepts
which, in turn, can be generically represented as items occurring in an ontology (for
example, WHO histopathological classification for brain tumor histology findings).

caIntegrator is envisioned to be the foundation for a number of translational
applications. One such reference implementation at NCICB is called Rembrandt
(Repository of Molecular BRAin Neoplasia DaTa) – http://rembrandt.nci.nih.gov. This
knowledge framework offers a paradigm for rapid sharing of information and
accelerates the process of analyzing results from various biomedical studies with the
ultimate goal to rapidly change routine patient care.

For more information about caIntegrator and CGOM, see the caIntegrator-CGOM API
Software Design Description.

About caBIG
The Cancer Biomedical Informatics Grid (caBIG)™ delivers CGEMS data to
researchers and the public. caBIG™ is a voluntary network or grid of individuals and
institutions that are working to create a better environment for the sharing of cancer
research data and software tools. The goal of the network is to speed the delivery of
innovative approaches for the prevention, detection, and treatment of cancer.

Since its launch in February 2004, caBIG™ has delivered a variety of cancer and
biomedical research products, including software tools, data sets, infrastructure,
standards and policy papers. All are freely available to the community and other
interested stakeholders.

caBIG™ is being developed under the leadership of the National Cancer Institute, the
NCI Center for Bioinformatics (NCICB), and other caBIG participants.

For more information about caBIG, see the caBIG™ web site at
https://cabig.nci.nih.gov.

About caCORE
Cancer Common Ontologic Representation Environment (caCORE) is a data
management framework that is compatible with caBIG. It was designed for researchers
who need to be able to navigate through a large number of data sources. The
components of caCORE support the semantic consistency, clarity, and comparability of
biomedical research data and information.

caCORE is an open-source, enterprise architecture for NCI-supported research
information systems. It was built using formal techniques from the software engineering
and computer science communities.

caCORE uses the following four development principles:

http://cabigcvs.nci.nih.gov/viewcvs/viewcvs.cgi/caintegrator-spec/docs/caIntegrator/Design/caIntegrator_CGOM_API_Design_V2.doc?cvsroot=opendevelopment
http://cabigcvs.nci.nih.gov/viewcvs/viewcvs.cgi/caintegrator-spec/docs/caIntegrator/Design/caIntegrator_CGOM_API_Design_V2.doc?cvsroot=opendevelopment

CGEMS 1.0 Technical Guide

8

Model Driven Architecture (MDA)

n-tier architecture with open Application Programming Interfaces (APIs)

Use of controlled vocabularies, wherever possible

Registered metadata

The following domain models comprise caCORE:

Enterprise Vocabulary Services (EVS)
EVS provides controlled vocabulary resources for the life sciences domain.
EVS products include the NCI Thesaurus (a biomedical thesaurus), and the NCI
Metathesaurus, which is based on the National Library of Medicine’s Unified
Medical Language System.

Cancer Bioinformatics Infrastructure Objects (caBIO)
The caBIO model and architecture are the primary programmatic interface to
caCORE. Each of the caBIO domain objects represents an entity found in
biomedical research.

Cancer Data Standards Repository (caDSR)
caDSR is a metadata registry based on the ISO/IEC 11179 standard. It is used
to register the descriptive information needed to render cancer research data
reusable and interoperable.

The caCORE infrastructure exhibits an n-tiered architecture with client interfaces,
server components, backend objects, data sources, and additional backend systems
(Figure 1.1). This n-tiered system divides tasks or requests among different servers and
data stores. This isolates the client from the details of where and how data is retrieved
from different data stores. The system also performs common tasks such as logging
and provides a level of security.

Clients (browsers, applications) receive information from backend objects. Java
applications also communicate with backend objects via domain objects packaged
within the client.jar. Non-Java applications can communicate via SOAP (Simple Object
Access Protocol). Back-end objects communicate directly with data sources, either
relational databases (using Hibernate) or non-relational systems (using, for example,
the Java RMI API).

Chapter 1: Introduction to CGEMS

9

Figure 1.1 caCORE Architecture

Most of the caCORE infrastructure is written in the Java programming language and
leverages reusable, third-party components.

The infrastructure is composed of the following layers:

The Application Service layer — consolidates incoming requests from the various
interfaces and translates them to native query requests that are then passed to the data
layers. This layer is also responsible for handling client authentication and access con-
trol using the Java API. (This feature is currently disabled for the caCORE system run-
ning at NCICB; all interfaces provide full, anonymous read-only access to all data.)

The Data Source Delegation layer — is responsible for conveying each query that it
receives to the respective data source that can perform the query. The presence of this
layer enables multiple data sources to be exposed by a single running instance of a
caCORE server.

Object-Relational Mapping (ORM) — is implemented using Hibernate. Hibernate is a
high performance object/relational persistence and query service for Java. Hibernate
provides the ability to develop persistent classes following common object-oriented
(OO) design methodologies such as association, inheritance, polymorphism, and com-
position.

The Hibernate Query Language (hql), designed as a "minimal" object-oriented exten-
sion to SQL, provides a bridge between the object and relational databases. Hibernate
allows for real world modeling of biological entities without creating complete SQL-
based queries to represent them.

Access to non-relational (non-ORM data sources), such as Enterprise Vocabulary
Services (EVS), is performed by objects that follow the façade design pattern. These
objects make the task of accessing a large number of modules/functions much simpler

CGEMS 1.0 Technical Guide

10

by providing an additional interface layer which allows it to interact with the rest of the
caCORE system.

Security is provided by the Common Security Module (CSM). The CSM provides highly
granular access control and authorization schemes.

Enterprise logging is provided by the Common Logging Module (CLM). The CLM pro-
vides a separate service under caCORE for audit and logging capabilities. This is simi-
lar to the output generated by Apache log4j, but includes information for auditing.

For more information about caCORE, see the caCORE documentation available at
http://ncicb.nci.nih.gov/infrastructure.

11

CHAPTER

2
CGEMS ARCHITECTURE

This chapter describes the CGEMS architectural model and components. It includes
the following topics:

Clinical Genomic Object Model on this page

CGEMS API Classes on page 14

Main CGEMS System Components on page 16

Clinical Genomic Object Model
The Clinical Genomic Object Model (CGOM) is a domain model based on a common
set of use cases that were derived from various translational studies such as CGEMS.
The purpose of the CGOM is to model the translation space that highlights the
integration of the clinical domain with the genomic domain within a context of a clinical
study.

Design of the CGOM is driven by use cases from three critical NCI-sponsored studies:
a brain tumor trial called the Glioma Molecular Diagnostic Initiative (GMDI), a breast
cancer study called I-SPY TRIAL, and CGEMS. The model represents data from
clinical trials, micro array-based gene expression, SNP genotyping and copy number
experiments, Fluorescent in situ Hybridization (FISH), Somatic Mutation, Cell Lycate,
and Immunohistochemistry-based protein assays.

Study domain objects in CGOM allow access to the study, treatment arms, patient
information, specimen histology, and information on the biospecimen. The Finding
objects model the in-silico transformation and analyses performed on the raw
experimental datasets. The clinical findings domain objects provide clinical
observations and assessments. Annotation objects such as GeneBiomarker,
ProteinBiomarker, and SNPAnnotation help provide context to the various Findings.

CGEMS 1.0 Technical Guide

12

CGEMS domain objects are a subset of the caIntegrator domain. See this subset in
Figure 2.1 on page 13.

C
hapter 2: C

G
E

M
S

 A
rchitecture

13

Figure 2.1 CGEMS class diagram within the Clinical‐Genomic Object Model

CGEMS 1.0 Technical Guide

14

CGEMS API Classes
The Object Query Service enables API users to initiate a search from any object within
the CGOM and retrieve the query results as a domain object graph. caIntegator uses
the caCORE SDK tool kit to implement the Object Query Service. For more information,
see Understanding the Object Query Service API on page 17.

The CGEMS UML model is published as an EA (Enterprise Architect) diagram at http://
cabigcvs.nci.nih.gov/viewcvs/viewcvs.cgi/caintegrator-spec/model/
CGOM_v2_1.EAP?cvsroot=opendevelopment. Table 2.1 lists each class and a
description. Detailed descriptions about each class and its methods are available in the
CGEMS JavaDocs, which are included in the client package on the NCICB Web site.

Class Name Description

DNASpecimen A class containing information on the collection and processing
of a DNA sample from one of the CGEMS subjects.
Note: Currently the CGOM‐CGEMS API does not

return any data for this object.
Finding Results obtained from an analysis or discovery (finding)

gathered through experimental assays or evaluations.
Note: Finding is an abstract class.

GeneBiomarker A gene-based biological parameter that is indicative of a
physiological or pathological state. For example, EBBR2 is a
biomarker used to identify risk of breast cancer.

GenotypeFinding A set of observable characteristics of an individual related to
the CGEMS project.
Note: Currently the CGOM‐CGEMS API does not

return any data for this object.
Histology The result of examination of tissues under the microscope to

assist diagnosis of tumors. For example, after a biopsy is
performed, a pathologist will perform a “histological” evaluation
in which the tissue collected will be analyzed for any
abnormalities.
Note: Currently the CGOM‐CGEMS API does not

return any data for this object.
Population Groups of subjects based on self-described ethnic groupings

and phenotypic ascertainment schemes.

SNPAnalysisGroup Representation of analysis groups such as “CEPH Population”
or “Non-Tumor Samples”.
Note: Currently the CGOM‐CGEMS API does not

return any data for this object.
SNPAnnotation Annotations associated with single nucleotide polymorphisms

(SNPs)—places in the genomic sequence where one fraction
of the human population has one nucleotide or allele, while
another fraction has another.

Table 2.1 CGEMS API classes

http://cabigcvs.nci.nih.gov/viewcvs/viewcvs.cgi/caintegrator-spec/model/CGOM_v2_1.EAP?cvsroot=opendevelopment
http://cabigcvs.nci.nih.gov/viewcvs/viewcvs.cgi/caintegrator-spec/model/CGOM_v2_1.EAP?cvsroot=opendevelopment
http://cabigcvs.nci.nih.gov/viewcvs/viewcvs.cgi/caintegrator-spec/model/CGOM_v2_1.EAP?cvsroot=opendevelopment

Chapter 2: CGEMS Architecture

15

SNPAssay Information on the design characteristics of a molecular test for
the presence of one or both alleles at a specific SNP locus.

SNPAssociationAnalysis A set of univeriate genetic analyses to detect the association
between phenotypic characteristics shared by groups of
subjects and their genotypes at a series of SNP loci.

SNPAssociationFinding Statistical results of evidence for or against genetic association
between the phenotypes analyzed at a specific SNP locus.

SNPFrequencyFinding A class describing counts and characteristics of alleles and
genotypes for SNP polymorphisms observed in a CGEMS
population.

SNPPanel A set of SNP genotype assays, typically packaged and
performed in a multiplex assay.

Specimen A part of a thing, or of several things, removed to demonstrate
or to determine the character of the whole. For example, a
specimen could be a substance or portion of material obtained
for use in testing, examination, or study, particularly a
preparation of tissue or bodily fluid taken for observation,
examination, or diagnosis.
Note: Currently the CGOM‐CGEMS API does not

return any data for this object.
SpecimenBasedMolecular
Finding

Results obtained from an analysis or discovery (finding)
gathered through experimental assays or evaluations
performed on a specimen.
Note: SpecimenBasedMolecularFinding is an abstract

class.
Study A type of research activity that tests how well new medical

treatments or other interventions work in subjects. Studies test
new methods of screening, prevention, diagnosis, or treatment
of a disease. They are fully defined in the protocol and may be
carried out in a clinic or other medical facility.

StudyParticipant The treatment arm and other specifics regarding the
participation of the subject in a particular study.
Note: Currently the CGOM‐CGEMS API does not

return any data for this object.
TimeCourse An ordered list of times at which events and activities are

planned to occur during a clinical trial.
Note: Currently the CGOM‐CGEMS API does not

return any data for this object.

Class Name Description

Table 2.1 CGEMS API classes

CGEMS 1.0 Technical Guide

16

Main CGEMS System Components
Table 2.2 provides an overview of the main CGEMS system components

VariationFinding The change (variation)—alteration, deletion, or
rearrangement—in the DNA sequence that may lead to the
synthesis of an altered inactive protein and the loss of the
ability to produce the protein. If a mutation occurs in a germ
cell, then it is a heritable change; it can be transmitted from
generation to generation. Mutations may also be in somatic
cells and are not heritable in the traditional sense of the word,
but are transmitted to all daughter cells.
Note: VariationFinding is an abstract class.

Class Name Description

Table 2.1 CGEMS API classes

Component Description

Presentation Layer Provides a web interface to access the CGEMS API. Using this
layer, CGEMS Credentialed and Public users can perform queries
and retrieve CGEMS data.

System Refers to the caIntegrator API that enables search and retrieval of
CGEMS data.

Data Repository Stores all CGEMS data.

Metadata Repository Used to edit and deploy common data elements (CDEs).
The NCI and its partners create, edit, and deploy CDEs using
caDSR, the metadata repository for caBIG. These CDEs are used
as metadata descriptors for domain objects related to caIntegrator
and CGEMS.

Table 2.1 CGEMS system components

https://caintegrator.nci.nih.gov/cgems

17

CHAPTER

3
UNDERSTANDING THE OBJECT QUERY

SERVICE API
This chapter introduces you to the Object Query Service API, one of the two CGEMS
APIs. The Study Query Service API will be documented in a future chapter of this
guide. This chapter includes the following topics:

Querying CGEMS Objects on this page

Installing and Configuring the Object Query Service API on page 18

Using the Object Query Service API on page 21

Querying CGEMS Objects

About the Service Layer
The caCORE-SDK architecture that the Object Query Service shares includes a
service layer that provides a single, common access paradigm to clients using any of
the provided interfaces. As an object-oriented middleware layer designed for flexible
data access, caCORE-SDK generated API relies heavily on strongly typed objects and
an object-in/object-out mechanism. The methodology used for obtaining data from
caCORE-SDK generated systems such as the CGEMS Object Query Service is often
referred to as query by example, meaning that the inputs to the query methods are
themselves domain objects that provide the criteria for the returned data. The major
benefit of this approach is that it allows for run-time semantic interoperability and
provides shared vocabularies and a metadata registry.

CGEMS 1.0 Technical Guide

18

Accessing the Object Query Service
To access the Object Query Service, follow these steps:

1. Ensure that the client application has knowledge of the objects in the domain
space.

2. Build the query using the domain objects.

3. Establish a connection to the server.

4. Submit the query objects and specify the desired class of objects to be returned.

5. Use and manipulate the result set as desired.

Installing and Configuring the Object Query Service API
The Object Query Service API provides direct access to domain objects and all service
methods.

To use the Object Query Service API, you should have the software listed in Table 3.1
installed on the client machine.

Note: You must also have an Internet connection to access the API.

Please acquire each of these and follow the installation instructions provided with each
respective product for your environment.

Software Version Required?

Java 2 Platform Standard
Edition Software 5.0
Development Kit (JDK 5.0)

1.5.04 Yes

Apache Ant 1.6.2 Yes

Table 3.1 CGEMS Object Query Service API Client software

http://java.sun.com/j2se/1.5.0/download.jsp
http://archive.apache.org/dist/ant/binaries/

Chapter 3: Understanding the Object Query Service API

19

Downloading and Installing the Client Package
To download the client package from NCICB Web site, follow these steps:

1. Open your browser and navigate to http://ncicb.nci.nih.gov.

Figure 3.1 Downloads section on the NCICB Web site

2. Click the Downloads tab at the top of the page. The Downloads page appears.

3. Click the letter C to jump to the sections with names that start with C.

4. Locate the CGEMS section by scrolling, then click the Download link.
A welcome page appears.

5. Enter your name, e-mail address, and institution name, then click the Enter the
Download Area button. The license agreement page appears.

6. Accept the license agreement.

7. On the CGEMS downloads page, download cgom-cgems-client.zip from the
Primary Distribution section.

8. Extract the contents of the downloadable archive to a directory on your hard
drive (for example, c:\cgems on Windows or /usr/local/cgems on Linux).
The extracted directories and files include the following:

Directories and Files Description Component

TestClient.java Java API client sample Sample code

build.xml Ant build file Build file

log directory Location of client.log

lib directory contains required jar files

conf directory

Table 3.2 Extracted directories and files in CGEMS client package

http://ncicb.nci.nih.gov

CGEMS 1.0 Technical Guide

20

All of the jar files provided in the lib and the conf directories of the CGEMS client
package are required for using the Object Query Service API. Include these files in the
Java classpath when building applications. The build.xml file that is included
demonstrates how to do this when you are using Ant for command-line builds.

If you are using an integrated development environment (IDE) such as Eclipse, refer to
the tool's documentation for information on how to set the classpath.

Testing the System
To test the system, enter the following URL in your browser to verify all your required
system resources are available: http://caintegrator.nci.nih.gov/cgom-cgems/Happy.jsp.

The following figure displays the browser window that opens when the system has
been properly built.

Figure 3.2 Happy.jsp introductory window

The Happy.jsp page provides a simple query interface that can be used to test the
system and ensure that data has been correctly loaded. Perform the following steps to
test the system:

Step Action

1 In the lower-left window, select the Population link. A query page
appears in the main window.

2 Enter CASE* in the Name field and click Submit.

A new window appears that displays 3 objects that match the query
you submitted. In addition to displaying the attributes of each of these
objects, you can also navigate to associated objects by clicking the
links in each row.

Table 3.3 How to use Happy.jsp to test the system

http://caintegrator.nci.nih.gov/cgom-cgems/Happy.jsp

Chapter 3: Understanding the Object Query Service API

21

Using the Object Query Service API
This section includes a number of examples that demonstrate the use of the caCORE
APIs. Included with each example is a brief description of the type of search being
performed and the example code accompanied by explanatory text.

TestClient Example
To run the example program after installing the CGEMS client, open a command
prompt or terminal window from the directory where you extracted the downloaded
archive and enter ant rundemo. This will compile and run the TestClient class;
successfully running this example indicates that you have properly installed and
configured the caCORE client. The following is a short segment of code from the
TestClient class along with an explanation of its functioning.

CGEMS 1.0 Technical Guide

22

384 @SuppressWarnings("unchecked")
385 private static void searchSNPAssociationFinding() {
386 Collection geneBiomarkerCollection = new ArrayList();
387 GeneBiomarker wt1 = new GeneBiomarker();
388 wt1.setHugoGeneSymbol("WT1");
389 geneBiomarkerCollection.add(wt1);
390
391 SNPAnnotation snpAnnotation = new SNPAnnotation();
392 snpAnnotation.setGeneBiomarkerCollection(geneBiomarkerCollection);
393 try {
394 System.out
395 .println("___");
396 System.out.println("Retrieving all SNPAssiciationFindings for WT1");
397 ApplicationService appService = ApplicationServiceProvider
398 .getApplicationService();
399
400 List resultList = appService.search(SNPAssociationFinding.class,
401 snpAnnotation);
402 if (resultList != null) {
403 System.out.println("Number of results returned: "
404 + resultList.size());
405 System.out.println("DbsnpId" + "\t" + "ChromosomeName" + "\t"
406 + "ChromosomeLocation" + "\t" + "GenomeBuild" + "\t"
407 + "ReferenceSequence" + "\t" + "ReferenceStrand" + "\t"
408 + "GeneBiomarker(s)" + "\t" + "Analysis Name" + "\t"
409 + "p-Value" + "\t" + "rank" + "\n");
410 for (Iterator resultsIterator = resultList.iterator(); resultsIterator
411 .hasNext();) {
412 SNPAssociationFinding returnedObj = (SNPAssociationFinding) resultsIterator
413 .next();
414 System.out.println(returnedObj.getSnpAnnotation()
415 .getDbsnpId()
416 + "\t"
417 + returnedObj.getSnpAnnotation()
418 .getChromosomeName()
419 + "\t"
420 + returnedObj.getSnpAnnotation()
421 .getChromosomeLocation()
422 + "\t"
423 + pipeGeneBiomarkers(returnedObj.getSnpAnnotation()
424 .getGeneBiomarkerCollection())
425 + "\t"
426 + returnedObj.getSnpAssociationAnalysis().getName()
427 + "\t"
428 + returnedObj.getPvalue()
429 + "\t"
430 + returnedObj.getRank() + "\n");
431 }
432 }
433 } catch (Exception e) {
434 e.printStackTrace();
435 }
436 }

Chapter 3: Understanding the Object Query Service API

23

This code snippet creates an instance of a class that implements the
ApplicationService interface. This interface defines the service methods used to access
data objects. A criterion object is then created that defines the attribute values for which
to search. The search method of the ApplicationService implementation is called with
parameters that indicate the type of objects to return; for example,
SNPAssociationFinding.class, and the criteria that returned objects must meet,
defined by that object. The search method returns objects in a List collection, which is
iterated through to print some basic information about the objects.

Although this is a fairly simple example of the use of the Java API, a similar sequence
can be followed with more complex criteria to perform sophisticated manipulation of the
data provided by CGEMS. Additional information and examples are provided in the
sections that follow.

Service Methods
The methods that provide programmatic access to running the CGEMS caCORE
Object Query API server are located in the
gov.nih.nci.system.applicationservice package. The
ApplicationServiceProvider class uses the factory design pattern to return an
implementation of the ApplicationService interface. The provider class determines
whether there is a locally running instance of the caCORE system or whether it should
use a remote instance. The returned ApplicationService implementation exposes the
service methods that enable read/write operations on the domain objects

The separation of the service methods from the domain classes is an important
architectural decision that insulates the domain object space from the underlying
service framework. As a result, new business methods can be added without needing
to update any of the domain model or the associated metadata information from the
object model. (This is critical for ensuring semantic interoperability over multiple
iterations of architectural changes.) Within the ApplicationService implementation, a
variety of methods are provided allowing users to query data based on the specific
needs and types of queries to be performed. In general, there are four types of
searches:

Simple searches are those that take one or more objects from the domain
models as inputs and return a collection of objects from the data repositories
that meet the criteria specified by the input objects.

Nested searches also take domain objects as inputs but determine the type of
objects in the result set by traversing a known path of associations from the
domain model.

Detached criteria searches use Hibernate detached criteria objects to provide
a greater level of control over the results of a search (such as boolean
opera¬tions, ranges of values, etc.)

HQL searches provide the ability to use the Hibernate Query Language for the
greatest flexibility in forming search criteria.

CGEMS 1.0 Technical Guide

24

Method Signature List search(

 Class targetClass,

 Object obj)

Search Type Simple (One criteria object)

Description Returns a List collection containing objects of type targetClass that
conform to the criteria defined by obj

Example search(Study.class, study);

Method Signature List search(

 Class targetClass,

 List objList)

Search Type Simple (Criteria object collection)

Description Returns a List collection containing objects of type targetClass that
conform to the criteria defined by a collection of objects in objList.
The returned objects must meet ANY criteria in objList (i.e. a logical
OR is performed).

Example search(GeneBiomarker.class)

Method Signature List search(

 String path,

 Object obj)

Search Type Nested

Description Returns a List collection containing objects conforming to the criteria
defined by obj and whose resulting objects are of the type reached
by traversing the node graph specified by path

Example search("gov.nih.nci.caintegrator.domain.annotation
.snp.SNPAssay", snpAnnotation)

Method Signature List search(

 String path,

 List objList)

Search Type Nested

Description Returns a List collection containing objects conforming to the criteria
defined by the objects in objList and whose resulting objects are of
the type reached by traversing the node graph specified by path

Example search("geneBiomarkerCollection",
gov.nih.nci.caintegrator.domain.annotation.snp.SNP
Assay+gov.nih.nci.caintegrator.domain.annotation.s
np.SNPAnnotation)

Chapter 3: Understanding the Object Query Service API

25

In addition to the data access methods, several helper methods are available via the
ApplicationService class that provide flexibility in controlling queries and result sets.

Method Signature List query(

 DetachedCriteria detachedCriteria,

 String targetClassName)

Search Type Detached criteria

Description Returns a List collection conforming to the criteria specified by
detachedCriteria and whose resulting objects are of the type
specified by targetClassName

Example query(criteria, "SNPAnnotation.class.getName()")

Method Signature List query(

 Object criteria,

 int firstRow,

 int resultsPerQuery,

 String targetClassName)

Search Type Detached criteria

Description Identical to the previous query method, but allows for control over
the size of the result set by specifying the row number of the first row
and the maximum number of objects to return

Example query(criteria, 101, 100, targetClassName)

Method Signature List query(

HQLCriteria hqlCriteria,

String targetClassName)

Search Type HQL

Description Returns a List collection of objects of the type specified
by targetClassName that conform to the query in HQL syntax
contained in hqlCriteria

Example query(hqlCriteria, SNPAnnotation.class .getName())

CGEMS 1.0 Technical Guide

26

Scenario One: Retrieve All SNPPanels
In this example, an unrestricted search is performed for all SNPPanels.

Lines Description

95 Creates an instance of a class that implements the ApplicationService
interface; this interface defines the service methods used to access data
objects

98 Calls the search method of the ApplicationService implementation and
passes it the type of objects to return, SNPPanel.class, and the criteria
that returned objects must meet, defined by the SNPPanel object; the
search method returns objects in a List collection

104 Casts an object from the result List and creates a variable reference to it
of type SNPPanel.

105 Prints the SNPPanel attribute

106 Prints the Description attribute

109 Prints the Technology attribute

110 Prints the Vendor Panel ID attribute

111 Prints the Vendor attribute

112 Prints the Version attribute

089 private static void searchSNPPanel() {
090 SNPPanel snpPanel = new SNPPanel();
091 try {
092 System.out
093 .println("__");
094 System.out.println("Retrieving all SNPPanels...");
095 ApplicationService appService = ApplicationServiceProvider
096 .getApplicationService();
097
098 List resultList = appService.search(SNPPanel.class, snpPanel);
099 if (resultList != null) {
100 System.out.println("Number of results returned: "
101 + resultList.size());
102 for (Iterator resultsIterator = resultList.iterator(); resultsIterator
103 .hasNext();) {
104 SNPPanel returnedObj = (SNPPanel) resultsIterator.next();
105 System.out.println("Panel Name: " + returnedObj.getName()
106 + "\n" + "Description: "
107 + returnedObj.getDescription() + "\n"
108 + "Technology: " + returnedObj.getTechnology()
109 + "\n" + "Vendor: " + returnedObj.getVendor()
110 + "\n" + "Vendor PanelId: "
111 + returnedObj.getVendorPanelId() + "\n"
112 + "Version: " + returnedObj.getVersion() + "\n");
113 }
114 }
115 } catch (Exception e) {
116 e.printStackTrace();
117 }
118 }

Chapter 3: Understanding the Object Query Service API

27

Scenario Two: Simple Search (Criteria Object Collection) to retrieve
SNPFrequencyFinding for the Gene “WT1”

In this example, a search is performed for WT1 genes to retrieve the
SNPFrequencyFinding. The code iterates through the returned objects and prints out
the several properties of each of the object, as shown in the code listing.

245 @SuppressWarnings({ "unused", "unchecked" })
246 private static void searchSNPFrequencyFinding() {
247 Collection geneBiomarkerCollection = new ArrayList();
248 GeneBiomarker wt1 = new GeneBiomarker();
249 wt1.setHugoGeneSymbol("WT1");
250 geneBiomarkerCollection.add(wt1);
251
252 SNPAnnotation snpAnnotation = new SNPAnnotation();
253 snpAnnotation.setGeneBiomarkerCollection(geneBiomarkerCollection);
254
255 SNPFrequencyFinding snpFrequencyFinding = new SNPFrequencyFinding();
256 snpFrequencyFinding.setSnpAnnotation(snpAnnotation);
257 try {
258 System.out
259 .println("__");
260 System.out
261 .println("Retrieving all SNPFrequencyFinding objects for WT1");
262 ApplicationService appService = ApplicationServiceProvider
263 .getApplicationService();
264
265 List resultList = appService.search(SNPFrequencyFinding.class,
266 snpAnnotation);
267 if (resultList != null) {
268 System.out.println("Number of results returned: "
269 + resultList.size());
270 System.out.println("DbsnpId" + "\t" + "ChromosomeName" + "\t"
271 + "ChromosomeLocation" + "\t" + "MinorAlleleFrequency"
272 + "\t" + "HardyWeinbergPValue" + "\t"
273 + "ReferenceAllele" + "\t" + "OtherAllele" + "\t"
274 + "Population" + "\n");
275 for (Iterator resultsIterator = resultList.iterator(); resultsIterator
276 .hasNext();) {
277 SNPFrequencyFinding returnedObj = (SNPFrequencyFinding) resultsIterator
278 .next();
279 System.out.println(returnedObj.getSnpAnnotation()
280 .getDbsnpId()
281 + "\t"
282 + returnedObj.getSnpAnnotation()
283 .getChromosomeName()
284 + "\t"
285 + returnedObj.getSnpAnnotation()
286 .getChromosomeLocation()
287 + "\t"
288 + returnedObj.getMinorAlleleFrequency()
289 + "\t"
290 + returnedObj.getHardyWeinbergPValue()
291 + "\t"
292 + returnedObj.getReferenceAllele()
293 + "\t"
294 + returnedObj.getOtherAllele()
295 + "\t"
296 + returnedObj.getPopulation().getName() + "\n");
297 }
298 }
299 } catch (Exception e) {
300 e.printStackTrace();
301 }
302 }

CGEMS 1.0 Technical Guide

28

Lines Description

247-250 Creates a GeneBiomarker object and sets the hugoGeneSymbol to
"WT1"

250-253 Because the SNPAnnotation and GeneBiomarker classes are related by a
many-to-many association, it is necessary to create a collection to contain
the GeneBiomarker object that will act as part of the compound criteria;
multiple GeneBiomarker objects could be added to this collection as
needed

255-256 Creates a SNPAnnotation object and sets the value of its
setGeneBiomarkerCollection method to the geneBiomarkerCollection
object just created

265 Searches for all SNPAnnotation objects whose geneBiomarkerCollection
contains objects that match the set criteria (i.e. the symbol is "WT1")

Chapter 3: Understanding the Object Query Service API

29

Scenario Three: Nested Search to retrieve SNPAssays based on dbSnpId
A nested search is one where a traversal of more than one class-class association is
required to obtain a set of result objects given the criteria object. This example
demonstrates one such search in which the criteria object passed to the search method
is of type SNPAnnotation, and the desired objects are of type SNPAssay.

Lines Description

314-317 Creates a SNPAnnotation object and sets the dbsnpId to "rs5030335"

325 Defines search path as traversing from the criteria object of type
SNPAnnotation to SNPAssay; note that the first element in the path is the
desired class of objects to be returned, and that subsequent elements
traverse back to the criteria object

325 Sets the criteria object to the previously-created SNPAnnotation

312 @SuppressWarnings({ "unused", "unchecked" })
313 private static void searchSNPAssay() {
314 SNPAnnotation snpAnnotation = new SNPAnnotation();
315 snpAnnotation.setDbsnpId("rs5030335");
316 SNPAssay snpAssay = new SNPAssay();
317 snpAssay.setSnpAnnotation(snpAnnotation);
318 try {
319 System.out
320 .println("__");
321 System.out.println("Retrieving all SNPAssay objects for rs5030335");
322 ApplicationService appService = ApplicationServiceProvider
323 .getApplicationService();
324
325 List resultList = appService.search(SNPAssay.class, snpAnnotation);
326 if (resultList != null) {
327 System.out.println("Number of results returned: "
328 + resultList.size());
329 System.out.println("Vender Assay ID" + "\t" + "DbsnpId" + "\t"
330 + "ChromosomeName" + "\t" + "ChromosomeLocation" + "\t"
331 + "SNP Panel" + "\t" + "Version" + "\t"
332 + "DesignAlleles" + "\t" + "Status" + "\n");
333 for (Iterator resultsIterator = resultList.iterator(); resultsIterator
334 .hasNext();) {
335 SNPAssay returnedObj = (SNPAssay) resultsIterator.next();
336 System.out.println(returnedObj.getVendorAssayId()
337 + "\t"
338 + returnedObj.getSnpAnnotation().getDbsnpId()
339 + "\t"
340 + returnedObj.getSnpAnnotation()
341 .getChromosomeName()
342 + "\t"
343 + returnedObj.getSnpAnnotation()
344 .getChromosomeLocation() + "\t"
345 + returnedObj.getSnpPanel().getName() + "\t"
346 + returnedObj.getVersion() + "\t"
347 + returnedObj.getDesignAlleles() + "\t"
348 + returnedObj.getStatus() + "\n");
349 }
350 }
351 } catch (Exception e) {
352 e.printStackTrace();
353 }
354 }
355

CGEMS 1.0 Technical Guide

30

Scenario Four: Detached Criteria Search
This example demonstrates the use of Hibernate detached criteria objects to formulate
and perform more sophisticated searches. A detailed description of detached criteria is
beyond the scope of this document; for more information, please consult the Hibernate
documentation at http://www.hibernate.org/hib_docs/v3/api/org/ hibernate/criterion/
DetachedCriteria.html.

444 @SuppressWarnings("unused")
445 private static void searchSNPAnnoation() {
446 DetachedCriteria criteria = DetachedCriteria
447 .forClass(SNPAnnotation.class);
448 criteria.add(Restrictions
449 .ge("chromosomeLocation", new Integer(4000000)));
450 criteria.add(Restrictions
451 .le("chromosomeLocation", new Integer(4200000)));
452 criteria.add(Restrictions.eq("chromosomeName", "1"));
453 try {
454 System.out
455 .println("__");
456 System.out
457 .println("Retrieving all SNPAnnotations for Chr 1,4000000 - 4200000");
458 ApplicationService appService = ApplicationServiceProvider
459 .getApplicationService();
460
461 List resultList = appService.query(criteria, SNPAnnotation.class
462 .getName());
463 if (resultList != null) {
464 System.out.println("Number of results returned: "
465 + resultList.size());
466 System.out.println("DbsnpId" + "\t" + "ChromosomeName" + "\t"
467 + "ChromosomeLocation" + "\t" + "GenomeBuild" + "\t"
468 + "ReferenceSequence" + "\t" + "ReferenceStrand" + "\t"
469 + "GeneBiomarker(s)" + "\n");
470 for (Iterator resultsIterator = resultList.iterator(); resultsIterator
471 .hasNext();) {
472 SNPAnnotation returnedObj = (SNPAnnotation) resultsIterator
473 .next();
474 System.out.println(returnedObj.getDbsnpId()
475 + "\t"
476 + returnedObj.getChromosomeName()
477 + "\t"
478 + returnedObj.getChromosomeLocation()
479 + "\t"
480 + returnedObj.getGenomeBuild()
481 + "\t"
482 + returnedObj.getReferenceSequence()
483 + "\t"
484 + returnedObj.getReferenceStrand()
485 + "\t"
486 + pipeGeneBiomarkers(returnedObj
487 .getGeneBiomarkerCollection()) + "\n");
488 }
489 }
490 } catch (Exception e) {
491 e.printStackTrace();
492 }
493 }

http://www.hibernate.org/hib_docs/v3/api/org/ hibernate/criterion/DetachedCriteria.htm
http://www.hibernate.org/hib_docs/v3/api/org/ hibernate/criterion/DetachedCriteria.htm

Chapter 3: Understanding the Object Query Service API

31

Lines Description

446 Creates an DetachedCriteria object and sets the class on which the
criteria will operate to SNPAnnotation

448 Sets a restriction on the objects that states that the attribute
chromosomeLocation must be greater than or equal to ("ge") the value
4000000

450 Sets a restriction on the objects that states that the attribute
chromosomeLocation must be less than or equal to ("le") the value
4200000

452 Sets a restriction on the objects that states that the attribute
chromosomeName must be equal to ("eq") the value 1

461 Calls the query method of the ApplicationService implementation,
specifying the desired object type to return, SNPAnnotation, and passing
the detached criteria object

CGEMS 1.0 Technical Guide

32

Scenario Five: HQL Search
This example demonstrates the use of HQL to retrieve SNPAssay, whose ID is less
than 100. It uses a Hibernate Query Language (HQL) search string to form the query.
For more information on HQL syntax, consult the Hibernate documentation at http://
www.hibernate.org/hib_docs/v3/reference/en/html/queryhql.html.

Lines Description

503 Creates a string that contains the query in HQL syntax

504 Instantiates an HQLCriteria object and sets the query string

511 Calls the query method of the ApplicationService implementation and passes it
the HQLCriteria object and the type of objects to return

502 private static void searchSNPAssayHQL() {
503 String hqlString = "FROM SNPAssay a WHERE a.id < 100";
504 HQLCriteria hqlC = new HQLCriteria(hqlString);
505 try {
506 System.out
507 .println("___");
508 System.out.println("Retrieving all SNPAssay objects, id < 100");
509 ApplicationService appService = ApplicationServiceProvider
510 .getApplicationService();
511 List resultList = appService.query(hqlC, SNPAnnotation.class
512 .getName());
513 if (resultList != null) {
514 if (resultList != null) {
515 System.out.println("Number of results returned: "
516 + resultList.size());
517 System.out.println("Id\t" + "Vender Assay ID" + "\t"
518 + "SNP Panel" + "\t" + "Version" + "\t"
519 + "DesignAlleles" + "\t" + "Status" + "\n");
520 for (Iterator resultsIterator = resultList.iterator(); resultsIterator
521 .hasNext();) {
522 SNPAssay returnedObj = (SNPAssay) resultsIterator
523 .next();
524 System.out.println(returnedObj.getId() + "\t"
525 + returnedObj.getVendorAssayId() + "\t"
526 + returnedObj.getSnpPanel().getName() + "\t"
527 + returnedObj.getVersion() + "\t"
528 + returnedObj.getDesignAlleles() + "\t"
529 + returnedObj.getStatus() + "\n");
530 }
531 }
532 }
533 } catch (Exception e) {
534 e.printStackTrace();
535 }
536 }

http://www.hibernate.org/hib_docs/v3/reference/en/html/queryhql.html
http://www.hibernate.org/hib_docs/v3/reference/en/html/queryhql.html

33

APPENDIX

A
UML MODELING

The CGEMS team bases its software development primarily on the Unified Modeling
Language (UML). In case you have not worked with UML, this appendix will familiarize
you with UML background and notation.

The following topics are included in this appendix:

UML Modeling on this page

Use Case Documents and Diagrams on page 34

Class Diagrams on page 37

Relationships Between Classes on page 38

Sequence Diagrams on page 40

UML Modeling
The UML is an international standard notation for specifying, visualizing, and
documenting the artifacts of an object-oriented software development system. Defined
by the Object Management Group, http://www.omg.org/, the UML emerged as the
result of several complementary systems of software notation and has now become the
de facto standard for visual modeling.

For a brief tutorial on UML, refer to http://bdn.borland.com/article/
0,1410,31863,00.html.

The underlying tenet of any object-oriented programming begins with the construction
of a model. The UML comprises nine different types of modeling diagrams that form a
software blueprint.

The following subset of UML diagrams is used in CGEMS development:

Use case diagrams

Class diagrams

Sequence diagrams

http://www.omg.org/
http://bdn.borland.com/article/0,1410,31863,00.html
http://bdn.borland.com/article/0,1410,31863,00.html
http://bdn.borland.com/article/0,1410,31863,00.html

CGEMS 1.0 Technical Guide

34

The CGEMS development team applies use case analysis in the early design stages to
informally capture high-level system requirements. Later in the design stage, as
classes and their relations to one another begin to emerge, the team uses class
diagrams to define static attributes, functionalities, and relations that must be
implemented.

As design progresses, the team uses other types of interaction diagrams to capture the
dynamic behaviors and cooperative activities that the objects must execute. Finally, the
team uses additional diagrams such as package and sequence diagrams to represent
pragmatic information, including the physical locations of source modules and the
allocations of resources.

Each type of diagram captures a different view of the system, emphasizing specific
aspects of the design such as the class hierarchy, message-passing behaviors
between objects, the configuration of physical components, and user interface
capabilities.

While many development tools provide support for generating UML diagrams, the
CGEMS development team uses Enterprise Architect (EA).

Use Case Documents and Diagrams
A good starting point for capturing system requirements is to develop a structured
textual description, often called a use case, of how users will interact with the system.
While there is no predefined structure for this artifact, use case documents typically
consist of one or more actors, a process, a list of steps, and a set of pre- and post-
conditions. In many cases, these documents describe the post-conditions associated
with success, as well as failure. An example use case document is represented in
Table A.1.

Appendix A: UML Modeling

35

Using the use case document as a model, a use case diagram is created to confirm the
requirements.

Use Case Name Perform SNP Associated Finding Search

Use Case ID 3.1

Primary Actor Researcher via Presentation Layer

Trigger Researcher has logged into the system.

Pre-conditions Presentation Layer has authenticated the user.

Flow of Events

 1. Presentation Layer allows researcher to search for SNP
Associated Finding based on the following:

a. p-value

b. rank

c. Analysis Group Names list

d. Analysis Method list

e. Perform SNP search use case

f. Perform Study search use case

 2. Researcher completes a list of search fields. Field values are
joined using AND to create query criteria.

 3. The displayed search fields are registered in the caBIG
metadata repository as part of caBIG compliance.

 4. Researcher enters the fields to be searched and the condition
for search (if any).

 5. Researcher clicks the Submit button

 6. The system does the following:

a. Populates user selections to formulate the query criteria.

b. Validates the data entered.

c. If no exceptions occur, displays the search results

Post-conditions

Success Condition: Researcher sees the search results screen to
view or download the results.
Error Condition: Researcher receives an Invalid Data or
Incomplete Data message.
Error Condition: Researcher receives a system error while
processing the search query.

Table A.1 Example Use Case

CGEMS 1.0 Technical Guide

36

A use case diagram, which is language independent and graphically described, uses
simple ball and stick figures with labeled ellipses and arrows to show how users or
other software agents might interact with the system. The emphasis is on what a
system does rather than how. Each use case (an ellipse) describes a particular activity
that an actor (a stick figure) performs or triggers. The communications between actors
and use cases are depicted by connecting lines or arrows.

Alternative Flow

 1. If a validation error occurs, the system displays the appropriate
error and redisplays the page.

 2. The actor does either of the following:

a. Adds additional data, edits entered data, or clears the
screen and re-enters search criteria.

b. Logs out of the system and terminates the process.

 3. One of the following occurs:

a. If system error occurs, the actor receives a message to
contact the system administrator to report the error.

b. If the query returns no data, the system displays the
appropriate error and redisplays the page.

 4. The actor does either of the following:

a. Adds additional data, changes entered data, or clears the
screen and re-enters all data.

b. Logs out of the system and terminates the process.

Related Use Case 3.2 Perform Study Search
3.3 Perform SNP Search

Table A.1 Example Use Case

Appendix A: UML Modeling

37

Class Diagrams
The system designer uses use case diagrams to identify classes that must be
implemented in the system, their attributes and behaviors, and the relationships and
co-operative activities that must be realized. A class diagram is used later in the design
process to give an overview of the system, showing the hierarchy of classes and their
static relationships at varying levels of detail. Figure A.1 shows an abbreviated version
of a UML Class diagram depicting the Apache ObjectRelationalBridge (OJB)
abstraction layer and DAO classes.

Figure A.1 OJB Abstraction Layer and DAO Classes

Class objects can have a variety of possible relationships, including is derived from,
contains, uses, or is associated with. The UML provides specific notations to designate
these different kinds of relations and enforces a uniform layout of the objects’ attributes
and methods, thus reducing the learning curve required to interpret new software
specifications and to learn how to navigate in a new programming environment.

Figure A.2 (a) is a schematic for a UML class representation, the fundamental element
of a class diagram. Figure A.2 (b) is an example of how a simple class might be
represented in this scheme. The enclosing box is divided into three sections. The
topmost section provides the name of the class and is often used as the identifier for
the class; the middle section contains a list of attributes (structures) for the class. The
attribute in the class diagram maps to a column name in the data model and an
attribute within the Java class.The bottom section lists the object’s operations

CGEMS 1.0 Technical Guide

38

(methods). Figure A.2 (b) specifies the Gene class as having a single attribute called
sequence and a single operation called getSequence():

Naming conventions are very important when you are creating class diagrams.
CGEMS follows the formatting convention for Java APIs: a class starts with an
uppercase letter and an attribute starts with a lowercase letter. Names contain no
underscores. If the name contains two words, then both words are capitalized, with no
space between them. If an attribute contains two words, then the second word is
capitalized with no space between words. Boolean terms (has, is) are used as prefixes
to words for test cases.

The operations and attributes of an object are called its features. The features, along
with the class name, constitute the signature, or classifier, of the object. The UML
provides explicit notation for the permissions assigned to a feature, and UML tools vary
with respect to how they represent their private, public, and protected notations for
class diagrams.

The classes represented in Figure A.1 show only class names and attributes. The
operations are suppressed in that diagram. This is an example of a UML view. Details
are hidden where they might obscure the bigger picture that the diagram is intended to
convey. Most UML design tools provide a means for selectively suppressing either or
both attributes and operation compartments of the class without removing the
information from the underlying design model.

The following notations (as shown in Figure A.2) are used to indicate that a feature is
public or private:

A hyphen (-) prefix signifies a private feature.

A plus sign (+) signifies a public feature.

In Figure A.2, for example, the Gene object’s sequence attribute is private and can only
be accessed using the public getSequence () method.

Relationships Between Classes
Figure A.3 illustrates the following relationships between classes:

Association: The most primitive of the relationships. Represents the ability of
one instance to send a message to another instance. Association is depicted by
a simple solid line connecting two classes.

Directionality: Sometimes called navigability. Here, a Gene object is uniquely
associated with a Taxon object, with an arrow denoting bi-directional
navigability. Specifically, the Gene object has access to the Taxon object (i.e.,
there is a getTaxon() method), and the Taxon object has access to the Gene
object (there is a corresponding getGeneCollection() method). Figure A.3

Class Gene

-attribute -sequence

+operation() +getSequence()

(a) (b)

Figure A.2 (a) Schematic for a UML class (b) Simple Gene class

Appendix A: UML Modeling

39

displays role names, clarifying the nature of the association between the two
classes. For example, a taxon (role name identified in Figure A.3) is a line item
of each Gene object. The (+) indicates public accessibility.

Figure A.3 One‐to‐one association

Multiplicity: A label providing additional semantic information, as well as
numerical ranges such as 1..n at its endpoints. These cardinality constraints
indicate that the relationship is one-to-one, one-to-many, many-to-one, or many-
to-many, according to the ranges specified and their placement. Table A.1
displays the most commonly used multiplicities.

Aggregation: The relationship is between a whole and its parts. This
relationship is exactly the same as an association, with the exception that
instances cannot have cyclic aggregation relationships (i.e., a part cannot
contain its whole). Aggregation is represented by a line with a diamond end next
to the class representing the whole, as shown in the Clone-to-Library relation of
Figure A.4. As illustrated, a Library can contain Clones, but not vice-versa.

In the UML, the empty diamond of aggregation designates that the whole maintains a
reference to its part. More specifically, this means that while the Library is composed of
Clones, these contained objects may have been created prior to the Library object’s
creation, and so will not be automatically destroyed when the Library goes out of scope.

Figure A.4 Aggregation and multiplicity

Multiplicities Interpretation

0..1 Zero or one instance. The notation n..m indicates n to m
instances.

0..* or * Zero to many; No limit on the number of instances (including
none). An asterisk (*) is used to represent a multiplicity of many.

1 Exactly one instance

1..* At least one instance to many

Table A.1 Commonly used multiplicities

CGEMS 1.0 Technical Guide

40

Figure A.4 shows a more complex network of relations. This diagram indicates
the following:

a. One or more sequences is associated with a Clone

b. The Clone is contained in a Library, which comprises one or more Clones

c. The Clone may have one or more Traces.

Only the relationship between the Library and the Clone is an aggregation. The
others are simple associations.

Generalization: An inheritance link indicating that one class is a subclass of
another. Figure A.5 depicts a generalization relationship between the
SequenceVariant parent class and the Repeat and SNP classes. Classes
participating in generalization relationships form a hierarchy, as depicted here.

In generalization, the more specific element is fully consistent with the more
general element (it has all of its properties, members, and relationships) and
may contain additional information. Both the SNP and Repeat objects follow
that definition.

The superclass-to-subclass relationship is represented by a connecting line with an
empty arrowhead at its end pointing to the superclass, as shown in the
SequenceVariant-to-Repeat and SequenceVariant-to-SNP relations of Figure A.5.

Figure A.5 Generalization relationship

In summary, class diagrams represent the static structure of a set of classes. Class
diagrams, along with use cases, are the starting point for modeling a set of classes.
Recall that an object is an instance of a class. Therefore, when the diagram references
objects, it is representing dynamic behavior, whereas when it is referencing classes, it
is representing the static structure.

Sequence Diagrams
A sequence diagram describes the exchange of messages being passed from object to
object. The flow of logic within a system is modeled visually, validating the logic of a
usage scenario. In a sequence diagram, bottlenecks can be detected within an object-
oriented design, and complex classes can be identified.

Figure A.6 is an example of a DTO sequence diagram. The vertical lines in the diagram
with the boxes along the top row represent instantiated objects. The vertical dimension
displays the sequence of messages in the time order that they occur; the horizontal
dimension shows the object instances to which the messages are sent. Read the
diagram from left to right, top to bottom, following the sequential execution of events.

The DTO sequence diagram (Figure A.6) includes the following:

Appendix A: UML Modeling

41

The application client sets user-entered values in the ProtocolData Transfer
Object.

The client application then invokes the EJB method to add protocol, sending the
Transfer Object by value.

The EJB method then retrieves all user-entered values from the Transfer Object and
begins business processing.

Figure A.6 DTO sequence diagram

CGEMS 1.0 Technical Guide

42

43

APPENDIX

B
CGEMS GLOSSARY

This glossary describes acronyms, objects, tools, and other terms referenced in the
chapters or appendixes of the CGEMS Technical Guide.

Term Definition

API Application Programming Interface

caBIG Cancer Biomedical Informatics Grid

caBIO Cancer Bioinformatics Infrastructure Objects

caCORE Cancer Common Ontologic Representation Environment

caDSR Cancer Data Standards Repository

CGEMS Cancer Genetic Markers of Susceptibility

caMOD Cancer Models Database

CGF Core Genotyping Facility

CGH Comparative Genomic Hybridization

EBI European Bioinformatics Institute

EVS Enterprise Vocabulary Services

MAGE 1.1 A widely used microarray data standard or guideline

MAGE-ML
software format

XML-based standard for representation of microarray data

MIAME 1.1 A standard or guideline for the minimum amount of information required
to make a microarray record useful to others.

MGED Ontology A controlled vocabulary standard that concisely defines terms as they
relate to Microarrays and caArray as a whole

MGED Microarray Gene Expression Data Society

MMHCC Mouse Models of Human Cancers Consortium

NCI National Cancer Institute

CGEMS 1.0 Technical Guide

44

NCICB National Cancer Institute Center for Bioinformatics

OJB Apache ObJectRelationalBridge (OJB) is an Object/Relational mapping
tool that allows transparent persistence for Java Objects against
relational databases.

URI Uniform Resource Identifier

URL Uniform Resource Locators

XML Extensible Markup Language (http://www.w3.org/TR/REC-xml/)

XML is a subset of the Standard Generalized Markup Language
(SGML). Its goal is to enable generic SGML to be served, received, and
processed on the Web in the way that is now possible with HTML. XML
has been designed for ease of implementation and for interoperability
with both SGML and HTML.

Term Definition

http://www.w3.org/TR/REC-xml/

45

INDEX
A
Application Service layer 9
Architecture

layers 9
Association, described 38

C
Capturing system requirements 34
Cardinality 39
Class diagrams

described 37, 38
fundamental elements 37
naming conventions 38
private feature 38
public feature 38

D
Data Source Delegation layer 9
Directionality 38

H
Happy.jsp 20
Hibernate 9
Hibernate Query Language 9

M
Multiplicity 39

N
Naming conventions, class diagrams 38
Navigability 38

O
Object Query Service API

configuration 18
description 18
installation 18
testing 20

Object‐Relational Mapping 9

P
Private feature 38
Public feature 38

R
Relationships in class diagrams

aggregation 39
association 38

Role names
defined 39

S
Scenario

Detached Criteria Search 30
HQL Search 32
Nested Search to retrieve SNPAssays based on

dbSnpId 29
Retrieve All SNPPanels 26
Simple Search (Criteria Object Collection) to

retrieve SNPFrequencyFinding for the Gene
ʺWT1ʺ 27

Sequence diagrams
described 40
example 40

T
TestClient 21

U
UML

class diagrams 37
introduction 33
sequence diagrams 40
tutorial 33
types of diagrams 33
use case, documents and diagrams 35

CGEMS 1.0 Technical Guide

46

	Table of Contents
	About This Guide
	Purpose
	Release Schedule
	Audience
	Topics Covered
	Additional CGEMS Documentation
	Conventions Used
	Credits and Resources

	Introduction to CGEMS
	About CGEMS
	Additional CGEMS Resources

	About caIntegrator
	About caBIG
	About caCORE

	CGEMS Architecture
	Clinical Genomic Object Model
	CGEMS API Classes
	Main CGEMS System Components

	Understanding the Object Query Service API
	Querying CGEMS Objects
	About the Service Layer
	Accessing the Object Query Service

	Installing and Configuring the Object Query Service API
	Downloading and Installing the Client Package
	Testing the System

	Using the Object Query Service API
	TestClient Example
	Service Methods
	Scenario One: Retrieve All SNPPanels
	Scenario Two: Simple Search (Criteria Object Collection) to retrieve SNPFrequencyFinding for the Gene “WT1”
	Scenario Three: Nested Search to retrieve SNPAssays based on dbSnpId
	Scenario Four: Detached Criteria Search
	Scenario Five: HQL Search

	UML Modeling
	UML Modeling
	Use Case Documents and Diagrams
	Class Diagrams
	Relationships Between Classes
	Sequence Diagrams

	CGEMS Glossary
	Index

