

Version 4.1 ‐ Programmer’s Guide

Center for Biomedical Informatics
and Information Technology

This is a U.S. Government work. November 14, 2008

CACORE SOFTWARE
DEVELOPER KIT (SDK)

i

Table of Contents
About This Guide.. 1

Intended Audience..1
Recommended Reading ...1
Organization of this Guide ..1
Text Conventions Used ..3
Credits and Resources ...4
Submitting a Support Issue...4
Release Schedule...4

Chapter 1 Overview of caCORE SDK .. 5
Introduction ...5
caCORE SDK Modules...5
caCORE SDK Users...6
SDK within the caCORE Environment..6
Benefits of Using the caCORE SDK...7
New Features for caCORE SDK 4.1 ..7

Code Generation ..7
Generated System ...9

Features Introduced in caCORE SDK 4.0 ..9
Code Generation ..9
Generated System ...11

Obtaining the caCORE SDK...13
caCORE SDK Minimum System Requirements ...13

Minimum Hardware Requirements...13
Software Requirements..14

Contributing to caCORE SDK Development ..14

Chapter 2 Code Generation Technical Overview .. 15
Introduction ...15

The Role of Code Generation in the caCORE SDK...15
Features and Limitations of Code Generation ...16

Code Generation Process ..16
Reading the UML Model ..17
Artifact Generation (Model Transformation)...18
Output Management...18
Code Generation Framework...18
Reusable Components of the Code Generation Workflow ..20

Overview of SDK Generated Artifacts ..20

Chapter 3 Runtime System Technical Overview ... 23
High-Level Architecture ..23
N-Tier System...24

Persistence Tier ...24
Application Service Tier ...25
Security Interception Tier ...27
Client Interface Tier ..27
Technical Challenges of the Client Tier ...29
Security Filters..33

Chapter 4 Security .. 35
Security Overview...35
Authentication ...36

caCORE Software Developer Kit (SDK) V 4.1 Programmer's Guide

ii

CSM Authentication ... 36
Grid Authentication... 37

Authorization... 38
Class Level Security... 38
Instance Level Security .. 38
Attribute Level Security .. 38

Chapter 5 Writable API ... 39
Writable API Architecture ... 39
Object Relational Consideration for Writable API... 40

Primary Key Generator Settings .. 40
Cascade Settings ... 40
Inverse Settings ... 40

Transactions ... 41

Chapter 6 Data Validation .. 43

Chapter 7 Logging/Audit Trail Management.. 45

Chapter 8 Using SDK Client Interfaces ... 47
Introduction ... 47
XML-HTTP Interface... 47

Accessing Data from a Web Browser .. 47
Accessing Data from a Thin Client... 51

Java API Interface .. 54
Obtaining ApplicationService ... 55

ApplicationService API Methods .. 56
Convenience Query ... 57
HQL Query ... 57
Detached Criteria Query .. 58
CQL Query ... 60
Nested Search Criteria Query.. 64

Writable API Usage .. 67
Query By Example (QBE) Operations ... 67
Bulk operations (DML) ... 68
Batch Operations ... 68

Web Service Interface .. 69
SDK WSDL Directives - Schema Imports .. 71
WSDL Service Definition.. 72
WSDL Port Types (Network Endpoints)... 73
Messages, Elements, and Types... 73
Web Service Error Handling .. 75
SOAP Fault Structure... 75

Chapter 9 Utilities... 77
XML Utility (Marshalling and Unmarshalling) ... 77
The caCOREMarshaller Class ... 77
Marshalling Java Objects to XML... 79
The caCOREUnmarshaller Class... 79
Unmarshalling XML to Java Objects .. 80

Chapter 10 Creating the UML Model for caCORE SDK 83
Introduction ... 83
Creating a New Project in Enterprise Architect (EA) .. 84

Creating a New Project in EA .. 84
Creating a New Project in ArgoUML.. 85

Table of Contents

iii

Creating Classes and Tables..86
Creating a Logical Model Package Structure in EA...86
Creating a Logical Model Package Structure in ArgoUML...88
Creating a Logical (Object) Model Class in EA..89
Creating a Logical (Object) Model Class in ArgoUML ...92
Creating a Data Model Table in EA..93
Creating a Data Model Table in ArgoUML ...95

Creating Attributes and Data Types ...97
Creating/Modifying Attributes and Data Types in EA...97
Creating/Modifying Attributes and Data Types in ArgoUML ..100

Performing Object Relational Mapping...101
Adding/Modifying Tag Values ..101
SDK Custom Tag Value Descriptions ..102

Exporting the UML Model to XMI (EA Only) ...111
Importing XMI into the UML Model (EA Only) ..113

Chapter 11 Configuring and Running the SDK ... 115
SDK Configuration Properties...115
Generating the SDK System...122

Ant Build Script Targets..122
Selectively Generating Components..123

Overview of Generated Packages..124
Deploying the Generated System...125

Deploying to JBoss...125
Deploying to Apache Tomcat ...125

Testing the caCORE SDK Generated System ...125
Testing the Web Interface ..125
Testing the Java API ..126
Testing the XML Utility ...127
Testing the Web Service Interface ...129

Chapter 12 Configuring Security... 133
Authentication Configuration...134
Authorization Configuration ..138

Configuring CSM for Class Level Security ...138
Configuring CSM for Attribute Level Security ..139
Configuring CSM for Instance Level Security ..140

Appendix A Troubleshooting ... 143

Appendix B Performance Tuning the Java API... 145
Database Indexes...145
Fine Tuning the Page Size ...145
Hibernate Query Language (HQL)..146

Appendix C Planned Features for Future Releases .. 147

Appendix D Example Model and Mapping ... 149

Glossary ... 151

Index... 153

caCORE Software Developer Kit (SDK) V 4.1 Programmer's Guide

iv

1

About This Guide
This preface introduces you to the caCORE SDK 4.1 Programmer’s Guide. Topics in this
preface include:

• Intended Audience on this page.

• Recommended Reading on this page.

• Organization of this Guide on this page.

• Text Conventions Used on page 3.

• Credits and Resources on page 4.

• Submitting a Support Issue on page 4.

• Release Schedule on page 4.

Intended Audience
The caCORE Software Developer Kit (SDK) V 4.1 Programmer's Guide is the
companion documentation to the Cancer Common Ontologic Representation
Environment Software Development Kit (caCORE SDK). The caCORE SDK is a set of
development resources that allows you to create, compile, and run caCORE-like
software. The SDK is designed to aid programmers with life science backgrounds who
are interested in using or extending the capabilities of caCORE.

For more information about caCORE, see the NCICB website: http://ncicb-
dev.nci.nih.gov/infrastructure/cacore_overview.

Recommended Reading
Following is a list of recommended reading materials and resources that can be useful
for familiarizing oneself with concepts contained within this guide.

• Java Programming

• Enterprise Architect Online Manual

• ArgoUML Online Manual

• Hibernate

Uniform Resource Locators (URLs) are also included throughout the document to provide more
detail on a subject or product.

Organization of this Guide
The caCORE SDK 4.1 Developer’s Guide contains the following chapters:

• Chapter 1 Overview of caCORE SDK - This chapter provides an overview of
caCORE SDK 4.1, describes new features of the 4.1 release, and provides
instructions for obtaining the release.

http://java.sun.com/learning/new2java/index.html
http://www.sparxsystems.com.au/EAUserGuide/index.html
http://argouml-stats.tigris.org/documentation/manual-0.24/
http://www.hibernate.org/5.html

caCORE Software Developer Kit (SDK) V 4.1 Programmer's Guide

2

• Chapter 2 Code Generation Technical Overview- This chapter describes the
code generation process in the context of the caCORE SDK. It also describes
how the caCORE SDK’s code generation module works.

• Chapter 3 Runtime System Technical Overview - This chapter describes the
architecture of the caCORE system. It includes information about the major
components, such as security, logging, database object-relational mappings
(ORM), client-server communication, and system connection to non-ORM
systems.

• Chapter 4 Security – This chapter provides information regarding the available
security implementations for an SDK generated system.

• Chapter 5 Writable API – This chapter provides information on using the newly
available Writable API to access an SDK generated system.

• Chapter 6 Data Validation – This chapter provides information regarding the
data validation settings available with the Writable API in the SDK generated
system.

• Chapter 7 Logging/Audit Trail Management - This chapter describes the CLM-
based auditing/logging functionality that becomes available when the Writable
API is enabled in the SDK.

• Chapter 8 Using SDK Client Interfaces – This chapter provides examples to
access the generated system’s client interfaces by a client application or a
user. It includes information on how to access the system when security is
enabled.

• Chapter 9 Utilities – This chapter describes a class that can be used to
serialize and deserialize generated Java Beans to XML and back again.

• Chapter 10 Creating the UML Model for caCORE SDK – This chapter provides
information on how to create UML models that can be used by the caCORE
SDK to generate the system.

• Chapter 11 Configuring and Running the SDK – This chapter describes how to
configure the SDK Code Generator and generate the system.

• Chapter 12 Configuring Security – This chapter provides instructions for
configuring different types and different levels of security for an SDK
generated system.

• Appendix A Troubleshooting - This appendix includes questions and scenarios
that have been reported by SDK users and may be helpful in troubleshooting a
problem when setting up the SDK.

• Appendix B Performance Tuning the Java API – The SDK development team
and many of the SDK users have encountered problems when applying the
SDK to their own use cases and workflows and have discovered solutions to
improve performance. This chapter includes some of the solutions discovered
by these users.

• Appendix C Planned Features for Future Releases - This appendix contains a
short summary of some of the major features under consideration for a future
release.

About This Guide

3

• Appendix D Example Model and Mapping - The caCORE SDK release
package contains the example model included in this appendix, which can be
used by the user as a reference to model a particular scenario for a system.

•

Text Conventions Used
This section explains conventions used in this guide. The various typefaces represent
interface components, keyboard shortcuts, toolbar buttons, dialog box options, and text
that you type.

Convention Description Example

Bold Highlights names of option buttons, check
boxes, drop-down menus, menu
commands, command buttons, or icons.

Click Search.

URL Indicates a Web address. http://domain.com

text in SMALL CAPS Indicates a keyboard shortcut. Press ENTER.

text in SMALL CAPS +
text in SMALL CAPS

Indicates keys that are pressed
simultaneously.

Press SHIFT + CTRL.

Italics Highlights references to other documents,
sections, figures, and tables.

See Figure 4.5.

Italic boldface
monospace type

Represents text that you type. In the New Subset
text box, enter
Proprietary
Proteins.

Note: Highlights information of particular
importance.

Note: This concept is
used throughout this
document.

{ } Surrounds replaceable items. Replace {last name,
first name} with the
Principal Investigator’s
name.

caCORE Software Developer Kit (SDK) V 4.1 Programmer's Guide

4

Credits and Resources
caCORE SDK Development and Management Teams

SDK Development
Team

Other Development
Teams Documentation Program Management

Satish Patel 1 Kunal Modi 1 Satish Patel 1 Denise Warzel 4
Dan Dumitru 1 Vijay Parmar 1 Dan Dumitru 1 Avinash Shanbhag 4
Aynur Abdurazik 2 Shaziya Muhsin 2 Charles Griffin 1 George Komatsoulis 4
Santhosh Garmilla1 Konrad Rokicki 2 Bronwyn Gagne5 Charles Griffin 1
Xiaoling Chen 2 Ye Wu 2 Dave Hau 4
 Christophe Ludet 3 Bilal Elahi 6
 Eugene Wang 2

1Ekagra Software
Technologies

2 Science Applications
International Corporation
(SAIC)

3 Oracle Corporation

4 Nat’l Cancer Inst. (NCI)
Center for Biomedical
Informatics and Information
Technology (CBIIT)

5 Lockheed Martin 6 Sapient

SDK Resources

Name URL
Mailing List CACORESDK_USERS-L@mail.nih.gov
Mailing List Archive https://list.nih.gov/archives/ cacore_sdk_users-l.html
Project Home (GForge) https://gforge.nci.nih.gov/projects/cacoresdk/
SDK Support Tracker (GForge) https://gforge.nci.nih.gov/tracker/?group_id=148&atid=731

Contacts and Support

NCICB Application Support
http://ncicb.nci.nih.gov/NCICB/support
Telephone: 301-451-4384
Toll free: 888-478-4423

Submitting a Support Issue
A GForge Support tracker group, which is actively monitored by caCORE SDK
developers, has been created to track any support requests. If you believe there is a
bug/issue in the caCORE SDK software itself, or have a technical issue that cannot be
resolved by contacting the NCICB Application Support group, please submit a new
support tracker using the following link:

 https://gforge.nci.nih.gov/tracker/?group_id=148&atid=731.

Prior to submitting a new tracker, review any existing support request trackers in order to
help avoid duplicate submissions.

Release Schedule
This guide has been updated for the caCORE SDK 4.1 release. It may be updated
between releases if errors or omissions are found. The current document refers to the
4.1 version of caCORE SDK, released in November 2008 by CBIIT.

mailto:CACORESDK_USERS-L@mail.nih.gov
https://list.nih.gov/archives/ cacore_sdk_users-l.html
https://gforge.nci.nih.gov/projects/cacoresdk/
https://gforge.nci.nih.gov/tracker/?group_id=148&atid=731
http://ncicb.nci.nih.gov/NCICB/support
https://gforge.nci.nih.gov/tracker/?group_id=148&atid=731

5

Chapter 1 Overview of caCORE SDK
This chapter provides an overview of caCORE SDK 4.1, describes new features of the
4.1 release, and provides instructions for obtaining the release.

Topics in this chapter include:

• Introduction on this page.

• caCORE SDK Modules on this page.

• caCORE SDK Users on page 6.

• SDK within the caCORE Environment on page 6.

• Benefits of Using the caCORE SDK on page 7.

• New Features for caCORE SDK 4.1 on page 7.

• Features Introduced in caCORE SDK 4.0 on page 9.

• Obtaining the caCORE SDK on page 13.

• caCORE SDK Minimum System Requirements on page 13.

• Contributing to caCORE SDK Development on page 14.

Introduction
The National Cancer Institute (NCI) Center for Biomedical Informatics and Information
Technology (CBIIT) provides biomedical informatics support and integration capabilities
to the cancer research community. CBIIT has created the caCORE Software
Development Kit or caCORE SDK, a data management framework designed for
researchers who need to be able to navigate through a large number of data sources.
caCORE SDK is CBIIT’s platform for data management and semantic integration, built
using formal techniques from the software engineering and computer science
communities.

By providing a common data management framework, caCORE SDK helps streamline
the informatics development throughout academic, government and private research
labs and clinics. A caCORE SDK generated system is built on the principles of Model
Driven Architecture (MDA) and n-tier architecture and consistent API. Model Driven
Architecture (MDA) is a software development practice that uses a structured modeling
language to describe the requirements, objects, and interactions of a data system prior
to its construction. The use of MDA and n-tier architecture, both standard software
engineering practices, allows for easy access to data, particularly by other applications.

caCORE SDK Modules
The caCORE SDK is comprised of two modules, as shown in Figure 1-1 below. The first
module is the Code Generation Module, which accepts a UML model as input and
produces various artifacts corresponding to the model as output. The second module is
the Runtime System, which is a pre-built system and utilizes the artifacts generated by
the code generation module in order to serve the data to the client application.

caCORE Software Developer Kit (SDK) V 4.1 Programmer's Guide

6

Figure 1‐1 SDK System Generation Process

Chapter 2, Code Generation Technical Overview beginning on page 15 describes the
architecture of the code generation module and an overview of the artifacts that the
caCORE SDK generates. Chapter 3, Runtime System Technical Overview beginning on
page 23 provides an overview of the architecture of the runtime system and describes
the variety of ways it can deliver the data to the client.

caCORE SDK Users
There are basically two types of caCORE SDK users, grouped by which module they will
use: 1) users of the code generation module and 2) users of the runtime system. Users
of the code generation module focus primarily on preparing the UML model and running
it through the caCORE SDK, using appropriate settings to generate the runtime system.
Users of the runtime system focus primarily on writing queries against the runtime
system to retrieve the data from the data source. Chapter 11, Configuring and Running
the SDK beginning on page 115 provides information regarding use of the code
generation. Chapter 8, Using SDK Client Interfaces beginning on page 47 provides
information about how to access and use the runtime system through the available client
interfaces.

SDK within the caCORE Environment
The caCORE SDK can be utilized to quickly generate a system from a caBIG® silver-
level compatible UML model. For more information on caBIG compatibility levels, refer to
the caBIG website at https://cabig.nci.nih.gov/guidelines_documentation.

The use of the SDK, however, is not limited to generating a system from silver-level
compatible models. The SDK can be used outside of the caCORE environment to create
a system that is generated from a UML model and which runs on standardized query
languages. Within the caCORE application development process, the caCORE SDK
serves the purpose of generating the system from the UML model after semantic
integration is completed. More details on how to create a UML model for use with the
SDK can be found in Chapter 10, Creating the UML Model for caCORE SDK beginning
on page 83.

https://cabig.nci.nih.gov/guidelines_documentation

Chapter 1: Overview of caCORE SDK

7

Benefits of Using the caCORE SDK
Users of the caCORE SDK benefit in numerous ways. The primary benefits of using the
caCORE SDK includes:

• Consistent UML representation of the data – Users of the caCORE SDK
are required to represent their data in UML format. As a user of the SDK, the
user is likely to maintain their UML model throughout the life cycle of the
application. The same UML model can be used to quickly learn about the
organization of the data at various levels in the application.

• Rapid data service generation – The SDK can generate caBIG silver-level
compatible APIs quickly from the UML model. Once the UML model and the
database are ready, the data service can be generated in a matter of hours.
Manually building the application from the ground up can take several months
to achieve the same functionality.

• Uniform way to access data – SDK-generated systems provide uniform
access to the data stores. Other applications developed using the caCORE
SDK have similar mechanisms to retrieve the data. Thus common data
representation allows multiple applications to share data.

• Query using information model – SDK-generated systems allow queries to
be written in various ways including using Query-By-Example. Since the query
is independent of the system’s implementation, changes in the runtime
systems do not affect the client application.

• Integration with caGrid – SDK-generated systems can be easily integrated
with the caGrid using caGrid’s Introduce Toolkit. Developing caGrid-
compatible data services without using caCORE SDK can result in error-prone
and lengthy processes.

New Features for caCORE SDK 4.1
The SDK 4.1 release contains many new features and enhancements. This section
provides an overview of the major changes in the 4.1 release.

If you are currently using the SDK 3.2 version and are not yet familiar with the changes
made for the 4.0 SDK, please refer to Features Introduced in caCORE SDK 4.0
beginning on page 9 for information on the features introduced for the 4.0 release.

Code Generation
The features that are part of the code generation module work in harmony with the SDK
generated middleware system to meet the system use cases. This subsection includes
brief overview of the code generation features that are either newly added or have been
enhanced.

• Abstract Classes
Previous versions of the caCORE SDK ignored the property of the UML class
that indicated that the class was abstract (i.e. one cannot create an instance of
the generated class). The SDK 4.1 is now capable of recognizing the abstract
property of the UML class and generating appropriate artifacts.

caCORE Software Developer Kit (SDK) V 4.1 Programmer's Guide

8

• Market Interfaces
Interfaces without any constant member variables and methods are known as
marker interfaces. For example, java.io.Serializable is a marker interface which
tells the JVM that the class data can be serialized into a byte stream. Using a
similar principle, the SDK allows users to specify the marker interfaces in their
UML model that the domain objects can implement.

• Implicit Inheritance
Abstract classes are classes which cannot be instantiated. When they are
mapped to the database, they do not possess independent mapping in the
database. In these cases, the attributes and the associations of the parent class
are mapped in the table for the child class. The SDK 4.1 release now supports
this mapping strategy.

• Enhanced Hibernate Mapping file generation
Hibernate mapping files generated by the caCORE SDK had previously been
capable of efficiently serving the data to the users of the SDK generated system.
However these generated files were not capable of supporting writes or updates
in the database. In the 4.1 release, the SDK code generator has been enhanced
to support the missing features needed for the write/update functionality. Users
can now specify the needed settings at the UML model level, which include:

o Primary Key generator setting

o Cascade style setting

o Inverse-of setting

o Eager loading setting

• XSD and XML Mapping file generation based on GME Namespace
The users of the caCORE tools register their UML models in the caDSR registry
for semantic integration purposes. While creating the grid service, the model
owners also register the information in the Grid Metadata Exchange (GME)
registry. A new feature developed across the caCORE toolset allows users to
harmonize the model information across the metadata registries using cross-
linking information (e.g., GME Namespace). The caCORE SDK has been
enhanced to generate the XSDs and XML mapping files based on the same
registered namespace information.

• Validation
The caCORE SDK 4.1 has a new feature which allows users to perform
validation against the caDSR’s permissible values. The SDK downloads the
permissible values and injects them in the generated beans as annotations so
that they can be used at runtime.

Chapter 1: Overview of caCORE SDK

9

Generated System
The generated system or middleware system of the caCORE SDK has been significantly
enhanced in the 4.1 release, including the new features listed below.

• Grid CQL Integration in SDK
The caCORE SDK and caGrid both allow users to form queries and get results
from the underlying system. The syntax of queries for both systems, however,
differed, creating a difficult path for migration for users who wanted to move from
the SDK to caGrid. The caCORE SDK now provides mechanism to pass caGrid’s
CQL query to the SDK. When migrating to caGrid, users can fire the same CQL
query against the caGrid data service.

• Writable API
The API generated by previous releases of the caCORE SDK was capable of
serving data in read-only fashion. In 4.1, the caCORE SDK provides a fully
functional API, capable of performing operations like create, update, and delete.

• Auditing/Logging
As the data is being manipulated through the writable API, it is important to
maintain a trail of what is being manipulated. The caCORE SDK provides an
optional logging capability, which inserts the log statements into the database
with help of Common Logging Module (CLM). CLM also provides a companion
application called Log Locator Tool, which allows users to review the inserted log
statements in a secured fashion.

• Grid Security Infrastructure support
As more and more users start using the caGrid infrastructure, the user accounts
managed at the local level using Common Security Module (CSM) need to be
migrated to the grid level. At the grid level, each user is assigned a unique Grid
Identity for authorization purposes. caCORE SDK 4.1 now contains a feature that
allows users to use their caGrid user accounts in the SDK generated system’s
environment, across all tiers.

• Validation
Validation was mentioned earlier in the new Code Generator feature section. The
SDK-generated middleware system at runtime utilizes the generated validation
annotations to validate the data that is being manipulated through the API.

Features Introduced in caCORE SDK 4.0
The 4.0 release of the caCORE SDK was a major release containing many new
features. Some of the features strengthened the infrastructure while others supported
new requirements. The purpose of this section is to highlight the major functionality,
performance enhancements, and improvements introduced into caCORE SDK 4.0.

Code Generation
The architecture and the core of the code generation module of the caCORE SDK was
completely rewritten for version 4.0. The entire code generation framework now runs
from a single configuration file based on the Spring Framework, as opposed to the

caCORE Software Developer Kit (SDK) V 4.1 Programmer's Guide

10

individual configuration files used by the previous releases. Some of the visible
improvements in the code generation module are highlighted below.

• Support for Enterprise Architect and ArgoUML
Previous releases of caCORE SDK supported only Enterprise Architect for UML
modeling. With SDK 4.0, users can choose between ArgoUML and Enterprise
Architect. The added support for ArgoUML provides users an open source
alternative to commercial software like Enterprise Architect.

• Performance Improvement in Code Generation
The caCORE SDK 4.0 contains significant improvements in the performance of
the code generation module. Average users should notice completion of the
system generation process in approximately 15% of the time of previous SDK
versions.

• Support for Validators
The caCORE SDK code generator now supports validators. Validators serve the
purpose of validating the object model and object relational mapping information
before the code generator starts. These validators provide descriptive messages
to users, allowing users to more quickly identify the root cause of any code
generation failures.

• Reduced and Improved Generated Artifacts
The artifacts generated by the caCORE SDK 4.0 were completely redesigned to
suit the needs of the redesigned runtime system. Artifacts generated by previous
SDK releases were not reusable outside of it due to certain dependencies.
Artifacts generated by SDK 4.0 can be reused anywhere. For example, Java
beans generated by the previous SDK had getter methods to connect to the
server; they were not simple POJOs. In SDK 4.0 these are simple POJO beans.

The following table lists the artifacts that changed between 3.2.x and 4.0:

Artifact SDK 4.0
Includes

SDK 3.2.x
Included

POJO beans for domain objects (*.java) yes yes
SDK specific Java beans for domain objects (*.java) yes no
“Impl” classes for Java beans (*.Impl.*.java) yes no
Web Service beans (*.ws.*.java) yes no
“Impl” classes for web service beans (*.ws.impl.*.java) yes no
JUnit test cases for domain objects yes no
Hibernate O/R mapping files for domain objects (*.hbm.xml) yes yes
Hibernate O/R mapping files for “Impl” classes
(*Impl.hbm.xml)

yes no

Hibernate configuration file (*.cfg.xml) yes yes
Hibernate cache configuration file (ehcache.xml) yes yes
SDK DAO configuration file (DAOConfig.xml) yes no
Domain object list (coreBeans.properties) yes no
Association mapping file (roleLookup.properties) yes no
XML Schema for domain model (*.XSD) yes yes
Castor mapping files (xml-mapping.xml, xml-unmapping.xml) yes yes
Web service deployment descriptor (server-config.wsdd) yes yes

Table 1‐1 SDK 4.0 Artifacts

Chapter 1: Overview of caCORE SDK

11

Additional UML Features Supported
caCORE SDK 4.0 supports many new UML features in the object model and in the
object relational mapping aspect.

• Object Model
o ID attribute – Users of the caCORE SDK do not have to use the name

“ID” for the attribute that maps to the primary key column of the
corresponding table for the class. Users can now specify the attribute
mapping to the primary key column using a tag value on the class in the
domain model.

o Primitives support – SDK 4.0 allows users to specify Java’s primitive
type for any attribute’s data type. SDK 4.0 interprets these primitives in
the wrapper data type during code generation.

o Collection of primitives –Users of the SDK can now use a collection of
primitives or wrapper data types as the type for the attribute.

• Object Relational Mapping
o Inheritance – caCORE SDK 4.0 supports an alternate way of mapping

inheritance hierarchy in the database. SDK users can choose the
previous Table per class mechanism to map inheritance in the database,
or they can choose Table per inheritance hierarchy for the mapping.

o Join tables – Previous releases of the SDK supported join tables only for
the many-to-many type associations. With SDK 4.0 users can choose to
use join tables for any type of association.

Generated System
In addition to the new code generator module, caCORE SDK 4.0 introduced significant
changes in the runtime system. Since many of the changes are in the infrastructure,
typically only users utilizing the advanced options will notice or be affected by the
restructuring of the SDK’s runtime system.

• Client Server Infrastructure
o The client-server infrastructure of the SDK used to rely on the Java beans

developed specifically for SDK. These specialized java beans had the
capability to connect to the server when required to fetch the associated
objects. With SDK 4.0, regular POJOs are used in conjunction with
concepts from Aspect Oriented Programming (AOP) to facilitate a similar
mechanism. With this design approach, domain object beans generated
by the SDK are true POJOs and can easily be used outside of the SDK.

o In addition to the restructuring of the Java beans with AOP, SDK 4.0 can
also connect to various SDK-generated systems from within the same
client JVM. In previous versions, users of the SDK could connect to only
one remote service at a time; with this feature, developers can retrieve
data from multiple data services.

• Simplified Application Service
Many of the existing methods of the ApplicationService interface have been
deprecated. Newly added methods have syntax similar to the existing methods

caCORE Software Developer Kit (SDK) V 4.1 Programmer's Guide

12

but they now require less information. The simplified Application Service will be
easier to work with.

• Web Services
o SDK 4.0 generated web services work on the simple POJO beans. The

web service from previous SDK versions required specialized POJO
beans in the .ws package, whereas SDK 4.0 generated web services
utilize the same Java beans that are used by other tiers of the application.

o SDK 4.0 web services also have additional methods to allow users to
fetch the associations of a domain object. Users can now specify which
specific association they would like to fetch from the server.

o Starting with version 4.0, users of the SDK will not have to deploy the web
service independently. The SDK 4.0 generated web services are
embedded in the .war file and are deployed automatically when the
application server starts

• Graphical User Interface
o The caCORE SDK 4.0 generated system has a newly developed

graphical user interface, providing users a richer experience.

o Security of the new user interface has been enhanced. Users now have
access to built-in security capabilities such that when the security is
enabled in the system, users experience a completely secured system
and not just a secured interface.

o The caCORE SDK 4.0 generated GUI now has embedded JavaDocs for
the domain objects for which the system was originally generated. Users
of the web interface can browse the JavaDocs by visiting a link on the
generated system’s home page.

o Previous releases of the SDK did not allow fetching of an associated
object that had more than one association with another object. The newly
generated web interface allows users to retrieve associations regardless
of the number of associations between objects.

• Security
o The caCORE SDK 4.0 has a security implementation that is based on

Acegi security framework. The previous implementation of security in the
caCORE SDK was weaved into the application logic. As of caCORE SDK
4.0, security implementation is kept outside of the application and is
managed through Aspect Oriented Programming principles. SDK users
can now change the implementation of security without going into the
details of the SDK’s code base.

o Instance level security – The caCORE SDK 4.0 supports instance level
security utilizing CSM, which provides flexibility to provide more granular
access to the data. For example, users can be given access to only a
subset of records from a particular table versus all the records of a
particular table.

o Attribute level security – In addition to the instance level security, the
caCORE SDK 4.0 also provides very granular attribute level security to

Chapter 1: Overview of caCORE SDK

13

the users. For example, only certain users may be allowed to see the
Social Security Numbers of a Person object.

• Concurrent user access in secured API
Users of the SDK generated java client in the previous releases were constrained
to use the same user account throughout the lifecycle of the ApplicationService.
In SDK 4.0, users can create many different instances of the ApplicationService
and login with different user accounts at the same time from different threads of
the client application.

Obtaining the caCORE SDK
The caCORE SDK is released periodically in .zip file format and .tar file format. Updates
are released frequently on the NCICB’s GForge website. The latest releases and
archives can be obtained from https://gforge.nci.nih.gov/frs/?group_id=148.

caCORE SDK Minimum System Requirements
In addition to the caCORE SDK files that must be downloaded from the link above,
additional hardware and software is also required.

 Minimum Hardware Requirements
The caCORE SDK 4.1 has been built and tested on the platforms shown in Table 1-2.

Users of the caCORE SDK need a computer system for two purposes: first, to generate
a system using the caCORE SDK, and second, to host the generated system in a
production environment.

Users can use the tested configurations listed below as a reference to determine their
appropriate hardware configuration. Hardware selections should be based on the
amount of data the system is expected to handle.

 Linux Server Solaris Windows
Model HP Proliant ML 330 Sunfire 480R Dell GX 270
CPU 1 x Intel® Xeon™

Processor 2.80GHz
2 x 1050MHz 1 x Intel® Pentium™

Processor 2.80GHz
Memory 4 GB 4 GB 1 GB

Local Disk System 2 x 36GB (RAID 1)
Data = 2 x 146 (RAID 1)
System 2 x 72GB

System 1 x 36GB

Operating
System

Red Hat Linux ES 3
(RPM 2.4.21-20.0.1)

Solaris 8 Windows XP/2000
Professional

Table 1‐2 Minimum Hardware Requirements

https://gforge.nci.nih.gov/frs/?group_id=148

caCORE Software Developer Kit (SDK) V 4.1 Programmer's Guide

14

Software Requirements
The software listed in Table 1-3 is required to use the SDK but is not included with the
caCORE SDK download. Users must download and install the appropriate listed
software.

The software name, version, description, and URL hyperlinks for download are indicated
in the table.

Software Description Version URL

JDK The J2SE Software
Development Kit (SDK)
supports creating J2SE
applications

1.5.0_11
or higher

http://java.sun.com/j2se/1.5.0/d
ownload.html

Enterprise
Architect (EA)

6.0
or higher

http://www.sparxsystems.com.
au/

ArgoUML

UML Modeling Tool†

0.24
or higher

http://argouml.tigris.org/

Oracle 9i http://www.oracle.com/technolo
gy/products/oracle9i/index.html

MySQL

Database Server†

5.0.27 http://dev.mysql.com/download
s/mysql/5.0.html

JBoss 4.0.5 http://labs.jboss.com/jbossas/d
ownloads

Tomcat

Application Server†

5.5.20 http://tomcat.apache.org/downl
oad-55.cgi

Ant Build Tool 1.6.5
or higher

http://ant.apache.org/bindownl
oad.cgi

Table 1‐3 Minimum Software Requirements

† Only one is required.

Contributing to caCORE SDK Development
The caCORE SDK project is managed by a CBIIT project manager. If you would like to
contribute by providing a patch for a particular defect, email the caCORE SDK Users’
mailing list (CACORE_SDK_USERS-L@list.nih.gov). Users interested in participating in
the development process can contact CBIIT management for more details.

http://java.sun.com/j2se/1.5.0/download.html
http://java.sun.com/j2se/1.5.0/download.html
http://www.sparxsystems.com.au/
http://www.sparxsystems.com.au/
http://argouml.tigris.org/
http://www.oracle.com/technology/products/oracle9i/index.html
http://www.oracle.com/technology/products/oracle9i/index.html
http://dev.mysql.com/downloads/mysql/5.0.html
http://dev.mysql.com/downloads/mysql/5.0.html
http://labs.jboss.com/jbossas/downloads
http://labs.jboss.com/jbossas/downloads
http://tomcat.apache.org/download-55.cgi
http://tomcat.apache.org/download-55.cgi
http://ant.apache.org/bindownload.cgi
http://ant.apache.org/bindownload.cgi
mailto:CACORE_SDK_USERS-L@list.nih.gov

15

Chapter 2 Code Generation Technical
Overview

This chapter describes the code generation process in the context of the caCORE SDK.
It also describes how the caCORE SDK’s code generation module works.

Topics in this chapter include:

• Introduction on this page

• Code Generation Process on page 16

• Overview of SDK Generated Artifacts on page 20

Introduction
Code generation is a systematic process of converting a model into a series of
instructions or programs that can be executed by a machine. The principle of code
generation is primarily popular in programming language compilers (for example, a C
compiler or a Java compiler) in which the code generation stage is responsible for
generating machine specific instructions or assembly language instructions.

The input to the code generation stage typically consists of parsed source code or an
abstract syntax tree that is prepared by the source code parser. In the context of the
caCORE SDK, the code generator generates the artifacts from a UML model using
principles of Model Driven Architecture that are consumed by the SDK’s runtime system.

The Role of Code Generation in the caCORE SDK
While other tools and programming language compilers use the code that the SDK
generates, the SDK itself can be viewed as a level above the other compilers and tools.
The code generation module is responsible for generating various artifacts from the UML
model. Like output from the code generation stage of compilers, the output from the
code generation stage of SDK is specific; the output of the caCORE SDK consists of
artifacts like Java source code, O/R mapping files etc. In other words, the caCORE SDK
transforms the UML model into system specific artifacts and the code generation engine
is simply a complex transformer for the UML model.

Figure 2‐1 Code Generation

The primary purpose of the caCORE SDK is to allow users to quickly build data services.
One of the ways the SDK implements this requirement is to generate the application for

caCORE Software Developer Kit (SDK) V 4.1 Programmer's Guide

16

the user based on specified settings. The SDK takes a UML model, which consists of an
object model and a data model, as input, and generates a complete application using the
generation settings.

Features and Limitations of Code Generation
UML provides a generic mechanism to represent the various parts of a software system
and its lifecycle. However, UML by itself is unable to describe how the complete system
works after implementation. To efficiently generate code from a UML model, the SDK
specifies additional information (in the form of tag values) that needs to be embedded
inside the model. This additional information allows the SDK to determine how the code
generation should proceed.

The SDK code generation sub-system can interpret only a set of well-known features
from the model, which currently includes following:

1. UML packages

2. UML class

3. UML class attributes

4. UML attribute’s data type

5. UML association

6. UML dependency

7. UML tag values

8. UML generalization

9. UML Interface

The SDK cannot read and interpret unsupported features included in the UML model. To
interpret unsupported UML features, the SDK code generator must be modified. In
addition to modifying the code generator, the runtime system also requires modification
in order to consume the modified artifacts from code generator.

Code Generation Process
The SDK code generation process can be viewed as a layer of different processes. In
order to generate code from a UML model, the constructed model must first be exported
from a UML modeling tool. Then, the exported model can be used by the SDK to
generate the code.

Chapter 2: Code Generation Technical Overview

17

ca
C

O
R

E
 S

D
K

 C
od

e
G

en
er

at
or

U

M
L

M
od

el
in

g
To

ol

The code generation process, illustrated in Figure 2-2, involves the following high-level
steps to generate the artifacts required.

1. Read UML model.

2. Generate artifacts.

3. Manage Output.

Figure 2‐2 Code generation process details

Reading the UML Model
When the UML model is constructed in the UML modeling tool, the information about the
model is stored in a proprietary formatted file. In order for the SDK to read the model, the
model information needs to be translated into a standard format that can be interpreted
by other modeling tools. Once the model information is exported in the standard format,
the SDK can read the model information and convert it into internal data structures.
These internal data structures can then be used by other stages of the SDK to generate
the desired code. Having the internal data structures also gives additional flexibility to
the SDK. In the event that a modeling tool adopts a new standard or starts exporting
information in some format other than the one recognized by SDK, a new model reader
can be developed without affecting other stages of code generation.

Currently the SDK uses a UML model reader that was developed as a separate project
at CBIIT. The UML Model Reader, also known as the XMI Handler, can interpret model

caCORE Software Developer Kit (SDK) V 4.1 Programmer's Guide

18

information created by either Enterprise Architect or ArgoUML. Because the UML Model
Reader is separate, if the SDK code generator ever needs to support a different UML
modeling tool, the UML Model Reader can be extended without the need to change the
code generator.

Artifact Generation (Model Transformation)
The SDK generates various artifacts based on the information that it obtains from the
UML model. Artifacts can be Java beans, O/R mapping files, or web service deployment
descriptors. Most artifacts are generated from information obtained from the UML model.
(Other artifacts are generated from the property files and configuration files supplied at
the time the SDK is run.)

The UML model contains various complex elements. The artifact generation stage reads
all of the elements in the UML model and then constructs a collection of relevant
elements from which a particular artifact can be generated. The artifact generation
process must be repeated for each type of artifact.

Output Management
When an artifact is generated, the output must be written to a file. The file content can
be Java source code or XML. If the artifact is a Java program then it must be written in a
particular folder hierarchy to preserve namespace. In addition, all Java program files
require “.java” as a file extension. Similarly, generated XML documents must be placed
in appropriate folders and assigned appropriate file names and extensions.

Code Generation Framework
As explained earlier in the section, the code generation process involves various steps in
order to generate an artifact. If there are many different types of artifacts to be
generated, the model transformation process must be executed for each type of artifact.
In the case of multiple artifacts, it becomes necessary to automate these steps so that
the artifact generation process can be handled efficiently.

In the current design, the artifact generation process is controlled by means of a control
or configuration file. The control file specifies what combination of components will be
used to generate a particular type of artifact. The execution engine (Generator), which
understands the information specified in the control file, can then read the control file
and orchestrate the workflow as desired.

Chapter 2: Code Generation Technical Overview

19

sd Code Generation

Client

codegen::Generator «interface»
codegen::Validator

«interface»
codegen::Transformer

«interface»
codegen::ArtifactHandler

setModel(model)

execute()

GeneratorErrors:= val idate(model)

GeneratorErrors:= val idate(model)

GeneratorErrors:= execute(model)

GeneratorErrors:= execute(arti fact)

Figure 2‐3: Code Generation Workflow Automation Sequence Diagram

As described in Figure 2-3, when the code generation execution engine initializes, it
reads the control file and configures itself with the information obtained from the control
file. The execution engine configuration involves initializing the components defined in
the control file as sub-elements and configuring them one at a time. Once the
configuration of the execution engine and components is finished, the code generation
execution engine executes the workflow as described by the pseudo-code below.

1. Open UML Model file.

2. Read UML Model file containing various UML models.

3. Set the UML Model in the Generator.

4. Set the Validators in the Generator.

5. Set the Transformers in the Generator.

6. Execute the Generator.

a. Execute all the registered validators.

b. If the errors are present during the previous validation, then stop executing
and log the errors.

c. Execute the validate method of all the registered transformers.

d. If the errors are present during the previous validation, then stop executing
and log the errors.

e. Execute all the registered transformers.

i. Generate artifact from the UML Model.
ii. If errors are discovered during code generation then return the errors.
iii. Pass the generated Artifact to the registered ArtifactHandler.

1. Write the artifact to the respective file.

caCORE Software Developer Kit (SDK) V 4.1 Programmer's Guide

20

Reusable Components of the Code Generation Workflow
In order to complete the code generation process, the components used in the code
generation workflow must implement specific behaviors. As the code generation engine
executes the workflow, it instantiates and configures components required for the
workflow (as specified in the control file).

Each type of component needs some information to configure itself. This information is
supplied from the control file to the component. The class that implements the interface
(Validator or Transformer) is recognized by the code generation execution engine and is
responsible for following certain behaviors expected by the engine. This mechanism
allows the new implementation of the components to be plugged into the workflow by
simply modifying the control file.

Since the SDK code generator uses a Spring Framework’s bean configuration file,
configuring each component becomes easy. It is up to the developer of a component to
specify what information the component needs to execute itself.

Overview of SDK Generated Artifacts
As part of the code generation process, the caCORE SDK generates the following
artifacts with the help of different transformers.

• Beans – For each object defined in the object model, a Java bean (POJO) is
generated. The generated bean follows the same package structure as the
folder structure in the object model. The generated Java beans are compiled
and packaged in a JAR file. The JAR file is named project_name-beans.jar.

• Hibernate files – The following hibernate files are packaged in a separate
JAR file after generation. The JAR file is named project_name-orm.jar

o Hibernate mapping files - For each object defined in the object model,
the caCORE SDK generates a Hibernate mapping file (Object Relational
mapping file) by reading tag values that maps object and attributes to
tables and columns in the data model. In the case of inheritance in the
object model, the mapping file is created for the root level class in the
inheritance hierarchy. The generated files follow the same package
structure as the folder structure in the object model.

o Hibernate configuration file – The SDK generates a configuration file
named hibernate.cfg.xml for Hibernate that contains a list of generated
Hibernate mapping files as well as the database connection settings.

o EHCache configuration file – A cache configuration file for Hibernate.

• XSD and XML Mapping files – For each package defined in the object
model, the caCORE SDK generates an XSD file. The XSD file is named after
the fully qualified name of the package name for which the file was generated.
If the UML model is annotated with semantic tags (CDE information from
caDSR) then the generated XSD files will include this information as XSD
documentation.

The SDK also generates XML mapping files (castor mapping files) for the entire
object model. There are two XML mapping files that are generated: xml-
mapping.xml and xml-unmapping.xml. These files are primarily used by the
caGrid project to create a grid service from the SDK generated system.

Chapter 2: Code Generation Technical Overview

21

• Web Service deployment descriptor file – A deployment configuration file
for the AXIS-based web service is generated for the entire object model.

caCORE Software Developer Kit (SDK) V 4.1 Programmer's Guide

22

23

Chapter 3 Runtime System Technical
Overview

This chapter describes the architecture of the caCORE system. It includes information
about the major components such as security, logging, database object-relational
mappings (ORM), client-server communication, and system connection to non-ORM
systems.

Topics in this chapter include:

• High-Level Architecture on this page.

• N-Tier System on page 24.

High‐Level Architecture
The caCORE SDK generated runtime system’s infrastructure exhibits an n-tiered
architecture with client interfaces, server components, backend objects, data sources,
and additional backend systems.

Figure 3‐1 SDK Generated Runtime System Architecture

This n-tiered system divides tasks or requests among different servers and data stores.
This isolates the client from the details of how or from where data is retrieved.

The system also performs common tasks such as logging and provides different levels
of security. Clients (browsers, applications) receive information from backend objects.
Java applications also communicate with backend objects via domain objects packaged
within the client.jar. Non-Java applications can communicate via SOAP (Simple Object
Access Protocol). Back-end objects communicate directly with data sources, either
relational databases (using Hibernate) or non-relational systems (using, for example, the
Java RMI API).

caCORE Software Developer Kit (SDK) V 4.1 Programmer's Guide

24

N‐Tier System
The SDK generated system can be viewed as a typical n-tier architecture system where
each tier in the system is responsible for a set of defined activities. In an SDK generated
system, the layers, starting from the lowest layer, are as follows:

• Persistence Tier

• Application Service Tier

• Security Interception Tier

• Client Interface Tier

• Security Filters

Each of these layers is discussed in detail in the sections that follow.

Persistence Tier
The persistence tier is responsible for understanding the query that has been sent and
for fetching the results. The SDK currently supports persistence tiers created in two
ways; object-relational mapping (ORM) based persistence tiers and non-object-relational
mapping (non-ORM) based persistence tiers.

To access the data stored in the persistence tier with the ORM-based mechanism, the
SDK provides a pre-constructed DAO (ORMDAOImpl). The ORMDAOImpl is written
specifically for Hibernate-based object relational mapping. This DAO converts the query
into a Hibernate-specific query and executes it using Hibernate APIs. Each DAO also
provides a list of domain objects, when requested by the Application Service tier, by
using the getAllClassNames() method of the DAO.

cd Logical View

«interface»
DAO

+ query(Request) : Response
+ getAllClassNames() : Collection

ORMDAOImpl

+ query(Request) : Response
+ getAllClassNames() : Collection

NonORMDAOImpl

+ query(Request) : Response
+ getAllClassNames() : Collection

«realize»«realize»

Figure 3‐2 Persistence Tier Classes

If the Application Service tier determines that there is an overlap between the lists of
domain objects provided by the DAOs then the application will not be loaded. Details on
how each DAO works are provided in the following sections.

Chapter 3: Runtime System Technical Overview

25

Object Relational Mapping
The SDK code generator performs the object relational mapping for Hibernate
(http://www.hibernate.org) as its underlying technology. Hibernate allows the objects to
be mapped to the relational database by means of ORM files. These ORM files are
generated by the caCORE SDK during the code generation process. If a user does not
intend to use one or all of these mapping files and instead provide independently
developed mapping files, they can do so by altering the code generation process.
Alteration of the code generation process can be done through the configuration files
and is explained in Chapter 11, Configuring and Running the SDK beginning on page
115.

Non‐Object Relational Mapping
SDK users can choose not to use ORM to map the relational database to the objects or
the data for the objects residing on a remote server. In this scenario, the SDK user bears
the responsibility of populating the objects based on the query. The user must develop a
custom non-ORM DAO that can perform the task of retrieving the data. The custom non-
ORM DAO is required to implement the interface expected by the caCORE SDK. Other
than supporting the method to retrieve results using the query, the non-ORM DAO needs
to implement another required method, getAllClassNames(), to return a list of the
domain objects supported by that DAO.

Application Service Tier
The Application Service tier consolidates incoming requests from the various interfaces
and forwards them to the appropriate persistence tier implementation. The Application
Service tier is the main tier that facilitates the operations within the SDK generated
system, and its methods in the ApplicationService interface are exposed to the Java
Clients.

The class ApplicationServiceImpl has the concrete implementation of the
ApplicationService interface. When any of the client interfaces in the SDK code requests
a handle to the ApplicationService, the default implementation of ApplicationServiceImpl
is returned. When the remote Java client requests a handle to the ApplicationService, a
remote handle to the ApplicationService is wrapped inside the ApplicationServiceProxy
and returned to the client.

http://www.hibernate.org/

caCORE Software Developer Kit (SDK) V 4.1 Programmer's Guide

26

cd Logical View

«interface»
ApplicationServ iceImpl

+ search(String) : Collection

«interface»
ApplicationServ ice

+ search(String) : Collection

«realize»

Figure 3‐3 Application Service

The default Application Service tier has methods to support ORM based systems. These
methods are sufficient to support requirements for most applications. However, users
can extend the Application Service Tier by adding additional methods as described
below.

Extending the Application Service Tier
If additional methods are needed in the Application Service tier, one possible approach
is to modify the source code to add additional methods. Another option is to extend the
Application Service and modify the configuration files to work with the extended
Application Service. As shown in Figure 3-4 below, a CustomApplicationService can
extend the ApplicationService interface, and the class CustomApplicationServiceImpl
provides a concrete implementation of the method inside the CustomApplicationService
interface.

Chapter 3: Runtime System Technical Overview

27

cd Logical View

«interface»
ApplicationServ iceImpl

+ search(String) : Collection

«interface»
ApplicationServ ice

+ search(String) : Collection

«interface»
CustomApplicationServ ice

+ operationA() : Collection

«interface»
CustomApplicationServ iceImpl

+ operationA() : Collection

«realize» «realize»

Figure 3‐4 Extending the Application Service

As the new methods are added to the Application Service, it is also necessary to modify
client tiers to expose the additional methods to their respective clients. The configuration
files on the client and the server side also must be modified to reflect the extension of
the Application Service.

Security Interception Tier
The Security Interception tier ensures that only authorized users are allowed to access
the system. The security configuration in the SDK is done using the Acegi and the
Common Security Module (CSM) developed by CBIIT. In the case of an unsecured
system, this layer is disabled through the configuration files. Additional details on
implementing security in the SDK can be found in Chapter 4, Security beginning on page
35.

Client Interface Tier
The SDK provides four distinct client interface methods to reach the Application Service
Tier:

• XML-HTTP Interface (browsers, thin clients)

• Web Services Client

• Local Java API Client

• Remote Java API Client

Each of these methods of retrieving data involves preparing the query in the format that
the interface understands, sending the request to the corresponding interface, and
retrieving the results from the interface to which the query was submitted. The following
sections provide details about system usage for each method.

caCORE Software Developer Kit (SDK) V 4.1 Programmer's Guide

28

XML‐HTTP Client
The XML-HTTP client accesses data using two types of clients 1) a web browser to view
data in the form of a web page and 2) a thin client to get data in XML format. The web
based GUI interface or the Domain Model Browser was also known as Happy.jsp in the
previous release. Using this interface, clients can form a query using Query-By-Example
(QBE) syntax and are provided data for the result object. If a client intends to fetch data
for the associated object then the client is required to make a second query.

In a web browser, a user can click on a link to fetch the associated object. In the thin
client, the client application is required to form the query to fetch the associated object
and send it to the server. If the query executed by the client returns a large number of
records, the server returns only the results allowed per page size. The client is required
to make a second call to fetch the next page from the server. If the client intends to fetch
the data in the form of XML instead of a web page format, they can use a different URL
(GetXML) with the same query parameters.

NOTE: The page size can be configured in the configuration file application-config.xml.

Web Services Client
SDK generated web services run on Apache Axis using a literal-based RPC web service
protocol. The Web Services client uses this protocol to fetch data. When a query returns
a large amount of data, the Web Service client only receives the maximum number of
allowed records per call. The client application is required to make an additional call to
the server to fetch the next chunk of data. The server also does not return the
association to the client application. If the client needs to fetch the association then the
client application has to make an additional call with specific details on which association
the client application would like to fetch.

Java API Local and Remote Client
The Java API client can access the SDK generated application using two different
mechanisms; 1) a local API call and 2) a remote client server API call. Regardless of the
type of call the Java client application chooses, the interaction of the client application
remains the same. Typical Java API client communication with the SDK generated
application is illustrated in Figure 3-5 below.

Chapter 3: Runtime System Technical Overview

29

sd Client-Serv er Interaction

Client Application

ApplicationServiceProvider «interface»
ApplicationService

«interface»
DAO

Bean

ApplicationService= getApplicationService()

Collection= search(query)

Response= query(request)

String= getAttribute

Collection= getAssociation

Figure 3‐5 Java API communication with an SDK generated application

The client of the generated application intends to fetch data from the database and use
the data in the desired manner in their respective application. The client application
intends to achieve this behavior using the following steps:

1. Obtain a reference to the service that can deliver the data.

2. Form the query and search the database using the prepared query on the service
obtained in step one.

3. Iterate through the results and obtain the attributes/associations of the result
object.

If the client application uses the generated system in remote client server mode, the
generated client must connect to the remote service using the remote client. On the
other hand, if the client application uses the generated system locally, the service must
be present in the local environment and remote calls should be avoided. Since the client
application is developed in a different environment, it is best to isolate the client from
knowledge about what type of client (remote or local) is used to fetch the data.

Technical Challenges of the Client Tier
There are many ways to implement the expected behavior of the client. Technologies
include 1) Java RMI 2) Web Services 3) EJB 4) CORBA 5) Remoting etc. From the client
perspective, which technology is adopted to solve the problem of client-server
communication is less relevant than the underlying system implementation, because
users are never exposed to it.

One problem being faced is how to fetch a large result set and its associated objects.
Regardless of which technology is used to implement the application framework, the
problem of loading a large result set and its associated objects remains. In order to
resolve these problems, the data is required to be loaded on demand (lazy-loading). In
order to lazy-load the objects, the developed application framework must recognize
when there are remaining objects are to be loaded from the database. Events that

caCORE Software Developer Kit (SDK) V 4.1 Programmer's Guide

30

require lazy loading are 1) iterating through the large result set and, 2) accessing
attributes/associations of the retrieved objects.

The retrieved objects are required to trigger the event where the client application makes
an attempt to access the attribute/association of an object. One possible way to achieve
this functionality is to hardwire the event triggers in the result objects. This approach
makes the result objects tied to the SDK generated application. Another way to achieve
the same functionality is to dynamically inject the event triggers in the result objects. The
next section describes how lazy-loading behavior is achieved in SDK.

Dynamic Proxy‐Based SDK Generated Client API
In order for the client application to obtain the handle to the service tier (Application
Service) of the generated application, the SDK provides a helper class called
ApplicationServiceProvider (ASP). ASP instantiates the service based on the settings in
the configuration file (application-config.xml).

The sequence diagram below demonstrates how ASP retrieves the service. When the
client application requests a handle to the service, ASP retrieves the handle using the
configuration file and adds an interceptor to the service resulting in
ApplicationServiceProxy, which is a dynamic proxy generated using the AOP feature of
the Spring Framework (http://www.SpringFramework.org). ApplicationServiceProxy
intercepts all the calls to the actual ApplicationService and takes action to facilitate the
lazy-loading mechanism described earlier. When this occurs, the client application is
expecting a handle to the ApplicationService to be received from ASP but receives
ApplicationServiceProxy instead.

sd Client-Server Interaction With Proxy

Client Application

ApplicationServiceProvider ApplicationServiceProxy «interface»
ApplicationServiceImpl

ORMDAOImplProxyHelper

Client's call on the
ApplicationService
intercepted by
ApplicationServiceProxy

Interceptor is added to
the returned objects

ApplicationService= getApplicationService()

createProxy()

Collection= search(query)

Collection= search(query)

Response= query(request)

Collection= converToProxy(Collection)

Figure 3‐6 Actual Behavior of the SDK Generated Application ‐ 1

After the invocation made by the client on the ApplicationService, the
ApplicationServiceProxy obtains the result from the actual ApplicationService. The
obtained result set can be primitive objects: Java, domain objects, or Java collections.

http://www.springframework.org/

Chapter 3: Runtime System Technical Overview

31

Since domain objects or collections of domain objects can be required to lazily load their
associated objects, ApplicationServiceProxy is required to add an interceptor on the
domain objects.

After obtaining the results from the ApplicationService, ApplicationServiceProxy uses the
class ProxyHelper to add the appropriate interceptor (BeanProxy) to the domain objects,
so that the domain objects can trigger the event to lazily load attribute/associated
objects.

sd Client-Serv er Interaction With Proxy 2

Lazy Initialization of Associaton

Client Application

Bean «interface»
ApplicationServiceImpl

ApplicationServiceProxyProxyHelper ORMDAOImplBeanProxy

ProxyHelper is used to determine if
the attribute/association should be
lazi ly loaded

Lazy initial ization of
the association using
the
ApplicationService
from which the
parent object arrived

String= getAttribute

boolean= isInitialized(Object, attribute)

String= getAttribute

String= getAttribute

Collection= getAssociation

boolean= isInitialized(Object, association)

Collection= getAssociation

Collection= lazyload(Object, association)

Collection= getAssociation(Object, association)

Collection= getAssociation(Object, String)

Response= query(request)

Collection= convertToProxy(Collection)

Figure 3‐7 Actual Behavior of the SDK Generated Application ‐ 2

The results returned from the ApplicationServiceProxy to the client application have an
added interceptor (BeanProxy). The interceptor holds a reference to the
ApplicationService where the result objects were loaded.

When the client application invokes any of the methods on the result objects to retrieve
attributes/associations, the interceptor (BeanProxy) of the domain object triggers an

caCORE Software Developer Kit (SDK) V 4.1 Programmer's Guide

32

event. Subsequent to this event, the ProxyHelper class is used as a decision maker to
determine if the attribute/association should be lazily loaded. If the ProxyHelper class
indicates that the method should be lazily loaded (i.e. the method should not be
executed locally and ApplicationService should be used to obtain the return value),
BeanProxy again uses ProxyHelper to execute the method and load the result from the
correct ApplicationService.

For ORM-based applications, the ProxyHelper class always checks for the presence of
HibernateProxy for the associations. If HibernateProxy is present instead of the actual
associated objects, the ApplicationService is called (via ApplicationServiceProxy) to
fetch the associated objects. ProxyHelper is responsible for preparing the query and
calling the ApplicationService with the appropriate parameters.

For a non-ORM system, the ApplicationService may have been extended to support
additional query methods, and these methods can return domain objects that are not the
same as regular POJOs. In that case, the implementer of the non-ORM system must
intercept all the method calls to the result objects and resolve the lazy initialization
routine. The non-ORM system can configure the custom ProxyHelper through the
configuration file application-config-client.xml.

Connecting to Multiple Remote Application Services
The client application framework can be used to connect to multiple application services
at the same time; that is, the client can connect to various SDK generated services at
the same time using the same framework.

Note: This feature can be used only with the remote client, and not with the local client API.

In order to facilitate multiple service connections, the ApplicationServiceProvider (ASP)
class is used in conjunction with the proxy framework mentioned earlier. ASP reads
information from the file application-config.xml to create a new instance of the
Application Service. If the client application does not mention the service it needs to
connect to, the ASP initializes the service described under the “ServiceInfo” bean in the
configuration file. However, if the client application mentions the name of the service, the
ASP locates the configuration entry for that service, instantiates the service handler, and
returns it to the client after adding the interceptor.

When using the client framework in multiple services mode, the developer of the client
application must ensure the following:

1. Domain objects corresponding to all the services to which they are trying to
connect must be present in the local environment.

2. The services to which the client application intends to connect should be based
on the ApplicationService interface of the SDK core.

3. The remote services can be an extension of the ApplicationService interface
provided by the SDK. If one or more services have the same extension interface
name (e.g. com.xyz.CustomService) then they should have the same method
signatures as well.

4. All the extensions of the ApplicationService interface corresponding to different
remote services should be present in the local environment.

5. If any of the remote services has been modified in the ApplicationService
interface, the client framework will fail to operate.

Chapter 3: Runtime System Technical Overview

33

6. Appropriate entries should be made in the application-config.xml for each
of the remote services.

Security Filters
Security filters are HTTP servlet filters configured through Acegi
(http://www.acegisecurity.org/) in the file application-config-web-
security.xml. The filters are used in a chained fashion to ensure reusability of the
filters. For different client interfaces, the purpose of the filter is to 1) retrieve a user’s
security credentials from the HTTP message 2) log a user into the application by putting
information in the ThreadLocal variable
(http://java.sun.com/j2se/1.4.2/docs/api/java/lang/ThreadLocal.html) and 3) clear a
user’s security information from ThreadLocal at the end of the request. For a web
interface, a user’s security information is stored in the HTTPSession so that it can be
retrieved on a subsequent call. For all other interfaces, a user is required to resubmit
login information for each request to be processed.

http://www.acegisecurity.org/
http://java.sun.com/j2se/1.4.2/docs/api/java/lang/ThreadLocal.html

caCORE Software Developer Kit (SDK) V 4.1 Programmer's Guide

34

35

Chapter 4 Security
The SDK generated middleware system has built-in security that is capable of
performing authentication and authorization. In order to manage the authentication, the
user has a variety of options, which are supported by the Common Security Module
(CSM). The CSM API allows the users to use LDAP, RDBMS and other JAAS based
login modules for authentication purposes.

In addition to the CSM-based authentication, the SDK also allows the users to use
caGrid-based user accounts/credentials for authentication. The remainder of this chapter
provides details on the features and implementation of security in the SDK generated
system.

Security Overview
Security is disabled in the default SDK configuration. When a user intends to enable
security, they can do so by enabling the security flag in the configuration file and then
generating the system. Users can also enable the security in an already generated
system by modifying multiple configuration files. However, since this process is error
prone, it is not recommended to all users of the SDK.

Figure 4‐1: Security Levels in caCORE SDK

The caCORE SDK provides security at various levels: Class level security, Instance
level security, Attribute level security or no security. Below is brief description of each
level.

• Unsecured system/No Security – All the users of the SDK have equal access
to the data that the runtime system serves.

• Class level security – Only users who have access to certain objects in the
system can query for the data. For example, doctors can view patient data
whereas an administrator cannot.

• Instance level security – Users are allowed to access data for only the records
to which they are given access. For example, doctors can view data for their
patients only and for no other patients in the system.

• Attribute level security – Users are allowed to only see data for which they are
authorized. For example, doctors are allowed to see a patient’s medical record
number but they cannot see the patient’s social security number.

caCORE Software Developer Kit (SDK) V 4.1 Programmer's Guide

36

Users of the SDK can choose the appropriate level of security for their system based on
their requirements. Configuration of the level of security to be enabled is managed
through the configuration file (deploy.properties) at the time of system generation.
When security is enabled, the system applies class level security by default, however if
instance and/or attribute level security is desired, users can choose to do so. Details on
how to configure the security in CSM for SDK generated system can be found in Chapter
12, Configuring Security beginning on page 133.

Authentication
Authentication is a process of determining whether the person using the system is a
valid user or not. The SDK supports two different methods of authentication. One option
is to use the CSM based authentication which allows for RDBMS, LDAP, or any other
JAAS based username/password authentication. The other option is to use caGrid-
based user accounts where the user’s account information is accessed via the caGrid
infrastructure. The following sections provide more details on each type of authentication
supported by the SDK.

CSM Authentication
SDK generated applications provide a mechanism to log users into the application. It
takes the user credentials from the client and supplies it to the Acegi framework, so that
Acegi framework can validate the user credentials and decide if the user can proceed
with the operation or not.

Since security policy is managed at the CSM level, a bridge is prepared between CSM
and Acegi. The Acegi-CSM bridge retrieves the user information from the security
database and logs the user into the application. If the user successfully logs into the
system, his/her security policy is cached at the application level. In the case of
unsuccessful login, an exception is returned to the user indicating the cause of the error.

Figure 4‐2 Acegi‐CSM based authentication in SDK generated system

Chapter 4: Security

37

Figure 4-2 above provides a high level overview of how Acegi and CSM are integrated to
provide security in SDK. When the user requests a handle to the secured service by
entering a username and password, the SDK generated system internally calls Acegi’s
Authentication Manager, which in-turn invokes CSM’s Authentication Provider to
determine validity of the user. If the user is valid and the password in the database
matches the user-supplied password, the user is considered authenticated and allowed
to proceed.

Grid Authentication
Users with caGrid-based accounts authenticate themselves using the caGrid
infrastructure (e.g., caGrid’s AuthenticationService client) and obtain their grid
credentials using Dorian client. In order to provide a comprehensive security solution for
these users, the caCORE SDK has implemented functionality in all tiers of the generated
application. The user of the SDK can provide their Grid account’s username and
password to the generated system, and the generated system can communicate with the
configured caGrid services to authenticate the user.

Figure 4‐3 caGrid‐based user authentication in SDK generated system

Figure 4-3 above shows the authentication workflow when using caGrid-based user
credentials. The user first invokes into the SDK generated Grid Login Service Helper
using caGrid user account information. This in-turn invokes into the Authentication and
Dorian services to complete the grid authentication workflow and retrieve a Globus
Credential. The client application can subsequently invoke into SDK’s client API with the

caCORE Software Developer Kit (SDK) V 4.1 Programmer's Guide

38

retrieved Globus Credential. The SDK’s client API internally retrieves the user’s account
information using the X509 Authentication Provider. The X509 Authentication Provider
computes the username to be looked up in the CSM schema using a specific algorithm.
If the user account exists in CSM, then the authentication process is considered
complete and user is allowed to proceed.

Authorization
Authorization is the process of determining whether the authenticated user has access
rights to the resource they are asking for. When security is enabled, Class level security
is invoked by default. However the SDK allows for Instance level and Attribute level
security as well. All three levels are described briefly below.

Class Level Security
Whenever a user is trying to execute any operation on the service layer, the Acegi
framework intercepts the call to the operation, and with the help of a SecurityHelper
class, determines what classes the user is trying to access. Subsequent to that, the
Acegi framework decides if the user has access to that class or not by checking against
the security policy of the user. If the user does not have access, an access denied
exception is thrown back to the user.

Instance Level Security
If the system is a secured system with instance level security enabled, the SDK utilizes
CSM’s services to provide the instance level security. CSM provides instance level
security by altering the query using Hibernate filters. The modified query has additional
criteria in the “where clause” which goes against the CSM security configuration and
restricts the user to retrieving only the records to which they have access. In order to use
this feature, the CSM security configuration has to be available on the application’s
primary database schema, which is used by the SDK generated system.

Attribute Level Security
If the system is a secured system with attribute level security enabled, the SDK utilizes
CSM’s services to provide the attribute level security. CSM provides attribute level
security by altering result objects using Hibernate interceptors. When any object is
loaded in memory from the database, the CSM interceptor checks to see whether the
user has access to a certain attribute or not. If user does not have access, the CSM
interceptor nullifies that attribute.

39

Chapter 5 Writable API
The Writable API is an important addition to an SDK generated system. The user of the
SDK can generate a writable API with minimal effort from a simple UML model. In order
to effectively use the writable API, users have to be familiar with few basic principles of
how the CRUD operations work in an O/R mapping based system.

This chapter provides a high level overview of how the writable API module works in
conjunction with the read API in an SDK generated system. It also provides an overview
of other features that become available with use of the writable API module.

Writable API Architecture
The Writable API is made available to SDK users as an extension to the Read API. All
the functionality of the read API is always available to the users of the writable API but
inverse is not true for read API users.

class Application Serv ice

ApplicationServ iceImpl

WritableApplicationServ iceImpl

«interface»
ApplicationService

«interface»
WritableApplicationServ ice

«interface»
::DAO

«interface»
::WritableDAO

::WritableDAOImpl

::ORMDAOImpl

1 1.. *

1 1.. *

Figure 5‐1 Writable API implementation model

As shown in the diagram above, the WritableApplicationService interface of the SDK
generated system extends the read API interface (e.g., ApplicationService). At the same
time, the implementation of the writable API (e.g., WritableApplicationServiceImpl)
extends the read API implementation (e.g., ApplicationServiceImpl).

The persistence tier of the SDK is represented by the DAO interface. The default
implementation of the persistence tier is the Hibernate-based ORMDAOImpl. To support
the writable operations, the DAO is extended by WritableDAO and its implementation,
WritableDAOImpl, extends the default DAO implementation, ORMDAOImpl.

This extended architecture ensures that the core functionality of the read only API is not
affected in any way by the writable API. When a user decides to generate the writable
API, the SDK’s code generation process creates a configuration file that uses the
WritableApplicationService and WritableDAO instead of ApplicationService and DAO as
core modules of the system. The user of the generated API can access the read and
write functionality by getting a handle for the service from the
ApplicationServiceProvider.

An additional advantage of this approach is that it allows the SDK to leverage existing
infrastructure for the remoting and security of the API without any major changes.

caCORE Software Developer Kit (SDK) V 4.1 Programmer's Guide

40

Object Relational Consideration for Writable API
When enabling the writable API, the SDK user has to take few items into consideration
required for proper functioning of the API. This section describes the O/R mapping
settings needed for the API functioning, including:

• Primary Key generator settings

• Cascade settings

• Inverse settings

The O/R mapping settings mentioned above need to be specified at time of code
generation. The SDK allows user to specify all of these settings at the UML model level
in form of tag values. The following sections provide details for each of these settings as
well as how to properly specify them.

Primary Key Generator Settings
Every object to be persisted in the database is required to have a unique identity. In a
database, this identity is normally maintained using a primary key, which is unique by
definition. There are many different ways the primary key can be generated, including
using a database-specific primary key generator (e.g. Oracle sequence and MySQL
identity) or custom generators (e.g. HiLo and GUID generator). Since the SDK uses
Hibernate as underlying technology, it supports all the different generators that
Hibernate supports.

The SDK allows specifying the primary key at two levels. The global primary key
generator can be specified in the deploy.properties. If any individual class does not
have a primary key generator specified, the SDK uses the global generator. The user
can override the global primary key generator by specifying a class level key generator
using UML tag values in the model. The SDK code generator reads the UML tag values
at the time of code generation and generates appropriate Hibernate mapping files.

Cascade Settings
While persisting an object graph, the system has to know whether or not to update the
associations. Hibernate allows specifying the update settings on the associations
through the mapping files. The SDK generates the required mapping files as part of the
code generation process. During the code generation process, the SDK reads the UML
tag values specified on the associations, indicating the cascade styles to be used for a
particular association. If the user has not specified any cascade style, the SDK
generates the mapping files with no cascade style. The setting of no cascade style
indicates that if an object is being persisted then its associations are not to be updated.
When the user specifies the cascade style, the SDK simply copies the cascade style into
the generated mapping file.

Inverse Settings
The Hibernate technology used by the SDK to manage the persistence tier uses a notion
of inverse settings to remove cyclical dependency of the object graph being persisted.
Hibernate treats bi-directional associations as two separate associations going in
opposite directions, and disables the association that is marked as “inverse-of=true.”
While building the mapping files, the user should review the use case of

Chapter 5: Writable API

41

create/update/delete and determine which side of the association will be used when
performing write operation. Depending on the use case, the user can insert an inverse
setting in the mapping file. Since the SDK generates the mapping files from the UML
model file (on behalf of the user), the UML model should include information on
appropriate inverse settings.

Transactions
Transaction management becomes very important when the API updates the underlying
data in the database. The SDK generated writable API uses an external transaction
manager to handle all the transactions within the system.

By default, the configured transaction manager is Hibernate transaction manager
implementation:

<bean id="HibernateTransactionManager"
 class="org.springframework.orm.hibernate3.HibernateTransactionManager">
 <property name="sessionFactory" ref="SessionFactory" />
</bean>

When integrating the generated API with other systems or custom code, one may need
to keep both the generated API and the other system in the same transaction boundary.

Since the entire configuration for transactions is managed through an external
configuration file, it can easily be changed. For example, you use JBoss Transaction
Manager in SDK by changing the SDK’s Spring configuration file to lookup the
transaction manager in JNDI context instead of creating a new instance of Hibernate
Transaction Manager as shown in the snippet above. This approach allows the users to
use the SDK generated writable API within the same transaction as their existing API.

caCORE Software Developer Kit (SDK) V 4.1 Programmer's Guide

42

43

Chapter 6 Data Validation
When creating new records and performing updates on the existing records, it is very
important to perform validation of the data being inserted or updated in the tables.
caCORE SDK provides a convenient way to perform validation on the data being
manipulated by allowing the SDK user to enable validation at the time of code
generation. When enabled, the SDK generates the validation settings using the
permissible values stored in caDSR.

In addition to validation against a list of values, the SDK validation framework is capable
of performing other validations like Date, Range, Min, Max etc. However, as there does
not exist a system in caBIG which stores all of this information, SDK provides a very
flexible approach to meet each user’s needs. The user can prepare a configuration file in
a format that SDK expects and provide it during code generation. SDK reads the user-
provided configuration file and uses that, in addition to the caDSR enumerated values, to
prepare validation settings.

Figure 6‐1 Validation generated process in SDK code generator

Validation generation in the code generator module of the SDK is a two stage process.
In the first stage, when the data validation feature is enabled, the code generation
module downloads the caDSR Value Domain information from the caDSR production
system and prepares a validation configuration setting file.

The second stage of code generation reads the generated validator configuration file as
well as any user-supplied configuration file. Once both the files are read, the code
generator injects the information into the generated Java bean as JDK 5 annotations to
be used during runtime. At runtime, when the user of the API is attempting to manipulate
the data, the underlying validation framework (Hibernate Validator configured in the
generated middleware system), intercepts all the calls and performs validations of the
objects before executing the queries.

caCORE Software Developer Kit (SDK) V 4.1 Programmer's Guide

44

More details on the types of validations being supported and how to prepare custom
validations can be found on the Hibernate Validator wiki page, located at:
https://wiki.nci.nih.gov/x/_BSZ.

Future consideration: As the data validation feature in SDK matures, the SDK team is
planning to add more sources for data validation information, such as the ability to read
UML enumerations from the XMI file.

https://wiki.nci.nih.gov/x/_BSZ

45

Chapter 7 Logging/Audit Trail
Management

As the data is being manipulated through the Writable API, users may need to keep
track of the changes being made. The SDK generated middleware system provides a
convenient way to manage the audit trail. During the code generation phase of the SDK,
the user can select the option to enable the audit trail. When this option is enabled, the
SDK code generator injects a Common Logging Module (CLM) based interceptor in the
persistence tier of the system. The CLM interceptor, with help of a Log4j appender,
creates a log statement when it detects a change in the state of an object.

Figure 7‐1 Overview of Logging/Audit Trail management implementation

In order to detect a change in the state of an object, the CLM’s object state logger
intercepts all the events related to the domain object change whenever an attempt is
made to persist the changed domain object in the database. As CLM detects the change
in the object’s attributes, it creates a new log message, which is handled by the Log4J
appender.

Currently CLM provides a database appender which is capable of persisting log
messages in a relational database. Since the CLM’s database appender inserts the log
statements in asynchronous manner, the performance impact at runtime is negligible.

CLM also provides a companion application called Log Locater Tool (LLT) for viewing
the log statements previously inserted by the database appender. The LLT is a web-
based application which can be installed and configured using CSM to allow only certain
users to review the log statements. LLT also allows users to search records based on
criteria such as date range. More information on CLM and LLT can be found at:
http://ncicb.nci.nih.gov/NCICB/infrastructure/cacore_overview/clm.

http://ncicb.nci.nih.gov/NCICB/infrastructure/cacore_overview/clm

caCORE Software Developer Kit (SDK) V 4.1 Programmer's Guide

46

47

Chapter 8 Using SDK Client Interfaces
This chapter describes the available client interfaces for an SDK generated runtime
system, and how to access the data using the same. For those client interfaces, this
chapter also provides instructions for how to gain access when the generated system
has security enabled.

Topics in this chapter include:

• Introduction on this page.

• XML-HTTP Interface on this page.

• Java API Interface on page 54.

• Web Service Interface on page 69

Introduction
By default, security for an SDK generated system is disabled, meaning that users do not
have provide credentials in order to access or query the system.

When the generated system is secured, the user of the system is required to perform the
login operation before making any query to the system. The login operation varies
depending on the client interface used.

Once the login operation is complete, querying the system is done in the same fashion
as for an unsecured system.

XML‐HTTP Interface
The XML-HTTP interface can be accessed in two ways: 1) from a web browser or 2)
from a thin client application that can fetch data in XML format from the server using the
REST-like syntax.

Accessing Data from a Web Browser
The URL used by this interface uses the following pattern:

SDK GUI URL Pattern http://<server_name><server_port>/<project_name>
Sample SDK GUI URL http://localhost8080/example

Figure 8-1 below shows a sample SDK Home page. The SDK web page contains links
to several other pages that facilitate access to domain data.

caCORE Software Developer Kit (SDK) V 4.1 Programmer's Guide

48

Figure 8‐1 caCORE SDK Home page

The Home page contains various links to SDK-related sites and documentation, such as:

• the SDK GForge site

• the SDK Download site

• the SDK Release Notes

• JavaDocs for the domain objects of the generated system.
When security is disabled (which is the default), a Continue button appears on the
Home page.

If security is enabled, a Login form requesting a User ID and Password appears instead.
Browser-based clients must provide security configured through form-based
authentication, meaning that a user must enter a username and password in order to
access the application. Figure 8-2 below shows the login form on the SDK Home page.

More about enabling security is provided in Chapter 12, Configuring Security beginning
on page 133.

Chapter 8: Using SDK Client Interfaces

49

Figure 8‐2 Security login form in the web browser

If login is unsuccessful, an error message appears in the login section of the screen.
After three consecutive unsuccessful login attempts, CSM locks out the user’s account
for 30 minutes.

Successfully logging in or clicking the Continue button displays a hierarchical domain
package/class browser tree known as the Content page. The Content page contains
both a domain class browser and a Criteria form to search for records. The Content
page for the sample SDK model is shown in Figure 8-3 below.

caCORE Software Developer Kit (SDK) V 4.1 Programmer's Guide

50

Figure 8‐3 SDK Content page

Expand or collapse the items in the Domain Class Browser tree by clicking on the + or -
symbols to the left of a domain package name. To view the Search Criteria for a
particular class, expand a domain package so that its classes are listed, then select the
desired class name node. A Search Criteria form listing the searchable class fields
appears to the right of the browser tree.

Figure 8-4 below illustrates the Search Criteria form for the Professor class of the
sample SDK model.

Figure 8‐4 Search Criteria Form

Chapter 8: Using SDK Client Interfaces

51

Notes Regarding Search Criteria:

• To search for date attributes, use the syntax: mm-dd-yyyy.

• The Search Criteria form accepts the asterisk (*) as a wildcard character.

• The Search Criteria form also contains a drop-down list containing Search
Objects (domain classes) that are associated with the current domain class.
Selecting a Search Object from the drop-down list causes the query to return
records of the type represented by the Search Object, and not records of the
type represented by the selected class, which is the default if no Search
Object is selected.

When you click Submit on the Search Criteria form, a new window appears containing
the Result Data Table page listing all matching records (Figure 8-5).

Figure 8‐5 Result Data Table page

On the Results page, the table column headers correspond to fields from the resulting
domain class type. A collection of wrappers of primitive object types and field values
appear as strings within the corresponding table cells. Fields that represent an
association to another domain class appear as links, which can be clicked to retrieve any
associated domain object records.

Accessing Data from a Thin Client
The Representational State Transfer (REST) interface provided by the SDK is a simple
URL interface that transmits domain-specific data over HTTP without an additional
messaging layer, such as SOAP, or session tracking via HTTP cookies.

For more information on REST, see http://en.wikipedia.org/wiki/REST.

If the SDK generated system is secured, the thin client application is required to provide
the username and the password using BASIC authentication:

http://en.wikipedia.org/wiki/REST

caCORE Software Developer Kit (SDK) V 4.1 Programmer's Guide

52

(http://www.ietf.org/rfc/rfc2617.txt,
http://en.wikipedia.org/wiki/Basic_access_authentication).

Under BASIC authentication, the username and password are encrypted using Base64
encryption and are supplied as part of the HTTP header to the server. The server side
component decrypts the headers using the corresponding decryption logic and attempts
to log the user into the application. The code snippet shown below demonstrates how to
set up BASIC authentication using the Java API.

URLConnection conn = url.openConnection();
String base64 = "userId" + ":" + "password";
conn.setRequestProperty("Authorization", "Basic " + new String(

 org.apache.commons.codec.binary.Base64.encodeBase64(base64.getBytes())));

Figure 8‐6 Security Login in Java based REST (XML) client

NOTE: For the REST interface, the thin client application is required to provide the username
and password in every call made to the server.

The URL used by the REST interface adheres to the following pattern:
REST Interface URL
Pattern

http//<server_name><server_port>/<project_name>/
GetXML?query=<target>&<criteria>[&rolename=<rolename>]

The following table describes each of the variable properties of the REST URL:

Parameter Description
server_name A string identifying the server, or host, name. Examples include localhost

and 127.0.0.1.
server_port A string identifying the port number to which the SDK server is listening.

Examples include 80 or 8080.
Project_name A string identifying the project name used when building and deploying

the SDK application.
Examples include example and myproject.

NOTE: This value coincides with the PROJECT_NAME property found
within the deploy.properties file.

Target A string identifying the qualified or non-qualified query target/result class
name.
Examples include:
gov.nih.nci.cacoresdk.domain.inheritance.childwithassociation.Bank

Criteria A string identifying the qualified or non-qualified criteria class name to be
used as a filter/constraint on the result set.
An example is the SDK sample model Credit class that has an
association to the Bank class via its issuingBank attribute.
If desired, the value of the id attribute of the criteria class instance can
also be supplied in order to further constrain the result set. The pattern
for such a criteria string is <criteria_class_name>[@id=<id_value>]. An
example might be Credit[@id=3], which indicates that only target/result
class instances are returned that are associated to the Credit record with
an id value of 3.

http://www.ietf.org/rfc/rfc2617.txt
http://en.wikipedia.org/wiki/Basic_access_authentication

Chapter 8: Using SDK Client Interfaces

53

Parameter Description
Rolename The name of the attribute within the criteria class that identifies the

association to be traversed when retrieving the target/result class(es).
An example is the issuingBank attribute of the Credit class found within
the sample SDK model.
The rolename property must be specified whenever the Criteria class
has two or more attributes representing associations to the same
target/result class type. One example would be the Child class within the
sample SDK model that contains two attributes, mother and father, that
both represent instances of the Parent class. In this scenario, specifying
a value of rolename=mother or rolename=father within the REST URL
would ensure that the correct Parent instance would be returned.

Table 8‐1 Variable properties of the REST URL

A sample URL from the sample SDK model is provided below:
Sample REST URL http://localhost:8080/example/GetXML?query=Bank&Credit[@id=3]

&roleName=issuingBank

While such a URL can be invoked directly from a browser, it is most frequently done so
programmatically via a remote client program. An example of such a program,
TestGetXMLClient.java, is provided in the \output\example\package\remote-client\src
folder created by the SDK Code Generator. Figure 8-7 below provides a sample of the
XML output produced from invoking the Sample REST URL shown above.

Figure 8‐7 Sample XML output from REST call

caCORE Software Developer Kit (SDK) V 4.1 Programmer's Guide

54

Java API Interface
The use of the Java API client has two main steps. The first step involves obtaining a
reference to the instance of the ApplicationService interface from the
ApplicationServiceProvider class. The second step involves invoking one of the interface
methods in order to fetch the results from the SDK generated server component (local in
the case of a local client).

The following test programs illustrates how the SDK Java API can be used are provided
as samples:

• TestClient.java: A sample local client located in the folder
\output\example\package\local-client\src.

• TestClient.java: A sample remote client located in the folder
\output\example\package\remote-client\src.

More information about these test programs is provided in Testing the Java API on page
126.

Using security with the Java API client is a simple one-step process. The user is
required to use the methods that accept the username and password to obtain the
reference to the ApplicationService from the ApplicationServiceProvider class.

When CSM-based authentication is used, the username and password combination is
used to authenticate the user. When the username and password are passed as
parameters, the ApplicationServiceProvider class validates the username and password
against the authentication service, and if successful, logs the user in the application.

ApplicationService appService =
ApplicationServiceProvider.getApplicationService(“userId”, “password”)

Figure 8‐8 Security Login in Java API client using CSM based authentication

When the system is generated to use caGrid-based authentication, the user can retrieve
the Globus Credential object by passing their caGrid username and password
combination to the SDK’s Grid Authentication Helper. After retrieving the Globus
Credential, the user passes the Globus Credential to the SDK generated Java API to be
used for further authentication and authorization purpose.

GridAuthenticationHelper loginHelper = new GridAuthenticationHelper("grid");
GlobusCredential proxy = loginHelper.login(username, password);

ApplicationService appService =
ApplicationServiceProvider.getApplicationService(proxy);

Figure 8‐9 Security Login in Java API client using caGrid based authentication

NOTE: In addition to the example shown above, there are other convenience methods in the
ApplicationServiceProvider class that allow a user to log in on a different service or
different URL.

Chapter 8: Using SDK Client Interfaces

55

Obtaining ApplicationService
Access to the ApplicationService interface is provided via the ApplicationServiceProvider
class, which provides several variations of a single method as shown below.

Primary Application Service
Provider Method getApplicationService(service, url, username, password)

c d c lie nt

Applic a tionS e rv ic e P rov ide r

+ g e tA p p l i ca ti o n S e rvi ce () : A p p l i ca ti o n S e rvi ce
+ g e tA p p l i ca ti o n S e rvi ce (u se rn a m e :S tri n g , p a sswo rd :S tri n g) : A p p l i ca ti o n S e rvi ce
+ g e tA p p l i ca ti o n S e rvi ce (se rvi ce :S tri n g) : A p p l i ca ti o n S e rvi ce
+ g e tA p p l i ca ti o n S e rvi ce (se rvi ce :S tri n g , u se rn a m e :S tri n g , p a sswo rd :S tri n g) : A p p l i ca ti o n S e rvi ce
+ g e tA p p l i ca ti o n S e rvi ce (se rvi ce :S tri n g , u rl :S tri n g , u se rn a m e :S tri n g , p a sswo rd :S tri n g) : A p p l i ca ti o n S e rvi ce
+ g e tA p p l i ca ti o n S e rvi ce Fro m Url (u rl :S tri n g) : A p p l i ca ti o n S e rvi ce
+ g e tA p p l i ca ti o n S e rvi ce Fro m Url (u rl :S tri n g , u se rn a m e :S tri n g , p a sswo rd :S tri n g) : A p p l i ca ti o n S e rvi ce
+ g e tA p p l i ca ti o n S e rvi ce Fro m Url (u rl :S tri n g , se rvi ce :S tri n g) : A p p l i ca ti o n S e rvi ce
+ g e tA p p l i ca ti o n S e rvi ce Fro m Url (u rl :S tri n g , se rvi ce :S tri n g , u se rn a m e :S tri n g , p a sswo rd :S tri n g) : A p p l i ca ti o n S e rvi ce

Figure 8‐10 ApplicationServiceProvider Methods

The four parameters required by the methods of the ApplicationServiceProvider class
are described in the following table:

ApplicationService
Parameter

Description

Service A string identifying the name of the Spring bean to use when configuring the
ApplicationService instance. The bean represents a hash map and is defined
within the configuration file, application-config-client.xml, located
within the folder /output/<project_name>/package/[local|remote]-
client/conf/.
The default bean name (for those methods that do not require the service
parameter) is ServiceInfo. This default hash map defines the following
configuration properties:
• APPLICATION_SERVICE_BEAN: A reference to another Spring bean within

the same configuration file that identifies the ApplicationService class to
instantiate.

• AUTHENTICATION_SERVICE_BEAN: A reference to another Spring bean
within the same configuration file that identifies the authentication provider
class to use when security is enabled.

• APPLICATION_SERVICE_URL: The URL to the Spring DispatcherServlet
configured within the SDK to handle remote Java API calls. The URL must
conform to the following pattern :
http://<server_name>:<server_port>/<project_name>

• APPLICATION_SERVICE_CONFIG: A reference to another Spring bean
within the same configuration file that identifies a configuration string used
when instantiating the ApplicationService instance.
NOTE: This is an advanced property setting, and should rarely need to be
changed, if ever.

caCORE Software Developer Kit (SDK) V 4.1 Programmer's Guide

56

ApplicationService
Parameter

Description

url A string identifying the URL to the remote service configured within the SDK to
handle remote Java API calls. The URL must conform to the following pattern:
http://<server_name>:<server_port>/<project_name>.

username A string identifying the username to use for both authentication and
authorization purposes. Only required and valid when security is enabled.

password A string identifying the password to use for authentication purposes. Only
required and valid when security is enabled

Table 8‐2 Primary ApplicationServiceProvider method parameters

The ApplicationServiceProvider method can be classified into two method groupings.
The first group of methods returns an ApplicationService instance without requiring an
Application Service URL. The second group, in contrast, requires that an Application
Service URL be provided.

NOTE: The ApplicationServiceProvider methods requiring a URL are useful when overriding
the default URL. These methods are also useful when multiple ApplicationService
instances to different SDK applications are desired.

ApplicationService API Methods
The SDK Java API consists of several query/search methods and a few other
convenience methods that facilitate read-only access to domain data. Figure 8-11 below
shows a class diagram that highlights these methods.

cd applicationserv ice

«interface»
ApplicationService

+ getAssociation(Object, String) : List<E>
+ getMaxRecordsCount() : Integer
+ getQueryRowCount(Object, String) : Integer
+ query(CQLQuery, String) : List<E>
+ query(CQLQuery) : List<E>
+ query(DetachedCriteria, String) : List<E>
+ query(DetachedCriteria) : List<E>
+ query(HQLCriteria, String) : List<E>
+ query(HQLCriteria) : List<E>
+ query(Object, Integer, String) : List<E>
+ query(gov.nih.nci.cagrid.cqlquery.CQLQuery) : List<E>
+ search(Class, List) : List<E>
+ search(Class, Object) : List<E>
+ search(String, List) : List<E>
+ search(String, Object) : List<E>

Figure 8‐11 ApplicationService Interface Methods

Chapter 8: Using SDK Client Interfaces

57

The ApplicationService methods are grouped into different categories and are discussed
in the sections that follow.

Convenience Query
The ApplicationService interface provides various convenience query methods, which
can be SDK users, but which are typically used by the SDK infrastructure. Table 8-3
below highlights these methods.

ApplicationService Method Description
getMaxRecordsCount() Returns the maximum number of records the

ApplicationService interface has been configured to
return at one time.

getQueryRowCount(Object criteria,
String targetClassName)

Returns the number of records that meet the search
criteria. This method is used by the client framework to
determine the number of list chunks in the result set.
SDK users can also invoke this method in conjunction
with the getMaxRecordsCount() method; however, this
is not typical.

getAssociation(Object source, String
associationName)

Retrieves an associated object for the example object
specified by the source parameter.

Table 8‐3 ApplicationService interface query methods

HQL Query
Hibernate is equipped with a powerful query language, called Hibernate Query
Language (HQL) that is similar to SQL. However, though the syntax is SQL-like, HQL is
still fully object-oriented and understands concepts like inheritance, polymorphism, and
association.

See http://www.hibernate.org/hib_docs/v3/reference/en/html/queryhql.html for more
information on the Hibernate Query Language.

The SDK contains a wrapper class called HQLCriteria, which is used for submitting HQL
queries. A diagram of this class is shown in Figure 8-12.

c d hibe rna te

S e ri a l i za b le
HQ LCrite ria

- h q lS tri n g : S tri n g
- p a ra m e te rs: L i st
- se ri a lV e rsio n UID: l o n g = 1 L

+ g e tHq lS tri n g () : S tri n g
+ g e tP a ra m e te rs() : L i st
+ HQ L Cri te ri a (h q lS tri n g :S tri n g)
+ HQ L Cri te ri a (h q lS tri n g :S tri n g , p a ra m e te rs :L i st)

Figure 8‐12 HQLCriteria Class Diagram

http://www.hibernate.org/hib_docs/v3/reference/en/html/queryhql.html

caCORE Software Developer Kit (SDK) V 4.1 Programmer's Guide

58

The following table highlights the HQL related ApplicationService methods.

ApplicationService Method Description
query(HQLCriteria hqlCriteria) This method retrieves the results obtained by querying the data

source using the Hibernate Query Language (HQL). As such, the
data source must use Hibernate at the persistence tier. Internally,
Hibernate executes the HQL query against the relational
database and fetches the results.
Note: The retrieved results are converted into a list that may not
be completely loaded. If the number of retrieved records is more
than the maximum number of supported records as indicated by
the getMaxRecordsCount() method, then the result set will only
contain a subset of the total records. The client framework will
execute a subsequent query (transparent to the client application)
against the ApplicationService to load the remaining results in the
list chunk.

query(HQLCriteria hqlCriteria,
String targetClassName)

Deprecated. Internally calls the query(HQLCriteria hqlCriteria)
method without the targetClassName parameter.

Table 8‐4 HQL ApplicationService methods

Figure 8-13 below shows how an SDK HQLCriteria object representing an HQL query
might be instantiated and submitted. Figure 8-14 below that shows how the results
would be returned.

Figure 8‐13 Sample HQL Query

Figure 8‐14 Sample HQL Query Results

Detached Criteria Query
While HQL is extremely powerful, some developers prefer to build queries dynamically
using an object-oriented API, rather than building query strings. To this end, Hibernate
provides an intuitive Criteria query API.

See http://www.hibernate.org/hib_docs/v3/reference/en/html_single/#querycriteria for
more information on Hibernate Criteria queries. See section 15.8. Detached Queries and
Subqueries of the same chapter for details on the Hibernate DetachedCriteria itself.

http://www.hibernate.org/hib_docs/v3/reference/en/html_single/#querycriteria

Chapter 8: Using SDK Client Interfaces

59

The Hibernate Detached Criteria extends the Criteria concept, allowing Criteria queries
to be created outside of the scope of a session, to be executed later using some
arbitrary Hibernate Session.

Table 8-5 highlights the Detached Criteria related ApplicationService methods.

ApplicationService Method Description
query(DetachedCriteria
detachedCriteria)

Retrieves the result from the data source using the DetachedCriteria
query object. The DetachedCriteria query structure can be used only
by the Object Relational Mapping based persistence tier. Hibernate
executes it against the relational database and fetches the results.

Note: The retrieved results are converted into a list that may not be
completely loaded. If the number of retrieved records is more than
the maximum number of supported records as indicated by the
getMaxRecordsCount() method, then the result set will only contain
a subset of the total records. The client framework will execute a
subsequent query (transparent to the client application) against the
ApplicationService to load the remaining results in the list chunk.

query(DetachedCriteria
detachedCriteria, String
targetClassName)

Deprecated. Internally calls the query(DetachedCriteria
detachedCriteria)method without the targetClassName parameter.

Table 8‐5 Detached Criteria related ApplicationService methods

Figure 8-15 shows how a Hibernate DetachedCriteria object might be instantiated and
the query submitted. Figure 8-16 shows how the results would be returned.

Figure 8‐15 Sample DetachedCriteria Query

Figure 8‐16 Sample DetachedCriteria Query Results

caCORE Software Developer Kit (SDK) V 4.1 Programmer's Guide

60

CQL Query
In addition to providing access to Hibernate-specific queries, SDK also provides
language neutral SDK-specific queries. CQL is one of such two query mechanisms. SDK
CQL queries are modeled similarly to the object representation of the caBIG Query
Language (CQL), which uses syntax similar to the Query-by-Example (QBE) query
language to specify the way results are to be retrieved.

NOTE: QBE is a database query language for relational databases. It was devised by Moshé M.
Zloof at IBM Research during the mid 1970s, in parallel to the development of SQL. It is
the first graphical query language, using visual tables where the user would enter
commands, example elements and conditions. For more information on QBE, see:
http://en.wikipedia.org/wiki/Query_by_Example.

The system formulates the query based on the navigation path specified in the query
search criteria. The query mechanism allows the user to search for the objects using
platform-independent query syntax.

The CQL query is represented by a complex object structure as shown in Figure 8-17.

c d c ql

ja va .i o .S e ri a l i za b le
CQ LAs s oc ia tion

- se ri a lV e rsi o n UID: l o n g = 1 L
- so u rce Ro le Na m e : S trin g
- ta rg e tRo le Na m e : S tri n g

ja va .io .S e ri a l i za b le
CQ LAttribute

- n a m e : S tri n g
- p re d i ca te : CQ L P re d i ca te
- se ri a lV e rsio n UID: lo n g = 1 L
- va l u e : S tri n g

ja va .io .S e ri a l i za b le
CQ LG roup

- a sso ci a ti o n Co l l e ctio n : Co l le cti o n <CQ L A sso cia tio n >
- a ttrib u te Co l l e cti o n : Co l le cti o n <CQ L A ttri b u te >
- g ro u p Co l l e ctio n : Co l l e cti o n <CQ L G ro u p >
- l o g icO p e ra to r: CQ L L o g ica lO p e ra to r
- se ria lV e rsi o n UID: l o n g = 1 L

ja va .i o .S e ri a l i za b le
CQ LLogic a lO pe ra tor

+ A ND: CQ L L o g i ca lO p e ra to r = n e w CQ L L o g ica lO ...
+ O R: CQ L L o g ica lO p e ra to r = n e w CQ L L o g i ca lO ...
- se ri a lV e rsio n UID: l o n g = 1 L
- va lu e : S tri n g

ja va .i o .S e ri a l i za b le
CQ LO bj e c t

- a sso cia ti o n : CQ L A sso cia ti o n
- a ttri b u te : CQ L A ttrib u te
- g ro u p : CQ L G ro u p
- n a m e : ja va .l a n g .S tri n g
- se ria lV e rsio n UID: l o n g = 1 L

ja va .i o .S e ria l i za b le
CQ LP re dic a te

+ E Q UA L _ T O : CQ L P re d i ca te = n e w CQ L P re d ica t...
+ G RE A T E R_ T HA N: CQ L P re d ica te = n e w CQ L P re d i ca t...
+ G RE A T E R_ T HA N_ E Q UA L _ T O : CQ L P re d i ca te = n e w CQ L P re d ica t...
+ IS _ NO T _ NUL L : CQ L P re d ica te = n e w CQ L P re d i ca t...
+ IS _ NUL L : CQ L P re d i ca te = n e w CQ L P re d ica t...
+ L E S S _ T HA N: CQ L P re d ica te = n e w CQ L P re d i ca t...
+ L E S S _ T HA N_ E Q UA L _ T O : CQ L P re d i ca te = n e w CQ L P re d ica t...
+ L IK E : CQ L P re d ica te = n e w CQ L P re d i ca t...
+ NO T _ E Q UA L _ T O : CQ L P re d ica te = n e w CQ L P re d i ca t...
- se ri a lV e rsi o n UID: lo n g = 1 L
- va l u e : S trin g

ja va .i o .S e ri a l i za b le
CQ LQ ue ry

- se ri a lV e rsi o n UID: l o n g = 1 L
- ta rg e t: CQ L O b je ct

+G RE A T E R_ T HA N

-p re d ica te

-lo g i cO p e ra to r

+A ND+O R

-a sso ci a tio n

-a ttrib u te

+E Q UA L _ T O

-ta rg e t

+G RE A T E R_ T HA N_ E Q UA L _ T O

+IS _ NO T _ NUL L

+ IS _ NUL L

+L E S S _ T HA N

+L E S S _ T HA N_ E Q UA L _ T O

+L IK E

+NO T _ E Q UA L _ T O

-g ro u p

Figure 8‐17 CQL Query Association Diagram

The starting object for a CQL query is always a CQLQuery object, in which the user has
to specify which object (target object) is to be fetched from the database. The target
object (CQLObject) is an example of the object that a user intends to search. The
example query object has space for:

1. an attribute (CQLAttribute)

http://en.wikipedia.org/wiki/Query_by_Example

Chapter 8: Using SDK Client Interfaces

61

2. an association (CQLAssociation) and

3. a group (CQLGroup) of association collection and attributes collection.

For example, to search for an object with one of its attributes called zipcode with a value
equal to 20852, a CQLObject must be created with a CQLAttribute object populated
inside it. The CQLAttribute object will have its name attribute’s value as zipcode and
value attribute’s value as 20852. The CQLAttribute object will also require a
CQLPredicate for comparison between CQLAttribute and the database value. In this
example, the CQLPredicate of EQUAL_TO will be selected and is equivalent to “where
zipcode=20852”. CQLGroup allows the logical grouping of other groups, attributes, or
associations. CQLGroup can be utilized to create a query like “where zipcode=20852
and name like ‘%Dav%’ ”.

The following table highlights the CQLQuery related ApplicationService query methods.

ApplicationService Method Description
query(CQLQuery cqlQuery) Retrieves the query result from the data source using the CQL

query syntax. Internally, CQL query structure is converted into
Hibernate Query Language (HQL). Hibernate in turn converts the
HQL into SQL and executes it against the relational database.

Also see NOTE below.

query(gov.nih.nci.cagrid.cqlquer
y.CQLQuery cqlQuery)

Retrieves the query result from the data source using the CQL
query syntax. Internally, CQL query structure is converted into
Hibernate Query Language (HQL). Hibernate in turn converts the
HQL into SQL and executes it against the relational database.

Also see NOTE below.

query(CQLQuery cqlQuery,
String targetClassName)

Deprecated. Internally calls the query(CQLQuery cqlQuery)
method without the targetClassName parameter.

Table 8‐6 CQLQuery related ApplicationService query methods

NOTE: For the above listed methods, the retrieved results are converted into a list that may not
be completely loaded. If the number of retrieved records is greater than the maximum
number of supported records as indicated by the getMaxRecordsCount() method, the
result set will only contain a subset of the total records. The client framework will
execute a subsequent query against the ApplicationService (transparent to the client
application) to load the remaining results in the list chunk.

caCORE Software Developer Kit (SDK) V 4.1 Programmer's Guide

62

The following examples provide instances of how to create and execute a CQL query
using the ApplicationService interface. Figure 8-18 shows classes from the sample SDK
model package gov.nih.nci.cacoresdk.domain.other.levelassociation, and is provided as
a point of reference.

cd Other

lev elassociation::
Hand

- id: Integer

lev elassociation::
Card

- id: Integer
- Name: String
- image: String

lev elassociation::
Suit

- id: Integer
- name: String

lev elassociation::
Deck

- id: Integer
- name: String

+cardCollection

*

+suit

1

+handCollection 0..*

+cardCollection 1..*

+suitCollection

1..*

+deck

1

Figure 8‐18 Sample Domain Class Diagram

Figure 8-19 below shows how an SDK CQL query object might be instantiated and the
query submitted as “select * from Suit where id=1”. Figure 8-20 below that shows how
the results would be returned.

Figure 8‐19 Sample CQL Query without Association

Chapter 8: Using SDK Client Interfaces

63

Figure 8‐20 Sample CQL Query without Association Results

Figure 8-21 below shows how an SDK CQL query object might be instantiated and the
query submitted as “select * from Suit (select suit from card where id=2 or id=32)”.
Figure 8-22 below that shows how the results would be returned.

Figure 8‐21 Sample CQL Query with Association

caCORE Software Developer Kit (SDK) V 4.1 Programmer's Guide

64

Figure 8‐22 Sample CQL Query with Association Results

For more information related to CQL, please refer to the Data Services:CQL wiki located
at: http://www.cagrid.org/mwiki/index.php?title=Data_Services:CQL.

NOTE: The Data Services:CQL wiki describes an XML representation of the CQL. The SDK
Code Generator, however, consumes a corresponding object representation of the query
instead of the XML version.

Nested Search Criteria Query
SDK Nested Search Criteria queries are developed specifically for SDK and have two
parts: 1) a comma separated path to the target search object and 2) an example of the
source object.

The comma separated path starts with the target object to be retrieved from the
database (using the fully qualified name of the class). The next item in the comma-
separated path is a link in the chain to an element that connects the element on its left to
the element on its right (also using the fully qualified name of the class). The element on
the right could be the example object or another element in the chain. The linked
element provides a mechanism to traverse from the example object to the desired object
using a comma separated path.

Table 8-7 highlights the Nested Search Criteria related ApplicationService methods.

NOTE: For the methods listed in the table below, the retrieved results are converted into a list
that may not be completely loaded. If the number of retrieved records is greater than the
maximum number of supported records as indicated by the getMaxRecordsCount()
method, the result set will only contain a subset of the total records. The client
framework will execute a subsequent query (transparent to the client application)
against the ApplicationService to load the remaining results in the list chunk.

http://www.cagrid.org/mwiki/index.php?title=Data_Services:CQL

Chapter 8: Using SDK Client Interfaces

65

ApplicationService
Method

Description

search(String path,
List<?> objList)

Retrieves the result from the data source using a Nested Search
Criteria. The path specifies the list of objects (separated by commas),
which should be used to reach the target object from the example
objects passed in the objList, or the associated object for the example
object. Internally, the Nested Search Criteria is converted into the data
source specific query language. For the Object Relational Mapping
based persistence tier, the query structure is first converted into the
Hibernate Query Language (HQL). Hibernate then converts the HQL into
SQL and executes it against the relational database.

Also see NOTE above.

search(Class
targetClass, List<?>
objList)

Retrieves the result from the data source using the Query by Example
query language. The targetClass specifies the object that to fetch after
executing the query. The targetClass should be the same as the object
specified in the objList or associated object for the example object. All
the objects in the objList have to be the same type. The example query
is converted into the data source specific query language. For the Object
Relational Mapping based persistence tier, the example query structure
is first converted to a Nested Search Criteria, and then to Hibernate
Query Language (HQL). Hibernate then converts the HQL into SQL and
executes it against the relational database.

Also see NOTE above.

search(Class
targetClass, Object obj)

Retrieves the result from the data source using the Query by Example
query language. The targetClass specifies the object that the user
intends to fetch after executing the query. The targetClass should be
same as the example object or associated object for the example object.
The example query is first converted into the data source specific query
language. For the Object Relational Mapping based persistence tier, the
example query structure is first converted to a Nested Search Criteria,
and then to Hibernate Query Language (HQL). Hibernate finally converts
the HQL into SQL and executes it against the relational database.

Also see NOTE above.

search(String path,
Object obj)

Retrieves the result from the data source using the Nested Search
Criteria. The path specifies the list of objects (separated by commas)
which should be used to reach the target object from the example object
passed as obj, or the associated object for the example object.
Internally, the Nested Search Criteria is converted into the data source
specific query language. For the Object Relational Mapping based
persistence tier, the query structure is first converted into the Hibernate
Query Language (HQL). Hibernate then converts the HQL into SQL and
executes it against the relational database.

Also see NOTE above.

Table 8‐7 Nested Search Criteria related ApplicationService methods

Figure 8-23 below demonstrates how to use the nested search criteria. Figure 8-24
below that shows how the results would be returned.

In this example, the Suit class is retrieved from the database from the Card object. There
are two different instances of the Card object inside the cardCollection that will be ORed,

caCORE Software Developer Kit (SDK) V 4.1 Programmer's Guide

66

and their corresponding Suit will be retrieved. The resulting query will be as “select *
from Suit where suit in (select suit from card where id=2 or id=6)”:

Figure 8‐23 Sample Nested Search Criteria Query

Figure 8‐24 Sample Nested Search Criteria Query Results

Chapter 8: Using SDK Client Interfaces

67

Writable API Usage
This section provides an overview of the writable API operations. In the SDK generated
system, the user can perform data manipulation through one of the available operations
for the writable API. The writable API operations are available in the following three
categories:

• Query By Example (QBE) Operations

• Bulk operations (DML)

• Batch Operations.

NOTE: Since the SDK uses Hibernate as underlying technology, it is constrained by the rules
that are enforced by same technology. For example, when performing an insert
operation, Hibernate will persist the associated objects only if the cascade style on the
association specifies such an action.

Query By Example (QBE) Operations
SDK allows users to perform manipulation of the queries by constructing an example of
the query and performing the appropriate operation. For example, a user can create a
new instance of the Person object and ask the SDK to create a new record in the
database by supplying the created instance. The SDK will take the Person object from
the user and using Hibernate, will insert the record into the appropriate table. Similarly,
the user can perform an update or delete operation using an example-like query.

Currently there are four different query object types supported by the SDK’s writable
API:

• InsertExampleQuery – Inserts a record into the database using the example
object.

• UpdateExampleQuery – Updates a record in the database using the example
object.

• SearchExampleQuery – Searches for the object by converting the example
into HQL.

• DeleteExampleQuery – Deletes a record in the database using the example
object.

Insert Object Example:
1. Person person = new Person();

2. person.setName(“Jane Doe”);

3. WritableApplicationService appService = (WritableApplicationService)
 ApplicationServiceProvider.getApplicationService();

4. SDKQuery query = new InsertExampleQuery(person);

5. SDKQueryResult result = appService.executeQuery(query);

6. person = (Person) result.getObjectResult();

In the example above we are inserting a new Person object/record into the database
with person’s name set as “Jane Doe”. Lines 1-2 create an instance of the Person

caCORE Software Developer Kit (SDK) V 4.1 Programmer's Guide

68

object. Line 3 retrieves a handle to the writable API (i.e. WritableApplicationService)
from the factory (i.e. ApplicationServiceProvider). Line 4 creates an instance of the query
operation. Line 5 executes the query against the SDK generated API and retrieves the
result. Line 6 retrieves the result of the query from the wrapper.

Bulk operations (DML)
Bulk operations can be performed when a user wants to update multiple records with the
same values, which meet certain criteria. For example, take a backup and update the
last achieved date of all the Person records to the current system date. Retrieving each
record and saving each after updating it is not a particularly efficient way to perform this
task.

The SDK generated writable API is capable of performing bulk operations by executing a
user-specified HQL query statement. This approach allows bulk updates to be performed
without significant network overhead.

Similar to the example query updates, the bulk mode also allows updates by using
different types of query objects as listed below:

• InsertHQLQuery – Executes an insert query command as provided by the
user.

• UpdateHQLQuery – Executes an update query command as provided by the
user.

• DeleteHQLQuery – Executes a delete query command as provided by the
user.

• SearchHQLQuery – Executes a search query command as provided by the
user and returns the results.

Update Records Example:
1. WritableApplicationService appService = (WritableApplicationService)

 ApplicationServiceProvider.getApplicationService();

2. SDKQuery query = new UpdateHQLQuery(“update Person p set
 p.archieveDate=sysdate() ”);

3. appService.executeQuery(query);

In the example above we are updating all the Person records and setting the
archiveDate attribute’s value to the system date. Line 1 retrieves a handle to the writable
API (i.e. WritableApplicationService) from the factory (i.e. ApplicationServiceProvider).
Line 2 creates an instance of the query operation. Line 3 executes the query against the
SDK generated API.

Although this approach for updating records based on the user-specified HQL query is
simple from an implementation perspective, it exposes user to the Hibernate Query
Language which may not be desired by all users. In the future, the SDK will provide a
custom Query-by-Example-like system for updating records.

Batch Operations
The SDK generated writable API allows user to perform writable operations in batch
mode. In the batch mode, the user passes a list of queries to be executed in a single

Chapter 8: Using SDK Client Interfaces

69

transaction to the SDK’s API. The SDK generated API begins the transaction before
executing the first query from the batch and commits the transaction at the end of the
last transaction. In the event of any failures, the configured transaction manager rolls
back all of the transactions performed since the start of the batch.

Insert Object Example:
1. WritableApplicationService appService = (WritableApplicationService)

 ApplicationServiceProvider.getApplicationService();

2. Person person1 = new Person();

3. person1.setName(“Jane Doe”);

4. SDKQuery query1 = new InsertExampleQuery(person1);

5. Person person2 = new Person();

6. person2.setName(“Mark Smith”);

7. SDKQuery query2 = new InsertExampleQuery(person2);

8. List queryList = new ArrayList();

9. queryList.add(query1);

10. queryList.add(query2);

11. List<SDKQueryResult> results = appService.executeBatchQuery(queryList);

In the example above we are creating two Person records in the same transaction. Line
1 retrieves a handle to the writable API (i.e. WritableApplicationService) from the factory
(i.e. ApplicationServiceProvider). Lines 2-3 create an instance of a new Person record.
Line 4 creates an instance of the first query operation. Lines 5-6 create a second
instance of a Person record. Line 7 creates an instance of the second query operation.
Lines 8-10 create the batch of query operations as a List. Line 11 executes the batch
query against the SDK generated API.

Web Service Interface
The SDK 4.x Web Service interface is based on the Axis 1.4 framework, which adheres
to the J2EE 1.4 server programming model described by JAX-RPC and JSR 109 (that is,
the SDK 4.x Web Service uses the Remote Procedure Call (RPC) Web Service style).

There are four "styles" of services in Axis:

• RPC services use the SOAP RPC conventions as well as the SOAP "section
5" encoding.

• Document services do not use any encoding but DO still do XML<->Java
databinding. So in particular, you will not see multiref object serialization or
SOAP-style arrays on the wire.

• Wrapped services are just like document services, except that rather than
binding the entire SOAP body into one big structure, they "unwrap" it into
individual parameters.

• Message services receive and return arbitrary XML in the SOAP Envelope
without any type mapping/data binding.

caCORE Software Developer Kit (SDK) V 4.1 Programmer's Guide

70

For more information on these service styles, see http://ws.apache.org/axis/java/user-
guide.html#ServiceStylesRPCDocumentWrappedAndMessage.

Note: While the SDK Web Service continues to be based on the Axis 1.4 framework, the
extraneous .ws layer found in previous (3.x) SDK versions has been eliminated.

In addition, the SDK Web Service Deployment Descriptor (WSDD) is now packaged
along with the rest of the SDK generated system, thus allowing for automatic
deployment of the Web Service; manual deployment of the Web Service is no longer
required.
A sample test program illustrating how the SDK generated Web Service can be
consumed, TestClient.java, is provided in the \output\example\package\ws-client\src
folder. More information about this test program is provided in Testing the Web Service
Interface on page 129.

If the SDK generated system is secured, the web services user is required to supply
user credentials in the form of a web service message header. As part of the web
service message, a new header called SecurityHeader is required to be added to the
web service call. This header has an element called security with two child elements
named username and password respectively. The values of these child elements reflect
the user’s login name and login password for the underlying application.

The code snippet shown below demonstrates the usage of SecurityHeader in Java.

SOAPHeaderElement headerElement = new

 SOAPHeaderElement(call.getOperationName().getNamespaceURI(),"SecurityHeader");
headerElement.setPrefix("security");
headerElement.setMustUnderstand(false);
SOAPElement usernameElement = headerElement.addChildElement("username");
usernameElement.addTextNode("userId");
SOAPElement passwordElement = headerElement.addChildElement("password");
passwordElement.addTextNode("password");
call.addHeader(headerElement);

Figure 8‐25 Security Login in Java based web services client

NOTE: The web service communication is stateless. Hence, the user of the web service is
required to provide the login information in the header of the message each time it
makes a call to the server.

The remainder of this section provides specifications for the SDK generated Web
Service via the Web Services Description Language (WSDL), and includes an overview
of the schema imports, service, port types, and messages found within the WSDL. For
more information related to the WSDL format and structure, see
http://www.w3.org/TR/wsdl.html or http://en.wikipedia.org/wiki/WSDL.

http://ws.apache.org/axis/java/user-guide.html#ServiceStylesRPCDocumentWrappedAndMessage
http://ws.apache.org/axis/java/user-guide.html#ServiceStylesRPCDocumentWrappedAndMessage
http://www.w3.org/TR/wsdl.html
http://en.wikipedia.org/wiki/WSDL

Chapter 8: Using SDK Client Interfaces

71

SDK WSDL Directives ‐ Schema Imports
Figure 8-26 below provides a list of the schema imports found within the WSDL for the
sample SDK model.

Figure 8‐26 Sample WSDL Directives ‐ Schema Imports

This graphic is provided here to emphasize the point that a schema import statement is
added to the WSDL for each of the distinct domain package(s) found within the model
provided to the SDK Code Generator.

caCORE Software Developer Kit (SDK) V 4.1 Programmer's Guide

72

WSDL Service Definition
The WSDL defines a Web Service as a collection of network endpoints, or ports. Figure
8-27 and Figure 8-28 below provide details for the SDK generated Web Service defined
within the WSDL, which include Name, Prefix, Target Namespace, and Port
Information.

Figure 8‐27 Sample WSDL Service Definition

Figure 8‐28 Sample WSDL Service Definition – Port

Note: The SDK Code Generator uses the value of the PROJECT_NAME property provided
within the deploy.properties file while generating the WSDL (in this case,
“example”). Therefore, while the information displayed above is specific to the sample
SDK model, the same pattern is followed in the generation of the WSDL Service and
Port definitions for other models.

Chapter 8: Using SDK Client Interfaces

73

WSDL Port Types (Network Endpoints)
The WSDL defines a port as an association of a network address with a reusable
binding. Port types, in turn, are abstract collections of supported operations. Figure 8-29
below displays a summary of the collection of network endpoints (and their messages)
that compose any SDK generated Web Service.

Figure 8‐29 WSDL Port Types (Network Endpoints)

Messages, Elements, and Types
The WSDL defines messages as abstract descriptions of the data being exchanged. The
concrete protocol and data format specifications for a particular port type constitutes a
reusable binding, where the messages and operations are then bound to a concrete
network protocol and message format.

Table 8-8 below provides a summary of the messages and elements (including
parameters and data types) that make up the Web Service defined in the WSDL for the
sample SDK model.

caCORE Software Developer Kit (SDK) V 4.1 Programmer's Guide

74

Message Description
getAssociationRequest The getAssociationRequest message is used by a Web Service client

to request object(s) associated to a given Java domain object
instance. Required parameters include:
• source: An instance of the Java domain object containing the

association (rolename) method to be invoked;
• associationName: The name of the method (rolename) that

represents the associated object(s) to be returned;
• startIndex: The starting index into the resulting dataset. Useful

during subsequent calls when “scrolling” through a large result
dataset. Initial requests should set the value of this parameter to
zero (0).

getAssociationResponse The getAssociationResponse message is used by the SDK server to
provide any qualifying objects associated to the source Java domain
object. The response is an array of qualifying objects.

getTotalNumberOf
RecordsRequest

The getTotalNumberOfRecordsRequest message is used by a Web
Service client to request a count of the total number of records that
would be returned for a given search criteria. Required parameters
include:
• targetClassName: The fully qualified class name of the search

object type to be returned. This may represent the name of the
criteria object class itself or the name of a class associated to the
criteria object.

• criteria: a sample instance of the criteria search object, containing
values for any desired field(s) (attributes) that should act as a filter
(constraint) on the resulting dataset;

getTotalNumberOf
RecordsResponse

The getTotalNumberOfRecordsResponse message is used by the
SDK server to provide a count of the total number of records that
would be returned for a given search criteria. The response type is a
positive integer (int), or zero, if no qualifying records are found.

queryRequest The queryRequest message is used by a Web Service client to
request object(s) that meet the supplied search criteria. Internally, a
nested search criteria query is performed. Required parameters
include:
• targetClassName: The fully qualified class name of the search

object type to be returned. This may represent the name of the
criteria object class itself or the name of a class associated to the
criteria object.

• criteria: a sample instance of the criteria search object, containing
values for any desired field(s) (attributes) that should act as a filter
(constraint) on the resulting dataset

• startIndex: The starting index into the resulting dataset. Useful
during subsequent calls when “scrolling” through a large result
dataset. Initial requests should set the value of this parameter to
zero (0).

queryResponse The queryResponse message is used by the SDK server to return
any objects that meet the search criteria passed via the
queryRequest message. The response is an array of qualifying
objects.

Chapter 8: Using SDK Client Interfaces

75

Message Description
queryObjectRequest The queryObjectRequest message is used by a Web Service client to

request object(s) that meet the supplied search criteria. Required
parameters include:
• targetClassName: The fully qualified class name of the search

object type to be returned. This may represent the name of the
criteria object class itself or the name of a class associated to the
criteria object.

• criteria: a sample instance of the criteria search object, containing
values for any desired field(s) (attributes) that should act as a filter
(constraint) on the resulting dataset.

NOTE: The queryObjectRequest operation has the same effect as
invoking the queryRequest message with a startIndex of zero (0). A
different operation/message name had to be used, as the Axis 1.4
framework does not allow the “overloading” of method signatures.

queryObjectResponse The queryObjectResponse message is used by the SDK server to
return any objects that meet the search criteria passed via the
queryObjectRequest message. The response is an array of qualifying
objects.

Table 8‐8 Summary of messages and elements for Web Service as defined in WSDL

Web Service Error Handling
The errors that may be generated during a message exchange between a Web Service
client and a generated SDK system Web Service fall into one of the two following
categories:

• Those that would be generated by the generated SDK application, and

• Those that would be generated by any of the framework APIs used during the
message exchange between systems.

In both instances, a SOAP Fault element handles the transport of error messages. More
information related to the SOAP Fault can be found in the Simple Object Access
Protocol (SOAP) 1.1 Specification: http://www.w3.org/TR/2000/NOTE-SOAP-
20000508/.

The application-related errors occur when the SDK generated application cannot fulfill a
request from a Web Service client. For example, a Web Service client sends a
getAssociationRequest message but supplies an invalid associationName value.

In the case of the Web Services framework API, an error could occur when a message
cannot reach its destination. This could be caused by any number of issues, such as an
interruption in the network, an issue with the message structure or message load, etc. In
these instances, the Web Services framework generates an error relevant to the incident
and a SOAP Fault element transports the message to the client.

SOAP Fault Structure
As stated above, the SOAP Fault element is used to carry error and/or status information
within a SOAP message. If a Fault element is present, it must appear as a child element
of the Body element. A Fault element can only appear once in a SOAP message.

http://www.w3.org/TR/2000/NOTE-SOAP-20000508/
http://www.w3.org/TR/2000/NOTE-SOAP-20000508/

caCORE Software Developer Kit (SDK) V 4.1 Programmer's Guide

76

The SOAP Fault element has the following sub elements, shown in Table 8-9 below.
Sub Element Description

<faultcode> A code for identifying the fault.

<faultstring> A human readable explanation of the fault.

<faultactor> Information about who caused the fault to happen.

<detail> Holds application specific error information related to the Body element.

Table 8‐9 SOAP Fault Structure Element Descriptions

77

Chapter 9 Utilities
This chapter describes a class that can be used to serialize and deserialize generated
Java Beans to XML and back again.

Topics in this chapter include:

• XML Utility (Marshalling and Unmarshalling) on this page.

• The caCOREMarshaller Class on this page.

• The caCOREUnmarshaller Class on page 79.

• Marshalling Java Objects to XML on page 79.

• Unmarshalling XML to Java Objects on page 80.

XML Utility (Marshalling and Unmarshalling)
While used primarily by caGrid, the caCORE SDK does provide a class, XMLUtility.java,
which can be used to marshal (serialize) the generated domain Java Beans to XML, and
unmarshal (deserialize) XML data back to the generated domain Java Beans. This class
is shown in Figure 9-1 below.

cd xml

XMLUtility

- log: Logger = Logger.getLogge...
- marshaller: Marshaller
- unmarshaller: Unmarshaller

+ fromXML(xmlFile :File) : Object
+ fromXML(input :Reader) : Object
+ toXML(beanObject :Object) : String
+ toXML(beanObject :Object, stream :Writer) : void
+ XMLUtility(marshaller :Marshaller, unmarshaller :Unmarshaller)

Figure 9‐1 XML Utility Class Diagram

As implied by the XMLUtility Constructor method, the XMLUtility class wraps both an
SDK Marshaller and Unmarshaller class, which it depends on to perform its work. These
collaborating classes and their interfaces are discussed in the sections that follow.

The caCOREMarshaller Class
The SDK caCOREMarshaller class implements the SDK Marshaller interface and is
used by the XMLUtility class to perform the actual work of marshalling (serializing)
domain Java Bean objects to XML. This class is shown in Figure 9-2 below.

NOTE: The caCOREMarshaller class is used internally by the XML Utility infrastructure and is
not typically invoked by the end user.

caCORE Software Developer Kit (SDK) V 4.1 Programmer's Guide

78

c d x m l

c a CO RE M a rs ha lle r

- l o g : L o g g e r = L o g g e r.g e tL o g g e ...
- m a p p in g : M a p p in g
- m a p p in g Fi le Na m e : S trin g
- m a rsh a l le r: M a rsh a l le r
- va l i d a ti o n : b o o le a n

+ ca CO RE M a rsh a l l e r(S tri n g , b o o le a n)
+ g e tB a se M a rsh a l l e r() : O b je ct
+ g e tM a p p in g () : M a p p in g
+ g e tM a rsh a l le r() : M a rsh a l l e r
+ to X M L (O b je ct) : S tri n g
+ to X M L (O b je ct, j a va .i o .Wri te r) : vo id

« in te rfa ce »
M a rs ha lle r

~ g e tB a se Ma rsh a l l e r() : O b je ct
~ to X ML (O b je ct) : S tri n g
~ to X ML (O b je ct, Wri te r) : vo id

-m a rsh a l l e r

Figure 9‐2 Marshaller Class Diagram

The caCOREMarshaller uses Castor technology, and utilizes the SDK generated xml-
mapping.xml file, which provides Java-to-XML binding settings used by the Castor
engine.

Castor is an Open Source data binding framework for Java, and facilitates conversion
between Java Beans, XML documents, and relational tables. Castor provides Java-to-
XML binding, Java-to-SQL persistence, and more. See http://www.castor.org/ for more
information. Mappings are included for value attributes, collections, and associations to
other domain Java Beans.

NOTE: When processing associations and collections, the caCOREMarshaller also uses custom
Castor collection and domain object Field Handlers. This is done in order to prevent
infinite recursion whenever domain classes have circular references/associations to each
other. Consequently, associations and collections are only serialized to their first level.

http://www.castor.org/

Chapter 9: Utilities

79

Marshalling Java Objects to XML
The XMLUtility class provides two wrapper methods for marshaling (serializing) domain
Java objects to XML, as described below in Table 9-1.

XMLUtility Method Description
toXML(Object beanObject) Accepts a domain Java Bean instance and passes it to the

Marshaller instance (caCOREMarshaller, by default), which in
turn marshals (serializes) the instance to XML and returns it as
an XML string.

toXML(Object beanObject,
Writer stream)

Accepts a domain Java Bean instance. This object is similarly
passed to the Marshaller instance (caCOREMarshaller, by
default), which marshals (serializes) it to XML. However, the
XMLUtility then writes the serialized XML string to a character
stream writer instead.

Table 9‐1 Wrapper methods for marshaling domain Java objects to XML

The code snippet shown in Figure 9-3 below demonstrates how one of the XML Utility
marshaling methods might be invoked.

Figure 9‐3 Sample Marshaling code

A sample test program, TestXMLClient.java, is provided in the folder
\output\example\package\remote-client\src folder. More information about
this test program is provided in Testing the XML Utility on page 127.

The caCOREUnmarshaller Class
The SDK caCOREUnmarshaller class implements the SDK Unmarshaller interface and
is used by the XMLUtility class to perform the actual work of unmarshalling
(deserializing) XML to domain Java Bean objects. This class is shown in Figure 9-4
below.

NOTE: The caCOREUnmarshaller class is used internally by the XML Utility infrastructure,
and is not typically invoked by the end user.

caCORE Software Developer Kit (SDK) V 4.1 Programmer's Guide

80

c d x m l

c a CO RE Unm a rs ha lle r

- l o g : L o g g e r = L o g g e r.g e tL o g g e ...
- m a p p in g : M a p p in g
- m a p p in g Fi l e Na m e : S tri n g
- u n m a rsh a l l e r: Un m a rsh a l l e r

+ ca CO RE Un m a rsh a l l e r(S tri n g , b o o le a n)
+ fro m X M L (ja va .i o .Re a d e r) : O b je ct
+ fro m X M L (ja va .i o .Fi l e) : O b je ct
+ g e tB a se Un m a rsh a l l e r() : O b je ct
+ g e tM a p p in g () : M a p p in g
+ g e tUn m a rsh a l l e r() : Un m a rsh a l l e r

« in te rfa ce »
Unm a rs ha lle r

~ fro mX ML (ja va .i o .Re a d e r) : O b je ct
~ fro mX ML (ja va .i o .Fi l e) : O b je ct
~ g e tB a se Un ma rsh a l l e r() : O b je ct

-u n m a rsh a l l e r

Figure 9‐4 Unmarshaller Class Diagram

The caCOREUnmarshaller uses Castor technology and utilizes the SDK generated
unmarshaller-xml-mapping.xml file, which provides XML-to-Java binding settings used
by the Castor engine. Mappings are included for value attributes, collections, and
associations to other domain Java Beans.

Unmarshalling XML to Java Objects
The XMLUtility class provides two wrapper methods for unmarshalling (deserializing)
XML to domain Java objects, as described below in Table 9-2.

XMLUtility Method Description
fromXML(File xmlFile) Instantiates a domain Java Bean object from an XML file that

contains the serialized output of that object.
fromXML(Reader input) In addition, instantiates a Java Bean domain object from XML,

but reads it instead from a java.io.Reader character stream.

Table 9‐2 Wrapper methods for unmarshalling XML to domain Java objects

Chapter 9: Utilities

81

The highlighted portion of the code snippet shown in Figure 9-5 below demonstrates
how one of the XML Utility unmarshalling methods, fromXML(File), can be invoked.

Figure 9‐5 Sample Unmarshalling Code

A sample test program, TestXMLClient.java, is provided in the folder
\output\example\package\remote-client\src. More information about this test
program is provided in Testing the XML Utility on page 127.

caCORE Software Developer Kit (SDK) V 4.1 Programmer's Guide

82

83

Chapter 10 Creating the UML Model for
caCORE SDK

This chapter provides information on how to create UML models that can be used by the
caCORE SDK to generate the system.

Topics in this chapter include:

• Introduction on this page

• Creating a New Project on page 84

• Creating Classes and Tables on page 86

• Creating Attributes and Data Types on page 97

• Performing Object Relational Mapping on page 101

• Exporting the UML Model to XMI (EA Only) on page 111

• Importing XMI into the UML Model (EA Only) on page 113

Introduction
The SDK Code Generator is based upon a Model-Driven Architecture (MDA) that
supports the implementation of the following scenarios specified via a UML model:

• Modeling of class attributes including :

o A simple (primitive) attribute, such as an integer or string;

o A collection of simple (primitive) attributes; and,

o An identifier attribute that is named something other than the default (ID)
in the Logical (Object) Model.

• Modeling of class associations, including:

o Uni- and bi-directional associations;

o Many-to-Many, Many-to-One, One-to-Many, and One-to-One
associations;

o Associations that use a Join Table;

o Associations that do not use a Join Table;

• Modeling of inheritance that is implemented using:

o One table per class in inheritance hierarchy

o One table per inheritance hierarchy

o One table per inheritance hierarchy, with a separate table for leaf-level
child class(es)

o One table per concrete child class

• Modeling of Interface as marker interface

caCORE Software Developer Kit (SDK) V 4.1 Programmer's Guide

84

The caCORE SDK distribution provides a sample model that demonstrates how these
scenarios, and many others, can be modeled in a manner that is understood by the SDK
Code Generator. The sample model is intended to be used as a reference when creating
your own model. The sample model is located within the \models directory of the SDK
distribution, and has been implemented in both Enterprise Architect and ArgoUML. The
name of the sample model project files are:

• Enterprise Architect: SDKTestModel.EAP

• ArgoUML: sdk.uml

The following sections describe how to perform various modeling activities using both
the Enterprise Architect (EA) and ArgoUML modeling tools.

Creating a New Project in Enterprise Architect (EA)
This section provides instructions for creating a new object model project file. The
instructions in this and subsequent sections are separated into separate subsections for
Enterprise Architect (EA) and ArgoUML.

Creating a New Project in EA
To create a new object model project file:

1. Open the SDKEATemplate.EAP baseline file provided in the \models directory of
the SDK distribution. This file already contains the base Logical View, Data
Model, and Logical (Object) Model packages, as well as classes representing the
wrapper Java primitive type classes.

Figure 10‐1 EA Project View Browser

2. Under the File menu, select Save Project As. The Save Enterprise Architect
Project dialog appears.

Chapter 10: Creating the UML Model for caCORE SDK

85

Figure 10‐2 EA Save Enterprise Architect Project dialog

3. Enter a new project name in the File name field.

4. Click Save.

Alternatively, the baseline template file (SDKEATemplate.EAP) can be copied and
renamed.

The new project file is now ready to use for creating the object and data model.

Creating a New Project in ArgoUML
To create a new object model project file:

1. Open the SDKArgoTemplate.UML baseline file provided in the \models directory
of the SDK distribution. This file already contains the base Logical View, Data
Model, and Logical (Object) Model packages, classes representing the wrapper
Java primitive type classes, Tag Definitions (TD) for all the possible Tag Value
types, and DataTypes.

Figure 10‐3 ArgoUML Explorer ‐ showing packages/classes ,Tag definitions, data types

caCORE Software Developer Kit (SDK) V 4.1 Programmer's Guide

86

2. Under the File menu, select Save Project As. The Save Project dialog appears.

Figure 10‐4 ArgoUML Save Project dialog

3. Enter a new project name in the File name field.

4. Click Save.

Alternatively, the baseline template file (SDKArgoTemplate.uml) can be copied and
renamed.

The new project file is now ready to use for creating the object and data model.

Creating Classes and Tables
UML Class elements are used to represent both Logical (object) Model classes and Data
Model classes (tables). Object classes are typically created using a package hierarchy
within the Logical Model package, while Data Model classes (tables) are created directly
within the Data Model package without the use of a package hierarchy.

Creating a Logical Model Package Structure in EA
To add a package structure to the Logical Model:

1. Select the Logical Model package.

Figure 10‐5 EA Project Browser

Chapter 10: Creating the UML Model for caCORE SDK

87

2. Right-click and select Add > Add Package, or from the main menu, select
Project > Add Package. The New Package dialog box appears.

Figure 10‐6 EA New Package Dialog

3. Enter a Package (folder) Name, and click OK.

Notes Regarding Package Names:
o Package names should follow Java package naming conventions; i.e.,

Java packages are defined using a hierarchical, lowercase, naming
pattern, with levels in the hierarchy separated by periods (.) .
Furthermore, package names are typically the organization’s domain
name backwards. An example, taken from the SDK sample model, is
gov.nih.nci.cacoresdk.domain.

o When implemented within EA, each period designates the end of one
package level, and the start of a new package level (termed a
subpackage). Each package/subpackage needs to be created
individually, meaning no period(s) should be used when specifying a
package name in the New Package dialog. Thus the fully qualified
package gov.nih.nci.cacoresdk.domain requires a total of five (5)
packages to be created within the model, one for each of the package
levels. Each package is nested within the higher-level package.

4. Repeat these steps until the fully qualified package hierarchy has been created.
To create a package within another package (as a sub-package/folder), select
the existing package first, and then follow steps 2-3 above.

Figure 10-7 below shows most of the package hierarchy created in this manner for the
SDK sample model.

caCORE Software Developer Kit (SDK) V 4.1 Programmer's Guide

88

Figure 10‐7 EA SDK Sample Model Packages

Creating a Logical Model Package Structure in ArgoUML
If necessary, see http://argouml-stats.tigris.org/documentation/manual-0.24/ch11.html for
more information on the ArgoUML Explorer pane.

To add a package structure to the Logical Model:
1. Select the Logical Model package.

Figure 10‐8 ArgoUML Explorer Pane

2. Right-click and select Add Package. The Properties tab in the Detail pane
becomes active for the new package.

http://argouml-stats.tigris.org/documentation/manual-0.24/ch11.html

Chapter 10: Creating the UML Model for caCORE SDK

89

Figure 10‐9 ArgoUML Package Detail Pane, Properties Tab

NOTE: See http://argouml‐stats.tigris.org/documentation/manual‐
0.24/ch13s03.html for more information on the ArgoUML Detail Pane,
Properties tab.

3. Enter a package (folder) name, and then click the Save Project icon () or
press CTRL-S.

NOTE: Package names should follow Java package naming conventions; i.e.,
Java packages are defined using a hierarchical, lowercase, naming pattern,
with levels in the hierarchy separated by periods (.). Furthermore,
package names are typically the organization’s domain name backwards.
An example, taken from the SDK sample model, is
gov.nih.nci.cacoresdk.domain.

4. Repeat these steps until the fully qualified package hierarchy has been created.
To create a package within another package (as a sub-package/folder), select
the existing package first, and then follow steps 2-3 above.

For reference, Figure 10-7 shows most of the package hierarchy created (in EA) for the
SDK sample model.

Creating a Logical (Object) Model Class in EA
To add a Logical Model class to a package:

1. In the EA Project Browser, find the desired Logical Model package to which the
class should be added.

2. Right-click the package and select Add > Add Element or from the main menu,
select Project > Add Element. The Insert New Element dialog appears.

http://argouml-stats.tigris.org/documentation/manual-0.24/ch13s03.html
http://argouml-stats.tigris.org/documentation/manual-0.24/ch13s03.html

caCORE Software Developer Kit (SDK) V 4.1 Programmer's Guide

90

Figure 10‐10 EA Insert New Element Dialog

3. In EA, set the Insert New Element options as follows:

Insert New Element
Option

Description

Type Select Class as the element type from the drop down list.
Name Enter a class name according to the Java class naming conventions;

i.e., class names should start with a capital letter, with embedded
words capitalized.

Stereotype Leave blank for Logical (object) Model classes.
Open Property Dialog Check this option if you want the Property dialog to open immediately

after the class is created.
Close dialog on OK Uncheck this option if you want to add multiple classes in one

session.

NOTE: Logical (Object) Model class names should follow Java class naming
conventions; i.e., class names should start with a capital letter, with
embedded words capitalized. An example from the SDK sample model is
GraduateStudent.

4. Click OK. If the Open Property dialog on OK option was checked, the Property
dialog opens immediately after the class is created. The Property dialog for the
SDK sample Credit class is shown in Figure 10-11 below.

Chapter 10: Creating the UML Model for caCORE SDK

91

Figure 10‐11 EA Class Property Dialog

NOTE: The Stereotype field is blank since this class represents a domain object,
and not a data table.

5. Repeat these 1-5 to add other classes.

If the Close dialog on OK option was unchecked in the Insert New Element
dialog, additional classes can be created in the selected package by only
repeating steps 4-5.

For instructions on adding attributes to classes, see Creating Attributes and Data Types
on page 97.

Figure 10-12 below shows a series of classes that have been created in the many-to-
many bidirectional and unidirectional packages of the SDK Sample model.

caCORE Software Developer Kit (SDK) V 4.1 Programmer's Guide

92

Figure 10‐12 EA Project View Browser Showing SDK Sample Classes

Creating a Logical (Object) Model Class in ArgoUML
In ArgoUML, new classes are added in the context of a class diagram within the selected
package.

To add a Logical Model class to a package:
1. In the ArgoUML Explorer pane, click on a class diagram within the package to

open/activate it, or create a new class diagram within the package if none exists.

2. Select the New Class icon () found at the top of the diagram Editing pane. The
Properties tab in the Detail pane becomes active for the new class.

Note: See http://argouml‐stats.tigris.org/documentation/manual‐0.24/ch12.html
for more information about the Editing pane.

Figure 10‐13 ArgoUML Class Detail Pane, Properties Tab

3. Enter a class name in the Name field.

NOTE: Logical (Object) Model class names should follow Java class naming
conventions; i.e., class names should start with a capital letter, with

http://argouml-stats.tigris.org/documentation/manual-0.24/ch12.html

Chapter 10: Creating the UML Model for caCORE SDK

93

embedded words capitalized. An example from the SDK sample model is
GraduateStudent.

4. Click Save Project () or press CTRL-S.

5. Repeat these steps to add other classes.

For instructions on adding attributes to classes, see Creating Attributes and Data Types
on page 97.

For reference, Figure 10-12 above shows a series of classes that were created (using
EA) in the many-to-many bidirectional and unidirectional packages of the SDK Sample
model.

Creating a Data Model Table in EA
Unlike object model classes that are created using a package hierarchy, all table classes
should be created within the Data Model package.

To add a Data Model (Table) class:
1. In the EA Project Browser, select the Data Model package.

Figure 10‐14 EA Data Model Package

2. Right-click and select Add > Add Element, or from the main menu, select
Project > Add Element. The Insert New Element dialog appears.

Figure 10‐15 EA Insert New Element (Table) Dialog

caCORE Software Developer Kit (SDK) V 4.1 Programmer's Guide

94

3. Set the Insert New Element options as follows:

Insert New Element
Option

Description

Type Select Class as the element type from the drop down list.
Name Enter a table name according to the Table naming conventions;

i.e., table names should be all uppercase, with embedded words
separated by an underscore (_).

Stereotype Select table from the drop down list.
Open Property Dialog Check the Open Property Dialog option if you want the Property

dialog to open immediately after the table is created.
Close dialog on OK Uncheck the Close dialog on OK option if you want to add multiple

tables in one session.

NOTE: Table names should follow Table naming conventions; i.e., table names
should be all uppercase, with embedded words separated by an
underscore (_). An example from the SDK sample model:
UNDERGRADUATE_STUDENT.

4. When finished, click OK.

If the Open Property Dialog on Creation was checked, the Property dialog
opens immediately after the class is created. Figure 10-16 shows the Property
dialog for the SDK sample Credit table. Notice that the Stereotype field is set to
table.

Figure 10‐16 Property dialog for the SDK sample Credit

5. Repeat these steps to add other tables.

Chapter 10: Creating the UML Model for caCORE SDK

95

If the Close dialog on OK option was unchecked in the Insert New Element
dialog, additional tables can be created in the Data Model package by only
repeating steps 4-5.

For instructions on adding attributes (columns) to tables, see Creating Attributes and
Data Types on page 97.

Figure 10-17 below shows various tables that have been created in the Data Model
package of the SDK sample model.

Figure 10‐17 EA Various Tables from the SDK Sample Model

Creating a Data Model Table in ArgoUML
In ArgoUML, new classes (tables) are added in the context of a class diagram within the
selected package. Also note that unlike object model classes that are created using a
package hierarchy, all table classes should be created within the Data Model package.

To add a Data Model (Table) class:
1. In ArgoUML Explorer pane, select the Data Model package.

caCORE Software Developer Kit (SDK) V 4.1 Programmer's Guide

96

Figure 10‐18 ArgoUML Data Model Package

2. Click on a class diagram within the Data Model package to open/activate it, or
create a new class diagram if none exists.

3. Select the New Class icon () found at the top of the diagram Editing pane. The
Properties tab in the Detail pane becomes active for the new table (class).

Note: See http://argouml‐stats.tigris.org/documentation/manual‐0.24/ch12.html
for more information about the Editing pane.

Figure 10‐19 ArgoUML Table (Class) Properties Tab

4. Enter a class name in the Name field of the Properties tab.

Note: Table names should follow Table naming conventions; i.e., table names
should be all uppercase, with embedded words separated by an
underscore (_). An example from the SDK sample model:
UNDERGRADUATE_STUDENT.

5. Click on the Stereotype tab to activate it.

6. Select the table stereotype, and apply it to the new class by clicking the >>
(double-arrow) button to move it to the Applied Stereotypes list.

http://argouml-stats.tigris.org/documentation/manual-0.24/ch12.html

Chapter 10: Creating the UML Model for caCORE SDK

97

Figure 10‐20 ArgoUML Applying a Stereotype to a Table Class

Alternatively, you can select the class within a diagram, right-click to open the
shortcut menu, and then select Apply Stereotypes > table.

7. Click Save Project () or press CTRL-S.

8. Repeat these steps to add other tables.

For instructions on adding attributes (columns) to tables, see Creating Attributes and
Data Types on page 97.

For reference, Figure 10-17 above shows an EA-generated example of various tables
that were created in the Data Model package of the SDK sample model.

Creating Attributes and Data Types
UML Attribute elements are used to represent both Logical (Object) Model class
attributes and Data Model table columns (class attributes). Both Logical Model and Data
Model class attributes can be added/modified using the same process outlined below.

Creating/Modifying Attributes and Data Types in EA
To add/modify a class or table attribute:

1. Select the desired Logical Model class or Data Model table (class) element.
Figure 10-21 below shows the Logical Model AllDataType class from the SDK
sample model selected.

caCORE Software Developer Kit (SDK) V 4.1 Programmer's Guide

98

Figure 10‐21 Logical Model AllDataType class

2. Right-click and select Attributes, or from the main menu, select Element >
Attributes. The Attributes dialog appears.

Figure 10-22 below shows the Attributes dialog for the Logical Model
AllDataType class from the SDK sample model. This class illustrates all of the
available primitive data types (including primitive collections) that can be
assigned to a class attribute.

Chapter 10: Creating the UML Model for caCORE SDK

99

Figure 10‐22 Sample AllDataType Class showing available attribute primitive data types

3. To add an attribute, click New.
4. Type an attribute name in the Name field and select a type from the Type drop

down and then click Save.

Important notes about Attributes:
o The SDK Code Generator is only concerned with the Name and Type

fields. All other fields on the EA General tab of the Attributes dialog can
be ignored (left default).

o The SDK Code generator understands both primitive wrapper class types
(e.g. Boolean) and primitive types (e.g., Boolean). If a particular data type
is not shown in the drop down, you can type it into the Type field.

o For a list of the primitive attribute types understood by the SDK Code
Generator, reference the AllDataType class in the SDK sample model
(also shown in the diagram above). Note that primitive collection types
(e.g., the stringCollection attribute of type Collection<String>) are also
understood as an attribute type.

5. To modify an attribute, select it in the Attributes list, change the value of the
Name and/or Type field, and then click Save.

caCORE Software Developer Kit (SDK) V 4.1 Programmer's Guide

100

Creating/Modifying Attributes and Data Types in ArgoUML
To add a class or table attribute:

1. Select the desired Logical Model class or Data Model table (class) element.
The Properties tab in the Detail pane becomes active for the selected class.

2. Click the New Attribute () icon.

Alternatively, you can select the class within a diagram, right-click to open the
shortcut menu, and then select New Attribute from the Add sub-menu.

The Attribute properties tab becomes active in the Detail pane.

Figure 10‐23 ArgoUML Attribute Properties Tab

3. Enter an attribute name in the Name field, and then select a type from the Type
drop down list.

4. Click the Save Project icon () or press CTRL-S to save the changes.

Important notes about Attributes:
o The SDK Code Generator is only concerned with the Name and Type

fields. All other fields on the EA General tab of the Attributes dialog can
be ignored (left default).

o The SDK Code generator understands both primitive wrapper class types
(e.g. Boolean) and primitive types (e.g., Boolean). If a particular data type
is not shown in the drop down, you can type it into the Type field.

o For a list of the primitive attribute types understood by the SDK Code
Generator, reference the AllDataType class in the SDK sample model
(also shown in the diagram above). Note that primitive collection types
(e.g., the stringCollection attribute of type Collection<String>) are also
understood as an attribute type.

To modify a class or table attribute:

1. Select the attribute in the Explorer pane by expanding the class to show its
attributes, or if working with a diagram, click on the attribute name within the
class in the Editing pane

The Attribute properties tab in the Detail pane (Figure 10-23 above).

2. Change the value of the Name and/or Type field. Click the Save Project icon
() or press CTRL-S to save the changes.

Chapter 10: Creating the UML Model for caCORE SDK

101

Performing Object Relational Mapping
The SDK Code Generator relies on information contained within custom Tag Values to
generate particular system artifacts whenever the information needed cannot be derived
from the UML model elements directly (Class, Attributes, and Associations).

Tag Values, for instance, are used to hold class/attribute documentation (comments
and/or descriptions of the element) while generating Java Docs for the object model.
More importantly, however, Tag Values are used extensively when generating Hibernate
Object Relational Mapping (.hbm.xml) files. Basically, it can be said that custom Tag
Values are at the heart of the Logical (Object) Model-to-Data (Table) Model mapping
process.

The SDK distribution provides a sample model (located within the \models directory) that
demonstrates how various scenarios can be modeled through the use of custom Tag
Values. In addition, a reference table describing each of the various custom Tag Values
and their usage is provided in section SDK Custom Tag Value Descriptions.

NOTE: The caCORE Wiki also contains a Tag Summary page, providing information regarding
tag values used by each caCORE product. See https://wiki.nci.nih.gov/x/SYl8.

For those who find working directly with Tag Values too cumbersome or error prone, you
may want to consider using the caAdapter tool, which, among other features, provides
the ability to map object models to data models via a Graphical User Interface (GUI). For
more information regarding the caAdapter tool/project, see
http://trials.nci.nih.gov/projects/infrastructureProject/caAdapter.

Adding/Modifying Tag Values
Both EA and ArgoUML provide the ability to easily view, add, and edit Tag Values for
model elements.

In EA, Tag Values attached to a particular UML element (such as a Class, Attribute, or
Association) can be added/modified via the Tagged Value browser, which is accessible
by sequentially clicking and holding down the Ctrl-Shift-6 keys.

The following diagram from the SDK sample model illustrates an association between
the Employee and Project Logical Model classes.

c d M a ny to M a ny

bidire c tiona l::
E m ploye e

- i d : In te g e r
- n a m e : S tri n g

bidire c tiona l::
P roj e c t

- i d : In te g e r
- n a m e : S tri n g

+e m p lo ye e Co l le cti o n

0 ..*

+p ro je ctCo l l e cti o n

0 ..*

Figure 10‐24 Employee‐Project Association Diagram

A sample of the EA Tagged Value browser for the Association (line) between both
classes is shown in Figure 10-25 below.

https://wiki.nci.nih.gov/x/SYl8
http://trials.nci.nih.gov/projects/infrastructureProject/caAdapter

caCORE Software Developer Kit (SDK) V 4.1 Programmer's Guide

102

Figure 10‐25 EA Tag Values Browser

Once the Tagged Values browser is open, selecting a particular UML element (such as a
Class, Attribute, or Association) will cause the browser to display the corresponding Tag
Values attached to the selected element.

In ArgoUML, Tag Values attached to a particular UML element (such as a Class,
Attribute, or Association) can be added/modified by first selecting the element. This
causes the Detail pane to become active for the selected element. The Detail pane
contains a Tagged Values tab, which you can click to activate.

A sample of the Tagged Values tab for the Association between the Sample SDK
Employee and Project Logical Model classes is shown below.

Figure 10‐26 ArgoUML Detail Pane ‐ Tagged Values Tab

SDK Custom Tag Value Descriptions
 The following sections list the various Tag Values understood by the SDK Code
Generator and provides a description of each value including information regarding
when and where to use them:

Tag Value: correlation‐table
A Tag Value added to an Association element (line) drawn between two Logical Model
classes within the same diagram. The value specifies the correlation (join) table name.

Given the following Many-to-Many relationship diagram:

Chapter 10: Creating the UML Model for caCORE SDK

103

c d M a ny to M a ny

bidire c tiona l::
E m ploye e

- i d : In te g e r
- n a m e : S tri n g

bidire c tiona l::
P roj e c t

- i d : In te g e r
- n a m e : S tri n g

unidire c tiona l::
Author

- i d : In te g e r
- n a m e : S tri n g

unidire c tiona l::
Book

- i d : In te g e r
- n a m e : S tri n g

+e m p lo ye e Co l le cti o n

0 ..*

+p ro je ctCo l l e cti o n

0 ..*

0 ..*

+a u th o rCo l l e cti o n

0 ..*

Figure 10‐27 Many‐to‐Many association class diagram

A couple of corresponding examples from the SDK sample model are provided in the
table below:
Logical Model Class

(Source)
Logical Model Class

(Target)
Tag Value (correlation-table)
NOTE: should be added to the

Association (line) element
Employee Project EMPLOYEE_PROJECT
Book Author AUTHOR_BOOK

Tag Value: description
An optional Tag Value added to a Class or Attribute element to store
documentation/comments for the element. The value describes the element and is used
when creating Java Docs for generated domain objects.

The description Tag Value can also be used to provide information about the element for
semantic integration purposes. The text of this tag value appears as the element
description in the Semantic Integration Workbench interface.

NOTE: The description Tag Value is only used if the documentation tag value for the element is
empty or does not exist.

Tag Value: discriminator
A Tag Value added to a Data Model class Attribute element. The value of this tag
represents the Logical Model class name that acts as the discriminator in situations
when the parent and sub-class are persisted within the same database table. The value
of the tag, if present, is placed within the discriminator element of the generated
Hibernate mapping file.

A couple of examples from the SDK sample model are provided in the table below:
Data Model Class

(Table)
Data Model Attribute

(Column)
Tag Value (discriminator)

SHOES DISCRIMINATOR gov.nih.nci.cacoresdk.domain.inheritance.chi

caCORE Software Developer Kit (SDK) V 4.1 Programmer's Guide

104

ldwithassociation.sametable.Shoes
GOVERNMENT DEMOCRATIC_

DISCRIMINATOR
gov.nih.nci.cacoresdk.domain.inheritance.tw
olevelinheritance.sametable.DemocraticGovt

NOTE: The <discriminator> element is required for polymorphic persistence using the table‐
per‐class‐hierarchy mapping strategy, and declares a discriminator column of the table.
The discriminator column contains marker values that tell the persistence layer what
subclass to instantiate for a particular row. See
http://www.hibernate.org/hib_docs/v3/reference/en/html_single/#mapping‐declaration‐
discriminator for more information.

Tag Value: documentation
An optional Tag Value added to a UML element to store documentation/comments for
the element. The value will be used when creating Java Docs for the generated domain
object.

The documentation Tag Value can also be used to provide information about the
element for semantic integration purposes. The text of this tag value appears as the
element description in the Semantic Integration Workbench interface.

See also the description Tag Value above.

Tag Value: id‐attribute
A Tag Value added to a Logical Model class Attribute. The presence of the Tag Value
indicates that the attribute is the class identifier attribute. This Tag Value is required
when the identifier attribute is named something other than the default name, id. The
value should specify the fully-qualified name of the Logical Model class that contains the
attribute.

An example from the SDK sample model is provided in the table below:
Logical Model
Class Name

Logical Model
Attribute Name

Tag Value (id-attribute)

NoIdKey myKey gov.nih.nci.cacoresdk.domain.other.
primarykey.NoIdKey

Tag Value: implements‐association
A Tag Value added to a Data Model class Attribute (column). The value specifies the
associated Logical Model class attribute that implements the association. The value
must be specified using the following pattern: <fully-qualified logical model class
name>.< attribute name>.

A couple of examples from the SDK sample model are provided in the table below:
Data Model Class

(Table)
Data Model Attribute

(Column)
Tag Value (implements-association)

CARD SUIT_ID gov.nih.nci.cacoresdk.domain.other.levelas
sociation.Card.suit

ASSISTANT PROFESSOR_ID gov.nih.nci.cacoresdk.domain.inheritance.p
arentwithassociation.Assistant.professor

http://www.hibernate.org/hib_docs/v3/reference/en/html_single/#mapping-declaration-discriminator
http://www.hibernate.org/hib_docs/v3/reference/en/html_single/#mapping-declaration-discriminator

Chapter 10: Creating the UML Model for caCORE SDK

105

Tag Value: inverse‐of
A Tag Value added to a Data Model class Attribute (column). Used to identify the inverse
attribute (column) of a bi-directional association. The value specifies the corresponding
inverse Logical Model class attribute, and must have the same value as the implements-
association Tag Value of the bi-directional association. The value must be specified
using the following pattern: <fully-qualified logical model class name>.< attribute
name>.

Given the following Logical Model class diagram from the sample SDK model:

c d M a ny to O ne

w ithj oin::Album

- i d : In te g e r
- t i tl e : S tri n g

w ithj oin::S ong

- i d : In te g e r
- ti tl e : S tri n g

+a lb u m

0 ..1 *

Figure 10‐28 Many‐to‐One association class diagram

And the corresponding Data Model class diagram:

c d M a ny to O ne

Da ta M ode l::ALBUM

co lu m n
*P K ID: NUM B E R(8 ,2)
 T IT L E : V A RCHA R2 (5 0)

P K
+ P K _ A L B UM (NUM B E R)

Da ta M ode l::ALBUM _ S O NG

co lu m n
*P K A L B UM _ ID: NUM B E R(8)
*P K S O NG _ ID: NUM B E R(8)

P K
+ P K _ A L B UM _ S O NG (NUM B E R, NUM B E R)
u n iq u e
+ UQ _ A L B UM _ S O NG _ A L B UM _ ID(NUM B E R)

Da ta M ode l::S O NG

co lu m n
*P K ID: NUM B E R(8)
 T IT L E : V A RCHA R2 (5 0)

P K
+ P K _ S O NG (NUM B E R)

Figure 10‐29 Data model diagram with correlation table

An example inverse-of Tag Value would be:
Data Model Class

(Table)
Data Model Attribute

(column)
Tag Value (inverse-of)

ALBUM_SONG SONG_ID gov.nih.nci.cacoresdk.domain.manytoone.
unidirectional.withjoin.Song.album

This indicates that the SONG_ID attribute (column) is the inverse side of the
Song/Album bi-directional association implemented by album attribute of the Song class.

NOTE: When adding an inverse‐of value to a Data Model class Attribute for a Many‐to‐Many
association, One‐to‐Many join table, Many‐to‐One join table, or a One to One ‐ No Join
Table scenario, make sure to supply the same value for both the implements‐association
and inverse‐of tag values of the bi‐directional association.

See also the related implements-association Tag Value above.

caCORE Software Developer Kit (SDK) V 4.1 Programmer's Guide

106

Tag Value: lazy‐load
A Tag Value added to an Association element between two Logical Model classes. The
value specifies whether the association should be fetched lazily or not.

Permissible values are yes, and no. That is, any value other than yes is treated as a no.
This tag value sets the lazy attribute in the generated .hbm.xml file to either true or false
accordingly.

No example is provided in the SDK sample model.

Tag Value: mapped‐attributes
A Tag Value added to a Data Model class Attribute (Column). The value specifies the
corresponding mapped Logical Model class Attribute. The value must be specified using
the following pattern: <fully-qualified logical model class name>.< attribute name>.

A couple of examples from the SDK sample model are provided in the table below:
Data Model Class (Table) Data Model

Attribute (column)
Tag Value (mapped-attributes)

UNDERGRADUATE_STUDENT STUDENT_ID gov.nih.nci.cacoresdk.domain.inheritance.
multiplechild.UndergraduateStudent.id

SHOES ID gov.nih.nci.cacoresdk.domain.inheritance.c
hildwithassociation.sametable.Shoes.id

Chapter 10: Creating the UML Model for caCORE SDK

107

Tag Value: mapped‐collection‐table
A Tag Value added to a Logical Model class Attribute. The value specifies the name of
the mapped primitive collection (non-domain class – e.g., String, Integer) table.

Given the following Data Model class diagram from the SDK sample model:

c d O the r

Da ta M ode l::ALL_ DATA_ TY P E

co lu m n
 B O O L E A N_ P RIM IT IV E _ V A L UE : V A RCHA R2 (1)
 B O O L E A N_ V A L UE : V A RCHA R2 (1)
 CHA RA CT E R_ P RIM IT IV E _ V A L UE : CHA R(1)
 CHA RA CT E R_ V A L UE : CHA R(1)
 CL O B _ V A L UE : CL O B
 DA T E _ P RIM IT IV E _ V A L UE : DA T E
 DA T E _ V A L UE : DA T E
 DO UB L E _ P RIM IT IV E _ V A L UE : NUM B E R(8 ,2)
 DO UB L E _ V A L UE : NUM B E R(8 ,2)
 FL O A T _ P RIM IT IV E _ V A L UE : NUM B E R(8 ,2)
 FL O A T _ V A L UE : NUM B E R(8 ,2)
*P K ID: NUM B E R(8)
 INT _ P RIM IT IV E _ V A L UE : NUM B E R(8)
 INT _ V A L UE : NUM B E R(8)
 L O NG _ P RIM IT IV E _ V A L UE : NUM B E R(3 8)
 L O NG _ V A L UE : NUM B E R(3 8)
 S T RING _ P RIM IT IV E _ V A L UE : V A RCHA R2 (5 0)
 S T RING _ V A L UE : V A RCHA R2 (5 0)

P K
+ P K _ A L L _ DA T A _ T Y P E (NUM B E R)

Da ta M ode l::ALL_ DATA_ TY P E _ S TRING _ CO LL

co lu m n
*FK A L L _ DA T A _ T Y P E _ ID: NUM B E R(8)
 S T RING _ V A L UE : V A RCHA R2 (5 0)

FK
+ FK _ A L L _ DA T A _ T Y P E _ A L L _ DA T A _ T Y P E (NUM B E R)

+FK _ A L L _ DA T A _ T Y P E _ A L L _ DA T A _ T Y P E 0 ..*

(A L L _ DA T A _ T Y P E _ ID = ID)

« FK »

+P K _ A L L _ DA T A _ T Y P E 1

Figure 10‐30 Data model for storing collections of primitives

An example mapped-collection-table Tag Value would be:
Logical Model

Class
Logical Model

Attribute
Tag Value

(mapped-collection-table)
AllDataType stringCollection ALL_DATA_TYPE_STRING_COLL

caCORE Software Developer Kit (SDK) V 4.1 Programmer's Guide

108

Tag Value: mapped‐element
A Tag Value added to a Data Model class Attribute (Column). The value specifies the
name of the mapped primitive collection (non-domain class – e.g., String, Integer)
Logical Model class attribute. The value must be specified using the following pattern:
<fully-qualified logical model class name>.< attribute name>.

Given the following Logical Model class diagram:

c d O the r

da ta type ::AllDa ta Type

- b o o le a n P ri m i ti ve V a lu e : b o o le a n
- b o o le a n V a lu e : B o o le a n
- ch a ra cte rP rim i ti ve V a l u e : ch a r
- ch a ra cte rV a l u e : Ch a ra cte r
- cl o b V a lu e : S tri n g
- d a te P ri m i ti ve V a lu e : d a te
- d a te V a lu e : Da te
- d o u b l e P rim i ti ve V a lu e : d o u b le
- d o u b l e V a lu e : Do u b le
- fl o a tP rim i ti ve V a lu e : f l o a t
- fl o a tV a lu e : Flo a t
- i d : In te g e r
- i n tP rim i ti ve V a lu e : i n t
- i n tV a lu e : In te g e r
- l o n g P ri m i ti ve V a lu e : l o n g
- l o n g V a lu e : L o n g
- stri n g Co l le cti o n : Co l l e cti o n <S tri n g >
- stri n g P rim i ti ve V a lu e : stri n g
- stri n g V a lu e : S tri n g

Figure 10‐31 Logical model class diagram for data type

And the following Data Model class diagram from the SDK sample model:

Chapter 10: Creating the UML Model for caCORE SDK

109

c d O the r

Da ta M ode l::ALL_ DATA_ TY P E

co lu m n
 B O O L E A N_ P RIM IT IV E _ V A L UE : V A RCHA R2 (1)
 B O O L E A N_ V A L UE : V A RCHA R2 (1)
 CHA RA CT E R_ P RIM IT IV E _ V A L UE : CHA R(1)
 CHA RA CT E R_ V A L UE : CHA R(1)
 CL O B _ V A L UE : CL O B
 DA T E _ P RIM IT IV E _ V A L UE : DA T E
 DA T E _ V A L UE : DA T E
 DO UB L E _ P RIM IT IV E _ V A L UE : NUM B E R(8 ,2)
 DO UB L E _ V A L UE : NUM B E R(8 ,2)
 FL O A T _ P RIM IT IV E _ V A L UE : NUM B E R(8 ,2)
 FL O A T _ V A L UE : NUM B E R(8 ,2)
*P K ID: NUM B E R(8)
 INT _ P RIM IT IV E _ V A L UE : NUM B E R(8)
 INT _ V A L UE : NUM B E R(8)
 L O NG _ P RIM IT IV E _ V A L UE : NUM B E R(3 8)
 L O NG _ V A L UE : NUM B E R(3 8)
 S T RING _ P RIM IT IV E _ V A L UE : V A RCHA R2 (5 0)
 S T RING _ V A L UE : V A RCHA R2 (5 0)

P K
+ P K _ A L L _ DA T A _ T Y P E (NUM B E R)

Da ta M ode l::ALL_ DATA_ TY P E _ S TRING _ CO LL

co lu m n
*FK A L L _ DA T A _ T Y P E _ ID: NUM B E R(8)
 S T RING _ V A L UE : V A RCHA R2 (5 0)

FK
+ FK _ A L L _ DA T A _ T Y P E _ A L L _ DA T A _ T Y P E (NUM B E R)

+FK _ A L L _ DA T A _ T Y P E _ A L L _ DA T A _ T Y P E 0 ..*

(A L L _ DA T A _ T Y P E _ ID = ID)

« FK »

+P K _ A L L _ DA T A _ T Y P E 1

Figure 10‐32 Data model class diagram for data type

An example mapped-collection-table Tag Value would be:
Data Model Class

(Table)
Data Model Attribute

(Column)
Tag Value (mapped-element)

ALL_DATA_TYPE_
STRING_COLL

STRING_VALUE gov.nih.nci.cacoresdk.domain.other.da
tatype.AllDataType.stringCollection

caCORE Software Developer Kit (SDK) V 4.1 Programmer's Guide

110

Tag Value: NCI_GME_XML_NAMESPACE
Three Tag Values have been added to an Object Model for mapping purposes:

• One tag per project placed at the “Logical Model” package level. The default
value is: "gme://{projectName}.{contextName}/{version}".
Example: "gme://caMOD.caBIG/3.0".

• One tag per package placed at the Package level. The default value must be
the full package path.
Example: "gme://caMOD.caBIG/3.0/gov.nih.nci.camod.domain".

• One tag per class placed at the Class level. The default value must be the full
package path.
Example: "gme://caMOD.caBIG/3.0/gov.nih.nci.camod.domain".

This tag value effectively “overrides” the project namespace specified within the
deploy.properties file when generating XSD and XML mapping artifacts.

Tag Value: NCI_GME_XML_ELEMENT
One Tag Value added to an Object Model for mapping purposes, placed at the Logical
Model Class level. The value is the class name from the source model, for example,
"Person". Used to effectively “rename” a class within the generated XSD and XML
mapping artifacts.

Tag Value: NCI_GME_SOURCE_XML_LOC_REF
One Tag Value added to an Object Model for mapping purposes, placed on an
Association link between two classes within a diagram.

Format is <<rolename>>/<<classname>>.

Example: “author/Author” or “bookCollection/BookCollection”.

Used to indicate the source class and the corresponding rolename by which it should be
referenced.

NOTE: The terms “source” and “target” are relative to which association end is currently being
processed. The SDK Code Generator does not care whether the
NCI_GME_SOURCE_XML_LOC_REF or the corresponding
NCI_GME_TARGET_XML_LOC_REF tag values are used. It looks for a match using the
“other end”, or target, classname.

Tag Value: NCI_GME_TARGET_XML_LOC_REF
One Tag Value added to an Object Model for mapping purposes, placed on an
Association link between two classes within a diagram.

Format is <<rolename>>/<<classname>>.

Example: “author/Author” or “bookCollection/BookCollection”.

Used to indicate the target class and the corresponding rolename by which it should be
referenced.

NOTE: The terms “source” and “target” are relative to which association end is currently being
processed. The SDK Code Generator does not care whether the

Chapter 10: Creating the UML Model for caCORE SDK

111

NCI_GME_SOURCE_XML_LOC_REF or the corresponding
NCI_GME_TARGET_XML_LOC_REF tag value is used. It looks for a match using the
“other end”, or target, classname.

Tag Value: type
A Tag Value added to a Data Model class Attribute (column). The value specifies the DB
column type. Valid values include (but are not limited to):

• CHAR

• CLOB

• NUMBER

• VARCHAR2

Several examples from SDK sample model include:
Data Model Class (Table) Data Model Attribute

(Column)
Tag Value (mapped-

element)
CHARACTER_PRIMITIVE_KEY ID CHAR
CARD IMAGE CLOB
UNDERGRADUATE_STUDENT STUDENT_ID NUMBER
SHOES COLOR VARCHAR2

Exporting the UML Model to XMI (EA Only)
Before the SDK can process a UML model created within EA, the model needs to be
exported to XMI and then copied to the \models directory within the SDK root folder.

This section only applies to EA because ArgoUML already stores projects in an XML
format that the SDK Code Generator can understand and process.
To export an EA package to XMI:

1. In the EA Project Browser, select the Logical View package.

Figure 10‐33 EA Logical View Package

2. Right click and select Import/Export, or from the main menu, select Project >
Import/Export.

3. Select Export Package to XMI. The Export Package to XMI dialog appears.

caCORE Software Developer Kit (SDK) V 4.1 Programmer's Guide

112

Figure 10‐34 EA Exporting Package to XMI

4. Set the Export options as shown in Figure 10-34. The appropriate options are
also outlined in Table 10-1 below.

Export Option Description

Filename

Used to indicate where to output the XMI file. Enter a valid directory/path
name. Also, make sure the file type suffix is .xmi.

NOTE: The XMI file name and the value of the MODEL_FILE property
within the deploy.properties file must match. Otherwise, a File Not
Found error will be reported when trying to process the XMI file through
the SDK Code Generator.

Stylesheet Used to post-process XMI content before saving to file. Leave unselected.
Export Diagrams Leave checked.
Use Unisys Rose
Format

Used to indicate whether or not the Model should be exported in Rose
UML 1.3, XMI 1.1 format. Leave unchecked.

Format XML
output

Used to indicate whether or not to format output into readable XML (takes
a few additional seconds at end of run). Leave checked.

Write log file
Used to indicate whether or not a log of export activity should be created
(recommended). The log file will be saved in the same directory exported
to. Optional. Leave checked if desired.

Use DTD
Used to indicate whether or not to use the UML1.3 DTD. Using this option
will validate the correctness of the model and that no syntactical errors
have occurred. Leave unchecked.

Exclude EA
Tagged Values

Used to indicate whether or not EA specific information should be
excluded from the export to other tools. The SDK now supports Full EA
roundtrip. Leave unchecked.

Table 10‐1 EA Export options

Chapter 10: Creating the UML Model for caCORE SDK

113

NOTE: The XMI export options that must be selected have changed since SDK
4.0. The options that must now be enabled are: Export Diagrams and
Enable full EA Roundtrip

5. When finished, click Export.
6. Once the XMI file has been exported, copy it to the \models directory within the

SDK root folder.

Importing XMI into the UML Model (EA Only)
The SDK now supports the processing of an XMI file that was exported using the full EA
roundtrip option. Some organizations may have the need to modify the exported XMI file,
perhaps to add Tag Values. As long as the XMI was exported using the roundtrip option,
it can be synchronized with the UML model by importing it back into EA.

As with the XMI export, this section only applies to EA because ArgoUML already stores
projects in an XML format that the SDK Code Generator can understand and process.

WARNING! The selection of the incorrect import options may corrupt the model file. Ensure
that you back up the original model file prior to importing XMI back into the UML
model.

To import an XMI package back into EA:
1. In the EA Project Browser, select the Logical View package.

Figure 10‐35 EA Logical View Package

2. Right click and select Import/Export, or from the main menu, select Project >
Import/Export.

3. Select Import Package from XMI. The Import Package from XMI dialog
appears.

caCORE Software Developer Kit (SDK) V 4.1 Programmer's Guide

114

Figure 10‐36 EA Import Package from XMI

4. Set the Import options as shown in Figure 10-36. The appropriate options are
also outlined in Table 10-2 below.

Import Option Description

Filename Used to indicate where to import the XMI file. Enter a valid
directory/path name.

Import Diagrams Leave checked.

Strip GUIDS

Used to remove Universal Identifier information from the file on import.
This permits the import of a package twice into the same model - the
second import will require new GUIDS to avoid element collisions.
Leave checked.

Treat Imported
Datatypes as Leave unselected.

Write log file
Used to indicate whether or not a log of export activity should be
created (recommended). The log file will be saved in the same directory
exported to. Optional. Leave checked if desired.

Table 10‐2 EA Import options

5. When finished, click Import. A confirmation dialog appears.

Figure 10‐37 EA Confirm XMI File Import Dialog

6. Click Yes.

The XMI file is imported back into EA and the XMI and UML model are synchronized.

115

Chapter 11 Configuring and Running the
SDK

Topics in this chapter include:

• SDK Configuration Properties on this page

• Generating the SDK System on page 115

• Overview of Generated Packages on page 124

• Deploying the Generated System on page 125

• Testing the caCORE SDK Generated System on page 125

SDK Configuration Properties
The SDK Code Generator is configured, for the most part, by a single file, the
deploy.properties file, which is located in the /conf folder in the SDK distribution.

The following table (Table 11-1) describes each of the properties (and their values)
found within this file.

Property Default Value Description
PROJECT PROPERTIES

PROJECT_NAME example

Used in the creation/naming of the following
items:
• Output project directory folder name
• Beans JAR file name
• ORM JAR file name
• Client JAR file name
• WAR file name
• Web Service Namespace
• Documentation title in the generated API

(JavaDocs)
• Server URL context value

SDK users should modify this property to
reflect their own project name.

NAMESPACE_PREFIX gme://caCORE.caCORE/3.2/

Used in the creation/naming of the following
code generation artifacts:
• Schemas (XSD’s)
• XML Marshalling and Unmarshalling

Mapping files

If XSDs are to be used for the caGrid, the
value of the NAMESPACE_PREFIX is the
same as the GME namespace value.

WEBSERVICE_NAME ${PROJECT_NAME}Service The name of the Web Service.

caCORE Software Developer Kit (SDK) V 4.1 Programmer's Guide

116

Property Default Value Description
PROJECT SECURITY PROPERTIES

ENABLE_SECURITY false

Used to enable or disable security within the
generated system during code generation.
This applies to all of the SDK interfaces,
including:
Web Interface (GUI)
Java API Interface (local and remote
clients)
Writable API
Web Service Interface

ENABLE_INSTANCE_
LEVEL_SECURITY false

Used to enable/disable CSM instance level
security. Only relevant if the
ENABLE_SECURITY property is set to
‘true’

ENABLE_ATTRIBUTE_
LEVEL_SECURITY false

Used to enable/disable attribute level
security. Only relevant if the
ENABLE_SECURITY property is set to
‘true’

CSM_PROJECT_NAME ${PROJECT_NAME}

Used as a prefix when creating the CSM
security configuration file name. CSM
configuration should have the same
application name configured. NOTE: The
CSM_PROJECT_NAME value must match
the project application name used when
setting up security using CSM's UPT

CACHE_PROTECTION_
ELEMENTS false Indicates whether or not CSM Protection

Elements should be cached

Chapter 11: Configuring and Running the SDK

117

Property Default Value Description
WRITABLE API PROPERTIES

ENABLE_WRITABLE_
API_EXTENSION false

If set to "true" or "yes", will change the
application service interface and
corresponding implementation to enable the
Writable API

DATABASE_TYPE oracle

A suffix appended to certain tag value keys
(e.g., NCI_GENERATOR.<database-type>,
NCI_GENERATOR_PROPERTY.<databas
e-type>) added to the primary key columns
within the UML model. The tag values are
used by the Hibernate Mapping file
transformer to generate primary key
settings for a given class. The database-
type suffix is necessary when supporting
multiple databases through the same UML
model. Only relevant if the Writable API
extension is enabled.

IDENTITY_GENERATOR_
TAG

<generator
class="assigned"/>

If using system-wide primary key generator
settings, the value for the primary key
generator class. Only relevant if the
Writable API extension is enabled.

CADSR_CONNECTION_
URL

http://cadsrapi.nci.nih.gov/cad
srapi40

If set, will override the default connection
provided in the caDSR application-config-
client.xml file, located under
/conf/codegen/validator. Used when
generating Hibernate Validator annotations
containing caDSR Permissible Value
enumeration(s) for a given domain object
attribute. Only relevant if the Writable API
extension is enabled.

ENABLE_COMMON_
LOGGING_MODULE true

If set to "yes" or "true", will enable the
Common Logging Module (CLM). Only valid
if the Writable API extension is enabled.

CLM_PROJECT_NAME ${PROJECT_NAME}

Used to populated the CLM logging table
(LOG_MESSAGE) application column. Only
valid if CLM and the Writable API are both
enabled.

APPLICATION SERVER PROPERTIES

SERVER_TYPE other

Used to include/exclude the log4j.jar file
during the war file packaging. If set to
‘jboss’ will exclude log4j.jar from the war
file, as the JBoss server already has its own
instance of the log4j.jar file. Any other value
will include the log4j.jar in the war file. Valid
values are ‘jboss’ if deploying to a JBoss
server, and ‘other’ if deploying to any other
type of Servlet container such as Apache
Tomcat.

caCORE Software Developer Kit (SDK) V 4.1 Programmer's Guide

118

Property Default Value Description

SERVER_URL http://localhost:8080/
${PROJECT_NAME}

The URL (including the application context)
of the deployed application. Used as part of
the URL that specifies the location of the
deployed Web Service. I.e., the following
pattern is used when undeploying the Web
Service from the server:
${SERVER_URL}/services/${WEBSERVIC
E_NAME}Service

MODEL PROPERTIES

MODEL_FILE sdk.xmi

The name of the file which contains the
object/data model be processed.
SDK users should modify this property to
reflect their own model file name. The file
must be placed under the \models directory.

MODEL_FILE_TYPE EA

The file type of the object/data model file to
be processed.
Valid values are ‘EA’ for Enterprise
Architect files, and ‘ARGO’ for ArgoUML
files .

LOGICAL_MODEL Logical View.Logical Model

The logical model base (root)
package/folder name containing the domain
package(s) and class(es) to be processed
by the Code Generator.

DATA_MODEL Logical View.Data Model

The data model base (root) package/folder
name containing the data model package(s)
and class(es) to be processed by the Code
Generator.

INCLUDE_PACKAGE .*?domain.*

Specifies the regular expression
(java.util.regex) pattern(s) of any packages
within the object/data model that should be
processed by the code generator. Separate
patterns with a comma (',') as a delimiter.

EXCLUDE_PACKAGE

Specifies the regular expression
(java.util.regex) pattern(s) of any fully
qualified package names within the
object/data model that should be ignored
(not processed) by the code generator. Use
a comma (',') as a delimiter to separate
patterns.
NOTE: All packages are first
filtered/constrained by the
INCLUDE_PACKAGE property value, and
then further filtered by the
EXCLUDE_PACKAGE value.

EXCLUDE_NAME

Specifies the regular expression
(java.util.regex) pattern(s) of the fully
qualified class name(s) within the
object/data model that should be ignored
(not processed) by the code generator. Use
a comma (',') as a delimiter to separate
patterns.

Chapter 11: Configuring and Running the SDK

119

Property Default Value Description

EXCLUDE_NAMESPACE

Specifies the regular expression
(java.util.regex) namespace pattern of the
fully qualified package name(s) within the
object/data model that should be ignored
(not processed) by the code generator. Use
a comma (',') as a delimiter to separate
patterns.

NOTE: As of SDK 4.1, The INCLUDE and EXCLUDE properties above now use java.util.regex patterns.
For details on creating regular expression patterns, see
http://java.sun.com/j2se/1.4.2/docs/api/java/util/regex/Pattern.html.

Also, patterns are matched against the fully qualified class name (or namespace in the case of the
EXCLUDE_NAMESPACE property), so be sure to use patterns that take this into account. As an
example, the INCLUDE_PACKAGE used to have a default value of 'domain'. It has now been changed to
'.*?domain.*' so that it matches classes found in packages such as
gov.nih.nci.cacoresdk.domain.inheritance.abstrakt.*.

DATABASE CONNECTION PROPERTIES

USE_JNDI_BASED
_CONNECTION false

Indicates whether or not a JNDI DB
Connection should be used for the
application database. If set to "true" or
"yes", DB_JNDI_URL is used to obtain the
connection and get data. If set to "no" then
DB_DRIVER, DB_CONNECTION_URL,
DB_USERNAME and DB_PASSWORD are
used instead to initialize the connection and
get data.

DB_JNDI_URL java:/SDK

The DB JNDI URL value of the application
database.
This property is irrelevant/ignored if
USE_JNDI_BASED_CONNECTION=no.

DB_CONNECTION_URL
DB_USERNAME
DB_PASSWORD

The application database connection
properties.
A sample DB_CONNECTION_URL value:
jdbc:oracle:thin:@cbiodb30.nci.nih.gov
:1521:CBTEST
These values are purposely blank. SDK
users should provide appropriate values for
their database within the local.properties file
located in the root folder of the SDK
distribution.

DB_DIALECT org.hibernate.dialect.OracleDi
alect

The Hibernate Database dialect to be used
when connecting to the application
database.
Typical values include:
org.hibernate.dialect.OracleDialect
org.hibernate.dialect.MySQLDialect

http://java.sun.com/j2se/1.4.2/docs/api/java/util/regex/Pattern.html

caCORE Software Developer Kit (SDK) V 4.1 Programmer's Guide

120

Property Default Value Description
CSM SECURITY DATABASE CONNECTION PROPERTIES

CSM_USE_JNDI_BASED_
CONNECTION

${USE_JNDI_BASED_CONN
ECTION}

Indicates whether a JNDI DB connection
should be used for the CSM database. If
USE_JNDI_BASED_CONNECTION=true,
then the DB_JNDI_URL property value is
used to obtain the DB connection and
retrieve data. By default, will use the same
values as the application’s
USE_JNDI_BASED_CONNECTION.

CSM_DB_JNDI_URL ${DB_JNDI_URL}

The DB JNDI URL value for the CSM
database. This property is irrelevant/ignored
if
CSM_USE_JNDI_BASED_CONNECTION=
false. By default, will use the same value as
the application’s DB_JNDI_URL property.

CSM_DB_CONNECTION_
URL
CSM_DB_USERNAME
CSM_DB_PASSWORD
CSM_DB_DRIVER

${DB_CONNECTION_URL},
${DB_USERNAME},
${DB_PASSWORD},
${DB_DRIVER}

The CSM database connection properties.
A sample DB_CONNECTION_URL value:
jdbc:oracle:thin:@cbiodb30.nci.nih.gov
:1521:CBTEST
These values are purposely blank. SDK
users should provide appropriate values for
their CSM database instance within the
local.properties file located in the root folder
of the SDK distribution. By default, will use
the same values as the application’s DB
connection properties.

CSM_DB_DIALECT ${DB_DIALECT}

The Hibernate Database dialect used when
connecting to the CSM database.
Typical values include:
org.hibernate.dialect.OracleDialect
org.hibernate.dialect.MySQLDialect
By default, will use the save value as the
application’s DB_ DIALECT property.

COMMON LOGGING MODULE (CLM) DATABASE CONNECTION PROPERTIES

CLM_DB_CONNECTION_
URL
CLM_DB_USERNAME
CLM_DB_PASSWORD
CLM_DB_DRIVER

${DB_CONNECTION_URL},
${DB_USERNAME},
${DB_PASSWORD},
${DB_DRIVER}

The Common Logging Module (CLM)
database connection properties. A sample
DB_CONNECTION_URL value:
jdbc:oracle:thin:@cbiodb30.nci.nih.gov
:1521:CBTEST
These values are purposely blank. SDK
users should provide appropriate values for
their CLM database instance within the
local.properties file located in the root folder
of the SDK distribution. By default, will use
the same values as the application’s DB
connection properties.

Chapter 11: Configuring and Running the SDK

121

Property Default Value Description
CODE GENERATION OPTIONS

The following properties are used to enable or disable code generation step(s). These properties accept
values of either 'true' or 'false'. Setting the value to 'false' for a component disables the code generation of
that component, while setting the value to 'true' enables it
VALIDATE_LOGICAL
_MODEL

true
Used to enable/disable the validation of the
logical object model prior to code
generation.

VALIDATE_MODEL
_MAPPING true

Used to enable/disable the validation of the
logical object model to the data model
mapping prior to code generation.

VALIDATE_GME_TAGS

GENERATE_
HIBERNATE_MAPPING true

Used to enable/disable the generation of
the Hibernate Object-Relational Mapping
files during code generation.

GENERATE_BEANS true
Used to enable/disable the generation of
the domain object beans (Java Beans)
during code generation.

GENERATE_CASTOR_
MAPPING true

Used to enable/disable the generation of
the Castor XML marshalling and
unmarshalling mapping files.

GENERATE_XSD true Used to enable/disable the generation of
the XML Schemas (XSDs).

GENERATE_XSD_WITH_
GME_TAGS false

GENERATE_XSD_WITH_
PERMISSIBLE_VALUES false

GENERATE_WSDD true
Used to enable/disable the generation of
the Axis Web Service Deployment
Descriptor (WSDD) file.

GENERATE_HIBERNATE_
VALIDATOR false

ADVANCED PROPERTIES

CACHE_PATH java.io.tmpdir

An advanced property used by ehcache to
store its cache files on disk. A value of
‘java.io.tmpdir’ will create the cache files
within the temporary directory.
SDK users may choose to specify any
absolute path instead for the cache files.

CAGRID AUTHENTICATION PROPERTIES

CAGRID_AUTHENTICATIO
N_SERVICE_URL

https://dorian.training.cagrid.o
rg:8443/wsrf/services/cagrid/
Dorian

URL for the authentication service to be
used during authentication process using
caGrid infrastructure

CAGRID_DORIAN_
SERVICE_URL

https://dorian.training.cagrid.o
rg:8443/wsrf/services/cagrid/
Dorian

URL for the Dorian service to be used
during authentication process using caGrid
infrastructure

SDK_GRID_LOGIN_
SERVICE_NAME SDKGridLoginService Name of the war file that performs the

authentication using grid infrastructure

caCORE Software Developer Kit (SDK) V 4.1 Programmer's Guide

122

Property Default Value Description

SDK_GRID_LOGIN_
SERVICE_URL

http://localhost:8080/${SDK_
GRID_LOGIN_SERVICE_NA
ME}

URL of the war file that performs the
authentication using grid infrastructure

ENABLE_GRID_LOGIN_
MODULE false Specify if the caGrid based authentication is

to be used
ENABLE_CSM_LOGIN_
MODULE true Specify if the CSM based authentication is

to be used
CAGRID_LOGIN_
MODULE_NAME grid Name of the login module name in the

JAAS configuration file

Table 11‐1 SDK configuration properties

Generating the SDK System

Ant Build Script Targets
Apache Ant is a Java-based build tool used within the SDK to perform various build
related tasks. See http://ant.apache.org/ for more information. The SDK provides an Ant
script, build.xml, which is located in the root folder of the SDK distribution. This script
contains targets for performing various system generation tasks, including building and
packaging the system.

Typically speaking, most SDK users will only need to run the following two targets:

• build-system: Executes the SDK Code Generator using the properties
configured within the deploy.properties file. See the above section, SDK
Configuration Properties beginning on page 115 for more information.

• clean-all: Deletes all files and folders from the previous build process. It is
strongly recommended that SDK users run this target prior to running the
‘build-system’ target.

NOTE: The SDK build process is configured by the properties found within the
deploy.properties file as described in the section referenced above. Please review
and update these properties to reflect your environment prior to generating the system.

For those interested in the remaining targets, the table below provides a complete list:

Ant Target Description

build-system

Generates the SDK system using properties set within
\conf\deploy.properties.
This is the primary [default] target within the build script, and the one SDK
users will most typically use when generating the system. SDK users are
strongly recommended to run the ‘clean-all’ target prior to running the ‘build-
system’ target.

clean Cleans the main generated directories and files (\output) created following the
execution of the build-system target.

clean-all

Cleans the generated directories and files of both the main and child projects.

SDK users are strongly recommended to run the ‘clean-all’ target prior to
running the ‘build-system’ target

http://ant.apache.org/

Chapter 11: Configuring and Running the SDK

123

Ant Target Description

codegen

Runs the SDK Code Generator. The Generator is capable of selectively
generating the system components. The following properties within the
deploy.properties file control the behavior of the Code Generator:
VALIDATE_LOGICAL_MODEL
VALIDATE_MODEL_MAPPING
VALIDATE_GME_TAGS
GENERATE_HIBERNATE_MAPPING
GENERATE_BEANS
GENERATE_CASTOR_MAPPING
GENERATE_XSD
GENERATE_XSD_WITH_GME_TAGS
GENERATE_XSD_WITH_PERMISSIBLE_VALUES
GENERATE_WSDD
GENERATE_HIBERNATE_VALIDATOR
See SDK Configuration Properties on page 115 for more information.
This target is run as part of the process run by the ‘build-system’. SDK users
should rarely, if ever need to invoke this target individually.

refresh-validator-
permissible-values

Regenerates the Java beans by downloading the permissible values from
caDSR

Table 11‐2 Ant Script target descriptions

Selectively Generating Components
For those SDK users interested in only generating certain SDK components, the SDK
Code generator is capable of selectively generating the following components:

• Hibernate O/R Mapping files

• Java Beans (domain Java objects)

• Castor XML Mapping files

• Schema (XSD) files

• Axis Web Service Deployment Descriptor (WSDD) file

To control which components are generated by the Code Generator, toggle the following
respective properties within the deploy.properties file:

• GENERATE_HIBERNATE_MAPPING

• GENERATE_BEANS

• GENERATE_CASTOR_MAPPING

• GENERATE_XSD

• GENERATE_WSDD

Setting the value of a given property to ‘true’ causes the component to be generated;
conversely, setting a property to ‘false’ causes the component to be ignored. See SDK
Configuration Properties on page 115 for more information.

caCORE Software Developer Kit (SDK) V 4.1 Programmer's Guide

124

Overview of Generated Packages
During the code generation process, the SDK prepares four different packages, which
are placed under a folder located at: \output\<project_name>\package\.

The following is a summary of the different packages created:

• local-client – This package contains the complete application that can be
used in the local environment. It corresponds to the local-client interface of the
SDK generated application. The generated binaries along with other required
libraries are located in the folder /lib folder/conf, which contains the
configuration file required by the local client to function. The folder /src
contains a sample test program that can be used to test the generated local-
client.

• remote-client - This package contains the remote client component of the
generated application that can be used in the isolated environment. It
corresponds to the remote-client interface of the SDK generated application.
The generated binaries along with other required libraries are located in the
folder /lib. The folder /conf contains the configuration file required by the
local client to function in addition to the generated XSDs and castor mapping
files. The folder /src contains a sample test program that can be used to test
the generated remote-client. The sample programs test the following:

o the Java API interface,

o the XML marshalling and unmarshalling, and

o the XML-HTTP interface’s REST capabilities.

• ws-client - This package contains the environment to invoke the SDK
generated web services with the Java based web services client. This
package corresponds to the web service interface of the SDK generated
application. The generated binaries along with other required libraries are
located in the /lib. The folder /src contains a sample test program that can
be used to test the generated client.

• webapp – This package contains two .war files. The file with name
<project_name>.war is generated by the SDK and represents the server
component of the SDK generated system. This file must be deployed to the
application server before any of the client interfaces (except local-client) are
accessed. The second file in the webapp folder with name
<sdk_grid_login_service_name>.war only needs to be deployed if the grid
authentication feature was enabled.

• grid-jaas – This package contains the JAAS based client, which is capable of
connecting to caGrid to authenticate the user and retrieve user’s credentials in
appropriate format. This package can be used in conjunction with either the
local or remote client so that the client can get access to the grid credentials.

• server - This package contains the files that must be copied to the server
when the grid authentication feature is enabled. When copying the files to the
server, the server.xml file in Tomcat needs to be merged with the same file
inside the actual server directory.

Chapter 11: Configuring and Running the SDK

125

Deploying the Generated System
The Ant build process packages the generated SDK system into a Web Archive (war) file
for ease of deployment. This file is named <project_name>.war, and is located in the
directory \output\<project_name>\ package\webapp. Typically, this file can be
copied to the web server deployment folder and the system is automatically deployed
when the web server is started.

NOTE: The generated SDK system has been tested on both JBoss v4.0.5 and Apache Tomcat
v5.5.20 servers. The system should also work on other servers such as Weblogic or
WebSphere; however no official testing has been done on those server types.

Deploying to JBoss
If the generated system .war file is to be deployed to a JBoss server instance, the
SERVER_TYPE property in the \conf\deploy.properties file should be set to
‘jboss’. This ensures that the log4j.jar file is excluded from the packaged war file
during the build process. This is required as JBoss already has its own copy of the
log4j.jar file, and will report an error if it finds another copy of this file within the .war.

To deploy to a JBoss server instance, copy the generated .war file to the directory
<JBoss installation directory>\server\default\deploy, and then restart
the server.

Deploying to Apache Tomcat
If the generated system war file is to be deployed to an Apache Tomcat server instance,
the SERVER_TYPE property found in the file \conf\deploy.properties should be
set to ‘’other”. This ensures that the log4j.jar file is included in the packaged .war file.

To deploy to a Tomcat server instance, copy the generated war file to the directory
<Tomcat Installation Directory>\ webapps, and then restart the server.

Note: When redeploying the system war file to Tomcat after an initial build, it is strongly
recommended that the old war file and corresponding exploded directory be deleted
before the new war file is copied to the deployment directory. This ensures that all files
from the previous deployment are properly deleted.

Testing the caCORE SDK Generated System
The following sections discuss various tests for determining whether or not the SDK
system has been successfully generated and deployed.

Testing the Web Interface
The SDK generated GUI consists of several web pages that facilitate access to domain
data. The Home page can be accessed via the following URL pattern:

SDK Web Interface Test URL Pattern:
 http://<server_name>:<server_port>/<project_name>

caCORE Software Developer Kit (SDK) V 4.1 Programmer's Guide

126

Thus, for the Home page of the sample SDK model, the URL might be
http://localhost:8080/example. If the system has been successfully deployed, the page
shown in Figure 11-1 below should appear.

Figure 11‐1 Web Interface test page

For more information, see Accessing Data from a Web Browser on page 47.

Testing the Java API
The program, TestClient.java, is provided with the SDK distribution for testing the Java
API. This program is located in the folder:
 \output\<project_name>\package\remote-client\src\.

To execute the program, run the default target of the Ant script, build.xml, located in
the folder:
 \output\ <project_name>\package\remote-client\.

NOTE: The generated system must be deployed to the server, and the server must be running
before the test is invoked.

Figure 11-2 below shows the main test method algorithm.

http://localhost:8080/example

Chapter 11: Configuring and Running the SDK

127

Figure 11‐2 Java API test algorithm

As shown, the program systematically loops through all the generated Java Bean
classes and searches for each one without any filtering. It then takes the first qualifying
record returned from the search and prints out its details to stdout, thus testing
whether or not the Java API is working.

NOTE: The TestClient.java program is simply a client for testing the Java API. It provides only
one example of how the SDK Application Service search API may be invoked. If desired,
you can modify it to use a different method within the Application Service API, or to
filter returned results by adding criteria data to the search object prior to the search.

See Java API Interface on page 54 for more information.

Testing the XML Utility
The program, TestXMLClient.java, is provided with the SDK distribution for testing the
generated Castor XML Mapping and Schema (XSD) files. This program is located within
the folder:
 \output\<project_name>\ package\remote-client\src\.

To execute the program, run the runXML target of the Ant script, build.xml, located in
the folder:
 \output\<project_name>\package\remote-client\.

Note: The generated system must be deployed to the server, and the server must be running
before the test is invoked.

Figure 11-3 below shows a portion of the main test method.

caCORE Software Developer Kit (SDK) V 4.1 Programmer's Guide

128

Figure 11‐3 XML Mapping and Schema Test Algorithm

As shown, the program systematically loops through all the generated Java Bean
classes and searches for each one without any filtering. It then takes the first qualifying
record returned from the search, and marshals (serializes) it to a file. Next, it reads the
XML file back, parses the XML, and validates it against the generated schema. Finally, it
unmarshals (deserializes) the XML back to the corresponding domain Java Bean object,
thus testing that the generated XML Mapping and Schema files are working properly.

Note: The TestXMLClient.java program is simply a client for testing the XML Utility. It provides
only one example of how the XML Utility marshalling/unmarshalling methods may be
invoked. However, you can modify it to use a different method if so desired.

Chapter 11: Configuring and Running the SDK

129

In addition, the same search algorithm used during the testing of the Java API is reused
in this test program. See Testing the Java API on page 126 for more information.

Be advised that by its very nature XML processing can be memory intensive. The
TestXMLClient.java program has been successfully run against the sample SDK model,
which does not contain much data. When running the test program against a model with
a lot of data, the memory specified by the maxmemory=512m attribute within the
runXML target may need to be increased.

Testing the Web Service Interface

Testing the Web Service URL
A successful Web Service deployment can be tested by entering in a browser the Web
Service URL that conforms to the following pattern:

SDK Web Service Test URL Pattern:
http://<server_name>:<server_port>/<project_name>/services/<project_name>Service

Thus, a successful Web Service deployment URL for the sample SDK model might be
http://localhost:8080/example/services/exampleService.

Figure 11-4 below illustrates the result of a successful Web Service deployment test.

Figure 11‐4 Web Service test page

NOTE: The SDK Web Service Deployment Descriptor (WSDD) is now packaged along with the
rest of the SDK generated system, thus allowing for automatic deployment of the SDK
Web Service whenever the system is deployed. Manual deployment of the Web Service
is no longer required.

Obtaining the WSDL for Deployed Services: ?WSDL
As shown above, entering the Web Service URL in a browser causes a message to
appear, indicating that the endpoint is an Axis service. However, if the suffix ‘?wsdl’ is
added to the end of the URL, Axis automatically generates a WSDL service description
for the deployed service and returns it as XML in the browser. The URL pattern is shown
below.

SDK Web Service WSDL Pattern:
http://<server_name>:<server_port>/<project_name>/services/<project_name>Service?
wsdl

http://localhost:8080/example/services/exampleService

caCORE Software Developer Kit (SDK) V 4.1 Programmer's Guide

130

Figure 11-5 below illustrates a portion of the resulting XML that is generated after
invoking the WSDL URL for the SDK sample Web Service.

Figure 11‐5 Obtaining the WSDL for Deployed Services: ?WSDL

Testing Web Services via the Client Program
The SDK distribution also provides the client program, TestClient.java, for testing the
Web Service Interface. This program is located in the folder:

 \output\<project_name>\package\ws-client\src\.

To execute the program, run the default run target of the Ant script, build.xml, located
in the folder:

 \output\<project_name>\package\ws-client\.

NOTE: The generated system must be deployed to the server and the server must be running
before the Web Service test is invoked.

Figure 11-6 below shows a portion of the main test method.

Chapter 11: Configuring and Running the SDK

131

Figure 11‐6 Web Service test algorithm

The Web Service test program systematically loops through all the generated Java Bean
classes and creates a Web Service queryObject call for each one. It then takes the first
qualifying record returned from the call, and checks to see if the returned object has an
association to another domain object. If it does, the program then proceeds to create
and invoke a Web Service getAssociation call for it, thus testing multiple Web Service
operations defined within the WSDL.

NOTE: The Web Service program TestClient.java is simply a client for testing the generated Web
Service. It provides only one example of how the SDK Web Service messages may be
created and invoked. However, you can modify it to use a different operation or
algorithm if desired.

In addition, the same search algorithm used during the testing of the Java API’s is re-
used within this test program. See Testing the Java API on page 126 for more
information. See also the Web Service Interface on page 69 for more information.

caCORE Software Developer Kit (SDK) V 4.1 Programmer's Guide

132

133

Chapter 12 Configuring Security
 As described in the earlier section, security in the SDK is supported using various
technologies, and the configurations that need to be made depend on the type and level
of security you want to use. The decision process required for configuring security is
based on the following options:

1. Authentication

a. CSM based or

b. caGrid based

2. Authorization Level

a. Class level

b. Instance level and/or

c. Attribute level

In order to configure the security in SDK at the time of code generation, the following
properties needs to be set in the deploy.properties file. Detailed descriptions for
each of these properties can be found in the SDK Configuration Properties section of the
previous chapter, beginning on page 115.

To enable or disable appropriate security levels:

• ENABLE_SECURITY

• ENABLE_INSTANCE_LEVEL_SECURITY

• ENABLE_ATTRIBUTE_LEVEL_SECURITY

Authorization policy settings

• CSM_PROJECT_NAME

• CACHE_PROTECTION_ELEMENTS

• CSM_USE_JNDI_BASED_CONNECTION

• CSM_DB_JNDI_URL

• CSM_DB_CONNECTION_URL

• CSM_DB_USERNAME

• CSM_DB_PASSWORD

• CSM_DB_DRIVER

• CSM_DB_DIALECT

CSM/caGrid based authentication settings

• ENABLE_GRID_LOGIN_MODULE

• ENABLE_CSM_LOGIN_MODULE

caCORE Software Developer Kit (SDK) V 4.1 Programmer's Guide

134

caGrid based authentication settings

• SERVER_TYPE

• SERVER_URL

• CAGRID_AUTHENTICATION_SERVICE_URL

• CAGRID_DORIAN_SERVICE_URL

• SDK_GRID_LOGIN_SERVICE_NAME

• SDK_GRID_LOGIN_SERVICE_URL

• CAGRID_LOGIN_MODULE_NAME

The remainder of this chapter provides more details on the configuration steps needed
to enable the different types of authentication and authorization available for SDK
generated systems.

Authentication Configuration
Applications dependent on JAAS-based login can configure their login procedure in
several ways.
(http://java.sun.com/j2se/1.4.2/docs/guide/security/jaas/tutorials/GeneralAcnOnly.html)

SDK uses a JAAS-based login module for the authentication configuration. Depending
on the authentication mode used (CSM or caGrid) you will need to configure a different
login module in the JAAS configuration file.

Since the caCORE SDK uses Acegi and CSM as underlying security technologies, users
of the SDK must perform configuration as recommended by those technologies. For an
SDK generated local-client, users receive the database-based JAAS configuration
prepared by the SDK. Users of the web application must configure the application server
container.

Figure 12-1 below provides an example of how to configure JAAS-based CSM
authentication in a JBoss server. See the CSM Technical Guide for more information on
configuring JAAS-based security in different application servers and other configuration
options.

http://java.sun.com/j2se/1.4.2/docs/guide/security/jaas/tutorials/GeneralAcnOnly.html

Chapter 12: Configuring Security

135

Figure 12‐1 Configuring JAAS‐based CSM authentication in JBoss server

SDK users must make an entry in the file <jboss-home>/server/default/conf/login-
config.xml similar to the code snippet shown above. CSM reads the entry from the
server’s login configuration and performs authentication using the configuration.

When grid authentication is used, additional configuration on both the client and the
server needs to be done. Figure 12-2 shows how grid authentication is done on a JBoss
server.

Figure 12‐2 Configuring JAAS‐based caGrid authentication in JBoss server

The steps below provide instructions for using grid authentication.

Steps for installing certificates for the Training Grid environment
1. Follow steps listed at the following URL to download the caGrid 1.2 release:

http://www.cagrid.org/wiki/CaGrid:Software:Release:1.2.

2. Execute ant –Dtarget.grid=training-1.2 configure

3. Check the c:\Documents and Settings\<username>\.globus\certificates directory.
You should see some files with random names.

Steps for Configuring JBoss Server for Grid Authentication
1. Configure the grid authentication Login module as shown in Figure 12-2 above.

2. Copy all files from the server/jboss package to the JBoss application server.

http://www.cagrid.org/wiki/CaGrid:Software:Release:1.2

caCORE Software Developer Kit (SDK) V 4.1 Programmer's Guide

136

3. Configure the machine to use the appropriate grid environment. Steps for
configuring and using the training grid are provided on page 135 above.

4. Generate Host Certificates as mentioned in the following URL:
http://www.cagrid.org/wiki/Dorian:1.2:Administrators_Guide:Requesting_Host_Cr
edentials

a. Start the GAARDS UI

b. Log into the Grid using your grid user account (if you don’t have an account,
you must create one).

c. From the MyAccount menu select Request a Host Certificate, this opens
the Request a Host Certificate window.

d. From the Service URI drop down select the URI of the Dorian you wish to
request a host certificate from.

e. In the Host text box, enter the name of the host for which you are requesting
host credentials.

f. Next, specify the directory on the file system where the host credentials
should be written. This can be done using the Browse button.

g. Click Request Certificate.

5. Edit <jboss-home>\server\default\deploy\jbossweb-
tomcat55.sar\server.xml

a. The Connector section will look something like following with exception of the
certificate paths in the server.xml file:

<Connector className="org.globus.tomcat.coyote.net.HTTPSConnector" port="8443"
maxThreads="150" minSpareThreads="25" maxSpareThreads="75" autoFlush="true"
disableUploadTimeout="true" scheme="https" enableLookups="true"
acceptCount="10" debug="0"
protocolHandlerClassName="org.apache.coyote.http11.Http11Protocol"
socketFactory="org.globus.tomcat.catalina.net.BaseHTTPSServerSocketFactory"
cert="C:/Documents and Settings/<username>/.cagrid/certificates/My-cert.pem"
key="C:/Documents and Settings/<username>/.cagrid/certificates/My-key.pem"/>

b. The Valve section will look something like this in the server.xml file

<Valve className="org.globus.tomcat.coyote.valves.HTTPSValve55"/>

Steps for Configuring Tomcat Server for Grid Authentication
1. Copy the contents of the SDK4\<project-

name>\output\package\server\tomcat folder to the new tomcat
installation.
DO NOT copy \example\output\package\server\tomcat\conf\server.xml; you
need to merge it with existing server.xml.

2. Generate Host Certificates as mentioned in step 4 of JBoss configuration

3. Open <tomcat-home>\conf\server.xml.

a. The Connector section will look something like following with exception of the
certificate paths in the server.xml file:

http://www.cagrid.org/wiki/Dorian:1.2:Administrators_Guide:Requesting_Host_Credentials
http://www.cagrid.org/wiki/Dorian:1.2:Administrators_Guide:Requesting_Host_Credentials

Chapter 12: Configuring Security

137

<Connector className="org.globus.tomcat.coyote.net.HTTPSConnector" port="8443"
maxThreads="150" minSpareThreads="25" maxSpareThreads="75" autoFlush="true"
disableUploadTimeout="true" scheme="https"
 enableLookups="true" acceptCount="10" debug="0"
cert="C:/Documents and Settings/<username>/.cagrid/certificates/My-cert.pem"
key="C:/Documents and Settings/<username>/.cagrid/certificates/My-key.pem"/>

b. The Valve section will look something like following in the server.xml file

<Valve className=" org.globus.tomcat.coyote.valves.HTTPSValve"/>

4. Edit tomcat-home\bin\startup.bat

c. Locate SET EXECUTABLE= and enter remainder of the following sentence on
the line after the located line:
set JAVA_OPTS=%JAVA_OPTS% -
Djava.security.auth.login.config=%CATALINA_HOME%/conf/login.co
nfig

Steps for Local Client with Grid Authentication

1. Configure the machine to use the appropriate target grid environment. Steps for
configuring and using the training grid are provided on page 135 above.

2. Merge the local client folder contents with grid-jaas folder contents as follows:

a. Create a new folder for local-client-grid-authentication.

b. Copy all contents of output\<project-name>\package\grid-jaas to
<local-client-grid-authentication> folder.

c. Copy contents of output\<project-name>\package\local-
client\lib to <local-client-grid-authentication>\lib folder.
Wherever there is a conflict, keep the files from the grid-jaas folder.

d. Copy contents of output\<project-name>\package\local-
client\conf to <local-client-grid-authentication>\conf folder
except for the login.config file.

e. Merge Test.java from <local-client-grid-authentication> and grid-jaas and
put it in the <local-client-grid-authentication> folder.

For example, use grid-jaas\TestClient.java to get GlobusCredential
object. Pass this GlobusCredential object to
ApplicationServiceProvider.getApplicationService() in local-
client\TestClient.java.

f. Merge login.config file from <local-client-grid-
authentication>\conf and grid-jaas\conf and put it in the <local-
client-grid-authentication>\conf folder.

3. Run ant.

caCORE Software Developer Kit (SDK) V 4.1 Programmer's Guide

138

Steps for Remote Client with Grid Authentication
1. Configure the machine to use the appropriate target grid environment. Steps for

configuring and using the training grid are provided on page 135 above.

2. Merge the remote-client directory and grid-jaas in the same way as mentioned
above for configuration of the local client. The only exception is that the
login.config file does not need to be merged as there is only one copy.

3. Make sure the server is running.

4. Run ant.

Authorization Configuration
The caCORE SDK uses CSM to maintain the authorization configuration. In order to use
CSM, a detailed configuration of the CSM needs to be done. The steps for configuring
CSM-based authorization include:

1. Setup a CSM database schema for the application being generated.

2. Create a new application in the CSM schema using the User Provisioning Tool
(UPT). The name of the application is same as the CSM_APPLICATION_NAME
configured in the deploy.properties file.

3. Create the user accounts to be used.

4. Create the protection elements needed for different authorization levels.

5. Assign access privileges to the user accounts on the created protection
elements.

NOTE: If you are planning to use instance level security, you are required to put CSM tables on
the same database schema where the tables for the domain classes reside. See the CSM
Technical Guide for more information on installing CSM on a particular database and
using the UPT for configuring the security schema.

More information about steps 1 through 3 can be found in the CSM Technical Guide.
Step 4 requires creating protection elements in CSM. These elements follow appropriate
naming conventions.

Configuring CSM for Class Level Security
As shown in Figure 12-3 below, using class level security requires the existence of a
protection element with the same object ID and name as the fully qualified name of the
class for each of the domain objects in the generated system. Since class level security
is always enforced, any user who does not have access rights on such a protection
element will not be allowed to query data from that class.

Chapter 12: Configuring Security

139

Figure 12‐3 CSM UPT Screen indicating the Protection Element to be created for class level
security

Configuring CSM for Attribute Level Security
As shown in Figure 12-4 below, implementing attribute level security requires the
existence of a protection element with the same object ID as the fully qualified name of
the class and with an attribute name the same as the name of the attribute in the class.
Such protection elements must be created for each of the attributes in all the domain
objects in the generated system. When attribute level security is enabled, any user who
does not have access rights on such a protection element will receive nullified attributes
when querying data from that class.

caCORE Software Developer Kit (SDK) V 4.1 Programmer's Guide

140

Figure 12‐4 CSM UPT screen indicating the Protection Element to be created for attribute level
security

Configuring CSM for Instance Level Security
When instance level security is enabled, the CSM UPT tool can be used to create the
security filters. In order to create the security filters, you must upload two different JAR
files through the CSM UPT.

Figure 12‐5 CSM UPT screen indicating the instance level security configuration tab

The JAR files are located in the local-client/lib folder of the caCORE SDK and
their names are <project_name>-beans.jar and <project_name>-orm.jar.
The CSM UPT also requires users to specify the name of the Hibernate configuration
file, which in the case of an SDK generated application is hibernate.cfg.xml.

Chapter 12: Configuring Security

141

Once these files are uploaded using the “Instance Level” tab in the UPT, the UPT guides
users to create the filters. More details about how to create the filters can be found in the
CSM Technical Guide.

Once the filters are created, the query made through the SDK generated system will
have additional conditions in the where clause which will limit the data coming back from
the database using the established filter conditions.

caCORE Software Developer Kit (SDK) V 4.1 Programmer's Guide

142

143

Appendix A Troubleshooting
The following questions and scenarios have been reported by users and may be helpful
in troubleshooting a problem when setting up the SDK.

1. I tried to use the SDK during code generation but I am getting just the exceptions
and not error messages

Getting just the exceptions indicates that the SDK code generator did not initialize due to
either invalid settings in the deploy.properties or an invalid UML model file. The UML
model file can be considered invalid if it is not developed per the specification of the SDK
or it is not exported as specified by the SDK.

2. I tried to generate an application with the SDK but I received validation errors.
How do I make sure that model that I have created runs through the code
generator?

The validation error messages generated from the SDK indicates specific error
conditions under which the SDK cannot generate the code. Fixing the UML model and
executing the code generator will solve the problem.

3. When running the generated application (.war file) under JBoss I am getting a
Log4J exception.

SDK by default includes the log4j.jar and commons-logging.jar file in the generated .war
file’s lib directory. The JBoss server requires both of these files to be excluded from the
.war file before deployment. A developer using the SDK can either remove these two jar
files from the .war file before deployment or they can specify SERVER_TYPE=jboss in
the deploy.properties file and regenerate the system. Specifying a server type as jboss
during code generation will exclude the unnecessary jar files from being packaged in the
.war file.

4. I successfully generated the application with the SDK. However, when running the
application, I am getting database connection errors.

While generating the application with the SDK, the database connection parameters
must be specified in the deploy.properties file. If these settings are incorrect, the SDK
cannot fetch the data from the database. Make sure that the database settings are valid
and the database server is running.

5. When I try to query the generated system, queries for some of the objects are
running very slow.

There can be many different problems associated with slow searches. The primary
problem is with the missing indexes on the primary key filed, foreign key field, or search
key field. Creating these indexes should stop the database from performing full table
scans and improve performance. Appendix B includes information on optimizing the
performance of the Java API.

caCORE Software Developer Kit (SDK) V 4.1 Programmer's Guide

144

145

Appendix B Performance Tuning the Java
API

The SDK generated Java API provides the ability to create a data service in a small
amount of time. Because the SDK is simply a tool to generate the API, it cannot
understand all the use cases for a user’s application and hence cannot provide a
comprehensive solution to requirements for all users. The SDK development team and
many of the SDK users have encountered problems in this respect and have discovered
several solutions to improve performance. This chapter includes some of the solutions
discovered by these users.

Topics in this chapter include:

• Database Indexes on this page

• Fine Tuning the Page Size on this page

• Hibernate Query Language (HQL) on page 146

Database Indexes
Problem: Missing or corrupt indexes can explain performance problems for most
queries. Most database modeling tools provide an option to create indexes for the
primary key and foreign keys; however, the database indexes have been found to be
missing or corrupted due to a variety of reasons including batch data load and recreation
of the records.

Solution: Fixing the indexes should improve the performance of the queries. Proper
indexes on the primary and foreign key columns will definitely improve performance for
the database table joins. The user may have to create additional indexes for the columns
that are more likely to be hit from the end user search.

Fine Tuning the Page Size
Problem: An SDK user can choose the page size for the SDK generated system at the
time they generate the system. There are two kinds of pages for the generated system.
The first is for the maximum number of records (rowCounter) that can be displayed to
the user of the web interface. The second is the maximum number of records
(resultCountPerQuery) that can be fetched by the Java API per call.

Solution: Both of these properties can be altered in the file application-
config.xml, which is located in the SDK distribution folder
/conf/system/web/WEB-INF/classes.

By default, the maximum number of records shown to the user of the web application is
set to 200 and the maximum number of records that can be fetched by the Java API in
one call to the server is set to 1000. Based on the nature of the underlying data, the
developer of the application can choose the appropriate page size.

caCORE Software Developer Kit (SDK) V 4.1 Programmer's Guide

146

Hibernate Query Language (HQL)
SDK generated queries from SDK’s Nested Search Criteria and SDK’s CQL Search
Criteria result in fetching the complete domain object from the database. At the same
time, the database queries generated by the SDK specific search criteria can result in
poor performance. A user of the SDK has the option to use the HQL queries to fetch the
domain objects from the data service. The user can choose to retrieve selected
attributes of the domain object but not the complete object by writing a more granular
HQL query.

147

Appendix C Planned Features for Future
Releases

The SDK development team constantly strives to improve the experience of using the
SDK by providing new features and enhancing existing features. During the course of
development for the current release, the team has come across many new features that
will be considered for development immediately following the release of the current
version. The following is a short summary of some of the major features under
consideration.

Search Engine/Free Style search – The users of the SDK generated system can
formulate a query by constructing an example. However in this approach, the user has to
know which attribute he is searching for. The SDK team is planning to provide search
engine in the generated system which will allow users to query using free text and
retrieve all the domain objects which matches the respective criteria

GUI for installation and build process – The current SDK build process involves
executing the ANT scripts to generate code with the SDK code generation module and
preparing the packages for deployment and release. Although this process is geared
towards novice users, many users find it difficult to use the command line script
execution. A new tool is under consideration for development that will allow users to
control the execution of code generation process from a graphical interface.

Robust user interface – The current user interface for the web application is a major
improvement over the user interface provided by the previous release. The current
version of the interface is based on the NCICB UI templates and has better integration of
security then the previous version. This user interface will be expanded to provide
additional features like:

• Complex Query By Example (QBE) input forms

• In line documentation for the UML class and attributes in the domain class
browser

• Displaying UML diagrams in the domain class browser

• Allow editing of the records

caCORE Software Developer Kit (SDK) V 4.1 Programmer's Guide

148

149

Appendix D Example Model and
Mapping

 The caCORE SDK release package contains an example model which can be used by
the user as a reference to model a particular scenario for their system. The example
model is available in the /models directory of the release package. The example
model is available for both Enterprise Architect (SDKTestModel.eap) and ArgoUML
(sdk.uml). Users can refer to these models, which are organized in a self explanatory
fashion.

The current version of the example model includes the following scenarios:

Attribute Types
 Primary Key Simple Data

type
Collection data type

String Yes Yes Yes
Integer Yes Yes Yes
Double Yes Yes Yes
Boolean No Yes Yes
Float Yes Yes Yes
Short Yes Yes Yes
Long Yes Yes Yes
Byte Yes Yes Yes
Character Yes Yes Yes
Date Not Supported by SDK Yes Not Supported by SDK
String (CLOB) Not Supported by SDK Yes Not Supported by SDK

Association Mapping
 Unidirectional Bidirectional Unidirectional

with Join table
Bidirectional with

Join table
One to One Yes Yes Yes Yes
One to Many Yes Yes Yes Yes
Many to One Yes Yes Yes Yes
Many to Many Yes Yes Yes Yes
Self Association Yes Not Supported by

SDK
No Not Supported by

SDK
Multiple
Associations

Yes Yes Yes Yes

Inheritance Mapping
Table per class
Table per hierarchy
Table per hierarchy with separate table for one of the child classes
Implicit Inheritance
Abstract Classes

caCORE Software Developer Kit (SDK) V 4.1 Programmer's Guide

150

Interface Mapping
Multilevel Interface Inheritance
Class Interface Realization

Other Mappings
Datatypes
Different Package
Hibernate Annotated Validation

151

Glossary
The following table contains a list of terms used in this document, with accompanying
definitions.

Term Definition
Acegi Acegi is a security framework that provides a powerful, flexible security

solution for enterprise software, with a particular emphasis on applications
that use the Spring Framework. Acegi Security provides the SDK with
comprehensive authentication, authorization, instance-based access
control, channel security, and human user detection capabilities. See
http://www.acegisecurity.org/ for more information.

Ant Apache Ant is a Java-based build tool used within the SDK to perform
various build related tasks. See the section on Ant Build Script Targets
beginning on page 122 for more information on how Ant is used within the
SDK. See http://ant.apache.org/ for more information on Ant itself.

Castor Castor is an Open Source data-binding framework for Java, and facilitates
conversion between Java Beans, XML documents and relational tables.
Castor provides Java-to-XML binding, Java-to-SQL persistence, and
more. See http://www.castor.org/ for more information.

Ehcache Ehcache is a simple, fast and thread safe cache for Java that provides
memory and disk stores and distributed operation for clusters. The SDK
uses ehcache in conjunction with Hibernate. See
http://sourceforge.net/projects/ehcache for more information.

QBE Query by Example (QBE) is a database query language for relational
databases. It was devised by Moshé M. Zloof at IBM Research during the
mid 1970s, in parallel to the development of SQL. It is the first graphical
query language, using visual tables where the user would enter
commands, example elements and conditions. See
http://en.wikipedia.org/wiki/Query_by_Example for more information.

Hibernate Hibernate is an object-relational mapping (ORM) solution for the Java
language, and provides an easy to use framework for mapping an object-
oriented domain model to a traditional relational database. Its purpose is
to relieve the developer from a significant amount of relational data
persistence-related programming tasks. See http://www.hibernate.org/ for
more information.

HQL Hibernate Query Language (HQL) is a powerful query language that looks
similar to SQL. Though the syntax is SQL-like, HQL is fully object-oriented,
and understands concepts like inheritance, polymorphism and association.
See http://www.hibernate.org/hib_docs/v3/reference/en/html/queryhql.html
for more information.

Marshaling The process of producing an XML document from Java Beans; i.e., the
process of serializing Java Beans to XML.

ORM An acronym for Object-Relational Mapping, a programming technique for
converting data between incompatible type systems in databases and
Object-oriented programming languages. This creates, in effect, a "virtual
object database" which can be used from within the programming
language. See http://en.wikipedia.org/wiki/Object-relational_mapping for
more information. Hibernate implements this technique within the SDK.

http://www.acegisecurity.org/
http://ant.apache.org/
http://www.castor.org/
http://sourceforge.net/projects/ehcache
http://en.wikipedia.org/wiki/Query_by_Example
http://www.hibernate.org/
http://www.hibernate.org/hib_docs/v3/reference/en/html/queryhql.html
http://en.wikipedia.org/wiki/Object-relational_mapping

caCORE Software Developer Kit (SDK) V 4.1 Programmer's Guide

152

Term Definition
REST “Representational State Transfer (REST) is a style of software architecture

for distributed hypermedia systems such as the World Wide Web. The
term was introduced in the doctoral dissertation of Roy Fielding in 2000,[1]
one of the principal authors of the Hypertext Transfer Protocol (HTTP)
specification, and has come into widespread use in the networking
community.
“REST strictly refers to a collection of network architecture principles that
outline how resources are defined and addressed. The term is often used
in a looser sense to describe any simple interface that transmits domain-
specific data over HTTP without an additional messaging layer such as
SOAP or session tracking via HTTP cookies. These two meanings can
conflict as well as overlap. It is possible to design any large software
system in accordance with Fielding's REST architectural style without
using the HTTP protocol and without interacting with the world wide web. It
is also possible to design simple XML+HTTP interfaces that do not
conform to REST principles, and instead follow a Remote Procedure Call
model. The two different uses of the term "REST" cause some confusion
in technical discussions. See http://en.wikipedia.org/wiki/REST for more
information.

Unmarshalling The process of populating a generated class object from a corresponding
XML document; i.e., the process of deserializing XML to Java Beans.

WSDD An acronym for Web Service Deployment Descriptor, which can be used
to specify resources that should be exposed as Web Services. See
http://ws.apache.org/axis/java/user-
guide.html#CustomDeploymentIntroducingWSDD for more information.

WSDL An acronym for Web Services Definition Language, which is an XML-
based language that provides a model for describing Web services. See
http://www.w3.org/TR/wsdl.html or http://en.wikipedia.org/wiki/WSDL for
more information.

http://en.wikipedia.org/wiki/REST
http://ws.apache.org/axis/java/user-guide.html#CustomDeploymentIntroducingWSDD
http://ws.apache.org/axis/java/user-guide.html#CustomDeploymentIntroducingWSDD
http://www.w3.org/TR/wsdl.html
http://en.wikipedia.org/wiki/WSDL

153

Index
A
abstract classes, 7
Acegi, 12

CSM security, 36
security filters, 33
security interception tier, 27

Ant build script targets, 122
application service provider class, 55
application service proxy, 30
application service tier, 25

extending, 26
applicationservice API, 56
architecture

writable API, 39
ArgoUML, 10, 84

create attributes and data types, 97, 100
creating model, 84
modify attributes and data types, 100
tag values, 102

attribute characteristics, 99, 100
attribute level security, 35, 38, 139
audit trail, 45
authentication

caGrid, 54
caGrid-based, 37, 135
configuration, 134
CSM, 36, 54
overview, 36

authorization
configuration, 138
overview, 38

Axis service, 69, 129

B
BASIC authentication, 52
bulk operations, 69

C
caBIG, 6
caBIG Query Language, 60
caGrid authentication, 54
caGrid integration, 7, 9
caGrid security, 9
caGrid-based authentication, 37, 133, 135
cascade style, 40
class level security, 35, 38, 138
client

Java API, 54
java api local and remote, 28
multiple remote application services, 32
proxy-based SDK generated client API, 30

technical challenges, 29
web services, 28
XML-HTTP, 28, 47, 51

Client
XML-HTTP, 27

client interface
web service, 69

CLM, 45
Code Generation Module, 5

artifact generation, 18
features and limitations, 16
framework, 18
output management, 18
overview, 15
process, 16
reading UML model, 17
reusable components, 20
workflow, 19

configuration file, 115
convenience query, 57
CQL query, 60
create data model table, 93, 95
create new UML project, 84
create project classes/tables, 86
creating UML model, 83
CSM

authentication, 36, 54, 133
authorization, 138
security, 38
security interception tier, 27

D
data generation, 7
data validation, 43
deploy.properties file, 115
deploying generated system, 125
deploying to Apache, 125
deploying to JBoss, 125
detached criteria query, 58
download the SDK, 13

E
EA, 10, 84

create attributes and data types, 97
creating model, 84
export UML model to XMI, 111
import XMI into UML model, 113
tag values, 101

EHCache configuration file, 20
Enterprise Architect. See EA
extending the application service tier, 26

caCORE Software Developer Kit (SDK) V 4.1 Programmer's Guide

154

G
generated artifacts, 10, 20
generating SDK system

Ant build script targets, 122
deploying, 124
package overview, 124
selectively generating components, 123
testing, 125

GME namespace, 8

H
Hibernate

configuration file, 20
mapping, 8
mapping files, 20
transactions, 41

Hibernate query, 57
HQL query, 57, 146

I
inheritance, 11
instance level security, 35, 38, 140
inverse settings, 41

J
Java API

client, 54
performance, 145
testing, 126

Java API client, 28
accessing, 54
security, 54

Java API communication, 29
JavaBeans to XML, 77

L
local-client, 124
logging, 45
logical model object class, 92
logical model package, 86, 88
logical object model class, 89

M
marshal/unmarshal, 77, 128
Model Driven Architecture, 5
multiple application services, 32

N
nested search query, 64
new 4.1 features, 7
Non-Object Relational Mapping, 25
n-tier architecture, 23

n-tier system
application service tier, 25
persistence tier, 24
security interception tier, 27

N-Tier System
client interface tier, 27

O
Object Relational Mapping, 25

tag values, 101
overview

authentication, 36
authorization, 38
code generation, 15
creating UML model, 83
runtime system, 23
security, 35, 133
system generation, 6

P
packages generated, 124
persistence tier, 24
primary key generator, 40
process overview, 6
project properties, 115
ProxyHelper, 32

Q
QBE operations, 67
QBE query, 60
query by example. See QBE
query methods

convenience query, 57
CQL query, 60
detached criteria query, 58
Hibernate query, 57
nested search query, 64

R
reading materials, 1
remote client

multiple application services, 32
remote-client, 124
Representational State Transfer. See REST
resources, 1
REST

sample call, 53
REST Interface

accessing, 51
running the SDK, 115
Runtime System, 5
Runtime System Module

architecture, 23

 Index

155

S
sample CQL query, 62, 63
sample detached criteria query, 59
sample HQL query, 58
sample nested search query, 66
sample REST call, 53
sample web service code, 70
SDK

4.0 features, 9
4.1 new features, 7
benefits, 7
contributing to development process, 14
defined, 1
example model and mapping, 149
generated artifacts, 10, 20
home page, 47
modules, 5
obtaining the release, 13
secure system usage, 47
system usage, 47
user types, 6
within caCORE, 6

search criteria form, 51
search XML-HTTP, 50
secured web service, 70
security

attribute level, 35, 38, 139
authentication, 36
authorization, 38
class level, 35, 38, 138
configuring, 133
filters, 33
instance level, 35, 38, 140
levels, 35
overview, 35, 133
settings, 133
XML-HTTP client, 48

security interception tier, 27
serialize/unserialize, 77
silver-level compatibility, 6
SOAP Fault element, 75
System Requirements, 13

hardware, 13
software, 14

system usage
writable API, 67

T
tag values

descriptions, 102
testing Java API, 126
testing the system, 125
testing web interface, 125
testing web service URL, 129
testing web services client, 130

testing XML utility, 127
thin client

XML-HTTP, 51
Troubleshooting, 143

U
UML, 7

code generation process, 17
creating a model, 83

UML model tools, 84
UML modeling support, 10
UML project file, 84
unsecured system, 35

V
validating data, 43

W
web service

testing, 129
web service deployment descriptor. See

WSDD
Web Service deployment descriptor file, 21
web service error handling, 75
web service interface, 69
web services client, 28

testing, 130
web services description language. See

WSDL
webapp, 124
writable API, 9, 39

Hibernate transactions, 41
O/R mapping, 40

writable API architecture, 39
writable API usage, 67
ws-client, 124
WSDD, 70, 129
WSDL, 71, 72, 73, 129

X
XML

mapping files, 20
XML to JavaBeans, 77
XML-HTTP

client, 28, 47
secured, 48, 51
testing, 125
thin client, 51

XML-HTTP client
search, 50

XSD
mapping files, 20

	Table of Contents
	About This Guide
	Intended Audience
	Recommended Reading
	Organization of this Guide
	Text Conventions Used
	Credits and Resources
	Submitting a Support Issue
	Release Schedule

	Chapter 1 Overview of caCORE SDK
	Introduction
	caCORE SDK Modules
	caCORE SDK Users
	SDK within the caCORE Environment
	Benefits of Using the caCORE SDK
	New Features for caCORE SDK 4.1
	Code Generation
	Generated System

	Features Introduced in caCORE SDK 4.0
	Code Generation
	Generated System

	Obtaining the caCORE SDK
	caCORE SDK Minimum System Requirements
	 Minimum Hardware Requirements
	Software Requirements

	Contributing to caCORE SDK Development

	Chapter 2 Code Generation Technical Overview
	Introduction
	The Role of Code Generation in the caCORE SDK
	Features and Limitations of Code Generation

	Code Generation Process
	Reading the UML Model
	Artifact Generation (Model Transformation)
	Output Management
	Code Generation Framework
	Reusable Components of the Code Generation Workflow

	Overview of SDK Generated Artifacts

	Chapter 3 Runtime System Technical Overview
	High-Level Architecture
	N-Tier System
	Persistence Tier
	Object Relational Mapping
	Non-Object Relational Mapping

	Application Service Tier
	Extending the Application Service Tier

	Security Interception Tier
	Client Interface Tier
	XML-HTTP Client
	Web Services Client
	Java API Local and Remote Client

	Technical Challenges of the Client Tier
	Dynamic Proxy-Based SDK Generated Client API
	Connecting to Multiple Remote Application Services

	Security Filters

	Chapter 4 Security
	Security Overview
	Authentication
	CSM Authentication
	Grid Authentication

	Authorization
	Class Level Security
	Instance Level Security
	Attribute Level Security

	Chapter 5 Writable API
	Writable API Architecture
	Object Relational Consideration for Writable API
	Primary Key Generator Settings
	Cascade Settings
	Inverse Settings

	Transactions

	Chapter 6 Data Validation
	Chapter 7 Logging/Audit Trail Management
	Chapter 8 Using SDK Client Interfaces
	Introduction
	XML-HTTP Interface
	Accessing Data from a Web Browser
	Accessing Data from a Thin Client

	Java API Interface
	Obtaining ApplicationService

	ApplicationService API Methods
	Convenience Query
	HQL Query
	Detached Criteria Query
	CQL Query
	Nested Search Criteria Query

	Writable API Usage
	Query By Example (QBE) Operations
	Bulk operations (DML)
	Batch Operations

	Web Service Interface
	SDK WSDL Directives - Schema Imports
	WSDL Service Definition
	WSDL Port Types (Network Endpoints)
	Messages, Elements, and Types
	Web Service Error Handling
	SOAP Fault Structure

	Chapter 9 Utilities
	XML Utility (Marshalling and Unmarshalling)
	The caCOREMarshaller Class
	Marshalling Java Objects to XML
	The caCOREUnmarshaller Class
	Unmarshalling XML to Java Objects

	Chapter 10 Creating the UML Model for caCORE SDK
	Introduction
	Creating a New Project in Enterprise Architect (EA)
	Creating a New Project in EA
	Creating a New Project in ArgoUML

	Creating Classes and Tables
	Creating a Logical Model Package Structure in EA
	Creating a Logical Model Package Structure in ArgoUML
	Creating a Logical (Object) Model Class in EA
	Creating a Logical (Object) Model Class in ArgoUML
	Creating a Data Model Table in EA
	Creating a Data Model Table in ArgoUML

	Creating Attributes and Data Types
	Creating/Modifying Attributes and Data Types in EA
	Creating/Modifying Attributes and Data Types in ArgoUML

	Performing Object Relational Mapping
	Adding/Modifying Tag Values
	SDK Custom Tag Value Descriptions
	Tag Value: correlation-table
	Tag Value: description
	Tag Value: discriminator
	Tag Value: documentation
	Tag Value: id-attribute
	Tag Value: implements-association
	Tag Value: inverse-of
	Tag Value: lazy-load
	Tag Value: mapped-attributes
	Tag Value: mapped-collection-table
	Tag Value: mapped-element
	Tag Value: NCI_GME_XML_NAMESPACE
	Tag Value: NCI_GME_XML_ELEMENT
	Tag Value: NCI_GME_SOURCE_XML_LOC_REF
	Tag Value: NCI_GME_TARGET_XML_LOC_REF
	Tag Value: type

	Exporting the UML Model to XMI (EA Only)
	Importing XMI into the UML Model (EA Only)

	Chapter 11 Configuring and Running the SDK
	SDK Configuration Properties
	Generating the SDK System
	Ant Build Script Targets
	Selectively Generating Components

	Overview of Generated Packages
	Deploying the Generated System
	Deploying to JBoss
	Deploying to Apache Tomcat

	Testing the caCORE SDK Generated System
	Testing the Web Interface
	Testing the Java API
	Testing the XML Utility
	Testing the Web Service Interface
	Testing the Web Service URL
	Obtaining the WSDL for Deployed Services: ?WSDL
	Testing Web Services via the Client Program

	Chapter 12 Configuring Security
	Authentication Configuration
	Authorization Configuration
	Configuring CSM for Class Level Security
	Configuring CSM for Attribute Level Security
	Configuring CSM for Instance Level Security

	Appendix A Troubleshooting
	Appendix B Performance Tuning the Java API
	Database Indexes
	Fine Tuning the Page Size
	Hibernate Query Language (HQL)

	Appendix C Planned Features for Future Releases
	Appendix D Example Model and Mapping
	Glossary
	Index

