Common Security Module

CSM Guide for Application Developers

Version No: 1.0

Last Modified: 11/08/2007

Author : Vijay Parmar, Kunal Modi

Team : Common Security Module (CSM)
Purchase Order# 3455

Client : National Cancer Institute - Center for Bioinformatics,
National Institutes of Health,

US Department of Health and Human Services

Credits and Resources

CSM Contributors

CSM Development Other Development | Guide Program

Team Teams Management
Vijay Parmar* Satish Patel ' Vijay Parmar! Avinash Shanbhag 3
Kunal Modi* Dan Dumitru* Kunal Modi ! Charles Griffin *
Aynur Abdurazik 2 Charles Griffin *

Wendy Erickson-
Hirons®

! Ekagra Software
Technologies

%Science Applications
International
Corporation (SAIC)

% National Cancer
Institute Center for
Bioinformatics

*Northern Taiga
Ventures, Inc.

Submitting a Support Issue

A GForge Support tracker group, which is actively monitored by CSM developers, has been created to track any
support requests. If you believe there is a bug/issue in the CSM software itself, or have a technical issue that
cannot be resolved by contacting the NCICB Application Support group, please submit a new support tracker

using the following link: https://gforge.nci.nih.gov/tracker/?atid=131&group id=12&func=browse . Make sure
to review any existing support request trackers prior to submitting a new one in order to help avoid duplicate
submissions.

Contacting Technical Support

Technical support is available by contacting the NCICB Application Support group. There contact information
is provided below:

http://ncicb.nci.nih.gov/NCICB/support
Telephone: 301-451-4384
Toll free: 888-478-4423

NCICB Application Support

https://gforge.nci.nih.gov/tracker/?atid=131&group_id=12&func=browse
http://ncicb.nci.nih.gov/NCICB/support

Document History

Document Location

The most current version of this document is located on the CSM website: http://ncicb.nci.nih.gov/core/CSM

Revision History

Version Revision Date | Author Summary of Changes
Number
0.1 09/15/07 Vijay Parmar, Kunal Initial Table of Contents
Modi
0.2 10/22/07 Vijay Parmar Added new chapters
1.0 1/05/2007 Vijay Parmar Incorporate updates.
Review
Name Team/Role Version | Date Reviewed | Reviewer Comments
Kunal Modi Developer 1.0 11/08/2007

Jill Hadfield Technical Writers

Wendy E. Technical Writer

Related Documents

More information can be found in the following related CSM documents:

Document Name

Software Architecture Document

CSM Enterprise Architect Model

Acegi Security CSM Adapter Design Document

CLM Guide for Application Developers

These and other documents can be found on the CSM website: NCICB CSM

http://ncicb.nci.nih.gov/core/CSM
http://ncicb.nci.nih.gov/NCICB/infrastructure/cacore_overview/csm

Table of Contents

i [o1 oo [¥ ot i o] KOO RO TPTOTOPPRRR 8
7 Y o o o1 8
S TR U L o = d o E U] o L= PRR 8
. CSIM OVEIVIEWeviiiiiiiiie ittt sttt ettt ettt sttt e st e e e s s b et e s s b et e s s b et e s s s b et e s s aa b e e e s s sba e e s s aab e e e s saabaeessaabaeessnras 9
4.1 [T o] = 0 F= 1T o ISP 9
4.2 Yol 0 [n Y 6o] g Tol=T o | €T PP PP PPTTPPPTTRNt 10
4.3 MiINIMal SYSTEM REGUITEMENTSviiiiiiiiee ittt cettee et ee et e e e rtee e e st e e e s st e e e ssabeeesssabeeeeesbeeeeesabeeeeesaseeeeesnseneesnnsens 12
L O |V Y o B U T ol G U T PSPPSR 12
5.1 WVOIKFIOW. ..ttt bttt sttt et e bt e s bt e s a et e at e e ab e e bt e sbeesheesabesabe e bt e bt e sbeesmeesnbeenbeenteens 13
5.2 AP SEIVICES ..ttt ettt ettt et e st e b e e e s et e e s e e e s e e e e s e e e e s s e s 13
5.3 AUTNENTICATION 1.ttt sttt b e b e s bt e e bt e e a bt et e e bt e sheesbeesabesabe e bt e bt esbeesmeesnteenbeebeens 14
5.3.1 Integrating with the AUTheNtiCatioN SEIVICE ...ttt e e ee e e e sbee e e e nares 14
5.3.2 Installation and Deployment cCONfigUIatioNSoeiiiiiiiiiiiiie e e e e e s e sree e e e sares 15
5.3, 2.1 JAR PIACBMENTeuteeiteitee ittt ettt et b e s he e s et e at e et e e bt e s bt e sheesatesab e e bt e b e e bt e ebeesaeeeaeeeabeenbeesheesaeesatenane 16
5.3.2.2 Configuring Lock out in AUthentication IMan@ger..........uviiiiciiie et rae e e e rtre e e e ebre e e e eabreeesennreeen 16
5.3.2.3 RDBMS Credential Provider properties and Login Module configuration.........cccceeieicieiiiciieee e 17
Configuring @ LOgIin MOAUIE IN JAAS ...ttt et e e et e e e et e e e e st ee e e s abeee e e sbeeeesanbeeeeesabeeesssnseeeesnnsees 17
Configuring @ Login MOdUIE iN JBOSSuviiiiiiie ettt ettt et e e e et e e e e s be e e e ssabeee e e nbeeeesesbeeeessabeeesssnseeessnnsens 18
Enabling Encryption in the RDBMS LOZIN IMOAUIEccoiiiiiiiiiiee ettt e e vre e s e e e e sabe e e s e arre e e eares 19
5.3.2.4 LDAP Credential Provider properties and Login Module configurationccccccveeieiiiieeeciieee e 20
Configuring LDAP LOZIN MOUIE IN JAAS ... e ettt e et e e e et e e e e e be e e e e abee e e e abaeaeeaabeeeeeanbeeeeeenseneeennsens 20
Configuring LDAP LOZIN MOQUIE iN JBOSSeiiiiiieieeiiie e eeiiee ettt ee e e ettt e e e e tte e e e e beee e eeateee e e nbaeeeeasbeeeeesnbeneeeenseneeennsens 21
Configuring LDAP Login Module using ANONYMOUS BiNd..........c.ceiiiiiiiiiiiiiie ettt eere e s sire e s svree s e svree e s s 22
5.3.2.5 Activating CLIM AUit LOEING ..eeeccuvieeiiiiiieeeiiiie ettt et te e ettt e e sttt e e st ta e e e sataeeessaaeeeessaeessnsseeesansseeesnnssaeesansseeens 23
5.4 AUTNOTIZATION ..ttt sttt et e b e s b e s b et s et e et e e bt e s b e e sbe e s et e sane e neebeesmeesmeesneeenneeneens 24
5.4.1 INTEGrating CSIM API'S OVEIVIEWccciciiieeeeiiee e eeiiee e ettt e e eett e e e e e teeeeeebeeeeeebeeeeeeataeaeeaabaeeeeasbaeeeeasteeesasseeaeanseeeeeansens 24
5.4.1.1 Integrating with the CSM AUthOriZation SEIVICE.........uiiiiiii i e e e e e e sraree s 24
5.4.2 SOftWAre ProdUCES @Nd SCIIPTSuuiiiiiiiieeeeiiee e eetiee ettt e e ettt e e eetee e e e e be e e e estbee e eebaeaeeaabeseeeeabeeaeeabteaeeanssesaeanseeeaennsens 25
5.4.3 Installation and Deployment CONfIGUIatioNScooiiiiiiiiiiiie et e e et e e e srae e e e eaaees 26
LR o R Y o Tol= 4 T OO P R UOUPROPRPR 27
5.4.4.2 Database Properties and CONFIGUIAtIONc.uviiiiiiiiecciee et e e e e e et a e e e s rata e e e ennbeeesannreees 27

O I [Te W d a0 (= D | €=] o = 1 TR 27

(000 a1 {0 I D L= = [o 1 U] of I PURS 27

5.4.4.3 ACtiVAte CLIM LOBEING ..o e oo 28
5.5 Ol o o1 VA Ty T o 1T = e Yo Y I RS 28
5.6 F XU Lol o == o = SRR 29
oI ST R [01 4 o T (U1 { o WO OO TP PSSR UPRRPRRPPR 29
SN ST A U o o Jo 1 U USSP U PO UUP PP PPUPUPPPPPPPIN 29
N ST B T g o ol =T o 4 1= o TP TP ST VPTOTOUSRTPRN 29
5.6.4 Enabling CLM APIs in Integration With CSIM APIS.......ccuiiiiiiiie ettt ettt e s see e s sbee e s s sbee e s s sbee e s e ssbeeeeenanes 29
R TR T B 1T o] Lo} 0 [T 0) =T o PSP SR 32
6. User ProviSioning TOOI USEIS GUITEcccuuiiiiiiiieeceiiee e ceitee ettt e e tee e e e ete e e e e et e e e s eataee s esabaeeeeeabaeeeesasteeesanseeeseanseeesennsens 33
6.1 T} (oo [¥ Tt o] o WU T TSP P PP PTUPTOPPTOT 33
6.2 WWOTKEIOW. ...ttt ettt et e s e ettt e s bt e s bt e s b teesabe e e bt e e sabeesabeeesabeesabeesanbeesabeeensbeesabeesaseeesabeesanes 33
6.3 COMMON BASIC FUNCTIONS ...eeiiiiiiie ettt ettt e sttt e e et e e s b et e e snr e e e e s mbe e e e smbeeeesannbeeesnnneeesannneeess 34
6.4 ASSIZNMENTS AN ASSOCIATIONSvviieiiiiieeeiiiee e et et e e ecte e e e ee e e e s teeeeeeareeeeasbaeeeasstaeeeasseaeeasseseseanseeesennseneeennsens 38
6.5 YT o LT e [a1 oY T o [T USRI 41
B.5.1 OVEIVIEW .ttt ettt e s bt e e s e e e s bt e e s e e s e e e e s e e s e b e e s s e e e e s e e e s s e e s e ares 41
B.5.2 WOTKFIOW. .. ettt et e s e e bt e e st e e e bt e e s ab e e s bt e e sabeeeabbeesateesabeeesabeeebbeeanbeesanbeesabeeeanes 41
(ST B \\F- 1V 1= 1 o] o H O OO TP PP PPRROPPPPPPPO 42
6.6 AAMIN IMIOTE <.ttt ettt e e bt e e s bt e s bt e e s bt e e s bt e e sabeesabeeeabbeesabee e bbeesabeesabeeesabeeeabbeeanseesneeesabeaas 47
B.6.1 OVEIVIEW .ttt ettt et e st e s ab et e e s b e e s s ab et e e s b e e e s s bt e e s b e e s e b e r e e s e r e s e b e re s s reee s e naree 47
B.6.2 WOTKFIOW. ...ttt h ettt e bttt e bt e she e sae e sa bt e bt et e e bt e bt e sbe e eabe et e e nbeenbeesheesaeesareeaee 48
B.6.3 NaAVIZatioN .o, 49
6.7 UPT Installation and DEPlOYMENTeiiiiiiiee ettt e re e e st e e e e aba e e e s sabee e e esabaeeeesnraeeeennsens 60
6.7.1 RElEASE CONTENES ..ccuveiiiiiieiieiie ettt ettt sttt e e e b e e s bt e s bt e st e s bt e bt e bt e bt e e reesaeesaneeaneenbeesreesanesanesane 60
6.7.2 INSTAllAtION IMOAESconeiiiieiie ettt et e b e st e s st st st e b e bt e s bt e s be e sae e s ae e et e e b e e sre e sanesane e 60
6.7.2.1 Single Installation, SINGE SCREMA........oci i e e et e e e et e e e et e e e e e eabe e e e e ateaeeeeabeeeeesnseeeeennsens 61
6.7.2.2 Single Installation, MUIIPIE SCHEMI@..........oiii et e e e e e e e be e e e e be e e e e e raee e eensees 61
6.7.2.3 Local Installation, LOCal SChemaooooiiiiiiii 62
o8 T 01T o] (o) Y/ 0 1T A g V=T ol] SRR 63
o S 0 1T o Lo}V 0 [T LAY =T o LSRR 63
7. CSM WEDb ServiCes USEIS GUILEeeiiieiiieiiiiiieeieett ettt sttt ettt ettt sttt et e bt e s bt e s me e st e et e e nteesbeesbeesanesanesane 67
7.1 L0 A =T oV = YRS PR SRR 67
7.2 Web Service WSDL and OPeratioN. iiiieee ettt e e e e e eecttee e e e e e e e st e e e e e e e e sssanbaaaeeeaeesssanssaaaeeeeeesanssnsennaeaseean 67
7.2.1 SECUNItY WED SEIVICE WSDL ..ci ittt ettt e e et e e e e be e e e et e e e e abeee e e eabeeeeeeabaeeessabteeeesnbeeeeesnseeeeennsees 67
72,2 LOGIN OPRIAtioN oo e e e e e e e e e e e e e 67

7.2.3 CheckPermission OPEIratioN.........ccuuiiiiiiiieciiiiiieee e ettt e e e e e e ectre e e e e e e e e s abtaaeeeeeesesasnbaaaeeeaeesesannseaaseaeeeeasassssneaaaanenn 68

7.3 WoOrkflow for CSIM SECUILY WED SEIVICE.......uuiiiiee ettt e e e e e et e e e e e e e e atb e e e e e e e e e esnnsaaeeeaaeeas 69
7.4 Installation Of CSM SECUITY WED SEIVICEuuii ittt et e e et e e e bee e e e atae e e esabae e e esaraeeeensees 70
8. CSM Instance Level and Attribute LEVEl SECUIILYuii ittt e re e e e e b e e e e srae e e eennes 72
20 0 A 4 o Tl (o G 1V I 0 OO OO TP PP PRUPRPRRPPR 72
8.1.2 INSTANCE LBVEL.. ittt ettt ettt ettt e sae e st e e bt e e st et e bt e e e a b e e e b e e e e b et e he e e ente e e beeeeabee e bae e nreesbeeesareeeanes 73
8.1.2.1 ReqUIrEMENES AQUIESSEU....ciiiiiiiii it cetiee ettt e et e e e et e e e e s be e e e ssabee e e sasbeeeesaabeeeeesaseeeeesaseeeesanseeesesnseeesennsens 73
L A A O V=Y o Y| I LTy - o PRSPPI 74
8.1.2.3 Provisioning INStANCE LEVEI SECUITY ...eiiiiiiieiiciiee ettt ettt e e et e e e e tte e e s eate e e e e eabe e e e e abeee e e nbteeeeenreeesennsees 74
8.1.2.4 USING INSTANCE LEVEI SECUIITY .. uvviiiiiiee ettt ettt e e et e e e e et e e e e e ta e e e e eabeeeeeaabeeeeesabeeeeeenbeeeseanseeesennsens 77
8.1.2.5 KNOWN ISSUBS.....iiiiiiiiiiii ittt et e e s s et e s s b et e s s ab et e s s ab e e e s s abe e e s s aab e e e s s aabae e s saras 78
8.1.3 ALLIIDULE LEVEI ..ottt ettt e e a bt e sttt e s ab e st e e s bt e e s be e e hbe e e ate e e b ee e s abeesbteeanbeesbteesabeeeanee 79
8.1.3.1 ReqUIrEMENtS AQUIESSEU....cciiiiieei ittt cctiee ettt et e e et e e e e s be e e e seabeee e e nbeeeesaabeeeeeaabeeeeesaseaeeeanseaesesnsenesennsens 79
S R T A 0 V7= = Y| I 7Ty - o USSR 79
8.1.3.3 Provisioning AttribULE LEVEI SECUITLYccuviii ittt et e e e et e e e et e e e e et e e e e abe e e s eenbtaeeeenraeaeennsens 80
8.1.3.4 USING ALLrIDULE LEVEI SECUITY .. uviiiiiiee ettt ettt e e et e e e e et e e e s e be e e e eeabeeeeesabeeeeeeabeeeeeanbeeeeeanseeaeennsens 80
8.1.3.5 KNOW ISSUBS....ciiiiiiiiiiiiiiiet ettt e e e e s s e e b et e e e e e s e b e bt e e e e e s s bbb e b ee e e e e e s nrreneeeeeeeas 80
S T O |V Yo=Y < AV =T o1 T PP PP PSR 81
9.1 OVEBIVIBW ...ttt ettt ettt ettt e e ettt e e e bttt e e e abe et e e ease et e s e ase et e s e ase et e e ease et e s eass et e e e asb et e e s anb e eeeeasbeeeesnneeeesannbeeesnnneeesannneeens 81
0 0 A 1 o Vo] 1T oY=V oY - 1 o o ST RR 81
0 0 05t R |V =Y o To Yo B =AY B <Yl U o VSRS 82
9.1.1.2 Method Parameter LEVEI SECUIILYccciccuiiiiiiiiie e cciee ettt e e ettt e e e et e e e e tee e e e abee e e eeabaeeeessbeeeeeenbeeeaeanseneeennsens 83
0.1.2 WOTKFIOW. ..ttt sttt st et e b e s bt e s e e st e s bt e bt e bt e e b e e e re e s ae e e et et e e be e sre e sanenane e 83
9.1.3 Integrating @and CONFIGUIINGccocuiiii ittt e eree e e et e e e s et e e e s e abeee e seabeeeeeaabteeeesareeeeesnseeeeesnseeesennsens 83
9.1.3.1 CONTIGUIE ACEEI SECUIILY .uvtiiiiiiiiee ittt e ettt ettt e e erre e e et e e e st e e e e ebeeeessabeeeeeaabeeeeeanseeeseaaseeeeesasteeeessseeesesnseneesnnsens 84
9.1.3.2 Database properties and CONTIGUIAtIONcoccuiiiiiiiiie e et e et e e e e et e e e e eabe e e s e aba e e e esabeeaeennnees 84

Create and Prime Databasecoo ittt sttt ettt e s bt e s bt e s at e e a bt e bt e bt e e bt e ehe e eat e et e e beenbeenheesaeesaneeane 85

(001 0) {T= (V=T D] = 1o 1 ol ISR 85

Configure Hibernate Configuration file.........cocuueiiiiii e e e e 86
9.1.3.3 Configure JAAS LOGINMOTUIEccooeiieie ettt ettt e e e tee e e et e e e s eaba e e e e sabeeeeeeabteeeesabeeesesnseneeennsens 87

Configuring @ Login MOAUIE IN JAAS ... ettt e e et e e e et e e e e e beee e seabeae e e ntaeeeeanseeeeesnbeeeeesaseeeeennsens 87
9.1.3.4 User provisioninNg Via UPT ... 89
10. (O] o= T €T g o IRV =Y = = [0 o SRR 89
0 R N0 o 1= o1 4 or= 1 o o ISP P USSP 89

10.1.1 CSM configuration for [dP / AUtheNntiCation SEIVICEc.iciieiieiie ettt ettt e ere e te e eeeveebeebeesbeesteesanas 89

10.1.1.1 Configuring RDBMS Login Module for CSM-caGrid IDP INtegration.........ccccciiiieieiiiccciiieeee e ecereeee e 90

10.1.1.2 Configuring LDAP Login Module for CSM-caGrid IDP INtegrationcccceeecciiiiieieeieeccciiieeee e e e e e 91
N0 NU d o Lo T b2 o T PO TSP PO ORISR 92
10.2.1 Using Grid Group Nam s for Check PermiSSiONcccuiiiiiiiiieeciiiie ettt e srrae e e e tae e e s saae e e eeabaeeeennnaeee s 92
10.3 Migrating from CSM V3.2 0 CSIMI VA.D......oiiieiiiieeeiieee e ectieee e ettt e e e ete e e e s eata e e e eataeeeensaeeesnsaaeesstaeeeessaeeesansseeesansseeens 92
10.3.1 MYSQL MIZIatiON .eeeeeeiieeiiiiieeee et e ettt e e e sttt e e e e e s sttt e eeee e e e s aabebaeaeesesasaabebaeeeesesassssanaeeeessssssnnenaaeeesssanannn 92
O T A O = T L= VT (Y o T o [PRSI 93
Appendix A: CSM Acegi Sample configuration FilEoui i e e s e e s s bee e e e snraeeeeans 93

(€] Lo TY- SRR 97

CSM Guide for Application Developer

1. Introduction

This document provides all the information application developers need to successfully integrate with
NCICB’s Common Security Module (CSM). The CSM was chartered to provide a comprehensive solution to
common security objectives so not all development teams need to create their own security methodology.
CSM is flexible enough to allow application developers to integrate security with minimal coding effort.
This phase of the Common Security Module brings the NCICB team one step closer to the goal of
application security management, single sign-on, and Health Insurance Portability and Accountability Act
(HIPPA) compliance.

2. Scope

This document is a master document that covers all CSM modules that shows how to deploy and integrate
the CSM services, including Authentication, Authorization, User Provisioning Tool, CSM Security Web
Services, CSM Acegi Adapter, CSM caGrid Integration. This document covers the User Guide and
Application Developers Guide for all modules of CSM including CSM API, CSM UPT, CSM Security
Webservices, CSM Acegi Adapter and CSM caGrid Integration.

3. Using this Guide

Begin by reading the CSM Overview followed by CSM API User Guide sections. It will give detailed
knowledge and workflow for a User to successfully integrate CSM into their applications. The CSM UPT
User Guide section gives the workflow and details about the Authorization Policy provisioning necessary to
use CSM for Authentication or Authorization. Once the primary features of Authentication, Authorization
and User Provisioning are understood, read the CSM Security Web Services Guide section to know how to
expose the CSM authentication and Authorization service features to web service consumers. Read the
CSM Instance Level and Attribute Level Security section to know about the new feature introduced in CSM
v4.0. For applications that use or want to use Acegi and leverage CSM Authentication and Authorization
features, they should go through the CSM Acegi Adapter section to read how method level and method
parameter level security is implemented and available out of the box. This section provides a workflow and
steps necessary to integrate CSM Acegi adapter into existing or new applications using the Acegi
framework. Next read the CSM caGrid Integration section know how to level CSM in the caGrid
environment.

4.

CSM Overview

4.1 Explanation

The CSM provides application developers with powerful security tools in a flexible delivery. CSM provides
solutions for:

1)

2)

3)

4)

5)

Authentication - validating and verifying a user’s credentials to allow access to an application. CSM,
working with credential providers (Lightweight Directory Access Protocol (LDAP), Relational Database
Management Systems (RDBMS), etc.), confirms that a user exists and that the password is valid for that
application. It also provides a lockout manager which locks out unauthorized users for a pre-configured
amount of time after the (also pre-configured) number of allowed attempts is reached.
Authorization - granting access to data, methods, and objects. CSM incorporates an Authorization
schema and database so that users can only perform the operations or access the data to which they
have access rights.
Instance and Attribute level security - allows users to perform instance level filtering of data. The User
Provision Tool (UPT) allows administrators to provision security filters for instances of domain classes and the
API filters the results of the queries based on the access policy. The filtering of data is done at the database level
with minimum overheads. It also does attribute level filtering of data based on user permissions.
User Provisioning - creating or modifying users and their associated access rights to your application
and its data. CSM provides a web-based UPT that can easily be integrated with a single or multiple
applications and authorization databases. The UPT provides functionality to create authorization data
elements like Roles, Protection Elements, Users, etc., and also provides functionality to associate them
with each other. The runtime API can then use this authorization data to authorize user actions. The
UPT consists of two modes — Super Admin and Admin.
a. Super Admin — accessed by the UPT’s overall administrator; used to register an application, assign
administrators, and create or modify standard privileges.
b. Admin — used by application administrators to modify authorization data, such as roles, users,
protection elements, etc
Audit Logging - In an effort to make CSM compliant with CRF 21/ part 11, CSM provides auditing and
logging functionality. CSM uses NCICB’s Common Logging Module (CLM), which is another caCORE
product, for the purpose of event logging as well as automated object state change logging into a
persistent database.

Credential Providers

Common
RDBMS Logging
Database

Authenticé

Application ABC

Audit Messages

21e0NRUBLANY

Authorize

Web server
User

Provisioning

Figure 4.1 CSM Architecture

CSM works with Java Authentication and Authorization Service (JAAS) to authenticate and authorize for
the Application ABC. To authenticate, it references credential providers such as an LDAP or RDBMS. CSM
can be configured to check multiple credential providers in a defined order. To authorize, CSM refers to
the Authorization Schema. The Authorization Schema contains the Users, Roles, Protection Elements, etc.,
and their associations, so that the application knows whether or not to allow a user to access a particular
object. The Authorization data can be stored on a variety of databases. It is created and modified by the
Application Administrator using the web-based UPT.

CSM uses NCICB’s Common Logging Module (CLM) to perform all the Audit and Logging. CSM logs all of the
events and object state changes (security objects stated below in Table 4-1). These logs will be stored in a
separate Common Logging Database for backup and review. Since logging can be configured using log4j,
client applications have control over the logging of audit trails. More details regarding audit logging by
CSM can be found in the Audit Logging section.

4.2 Security Concepts

In order to successfully integrate CSM with an application, it is important to understand the definitions for
the security concepts defined in Table 4.1. Application Developers should understand these concepts and
begin to understand how they apply to their particular application.

Security Concept

Definition

Application Any software or set of software intended to achieve business or
technical goals.

User A User is someone that requires access to an application. Users can
become part of a Group, and can have an associated Protection Group
and Roles.

Group A Group is a collection of application users. By combining users into a

Group, it becomes easier to manage their collective roles and access
rights in your application.

Protection Element

A Protection Element is any entity (typically data) that has controlled
access. Examples include Social Security Number, City, and Salary.
Protection Elements can also include operations, buttons, links, etc.

Protection Group

A Protection Group is a collection of application Protection Elements.
By combining Protection Elements into a Protection Group, it becomes
easier to associate Users and Groups with rights to a particular data
set. Examples include Address and Personal Information.

Privilege A Privilege refers to any operation performed upon data. CSM makes
use of a standard set of privileges. This will help standardize
authorization to comply with JAAS and Authorization Policy and allow
for adoption of technology such as SAML in the future.

Role A Role is a collection of application Privileges. Examples include

Record Admin and HR Manager.

Table 4.1 Security concept definitions

CSM users need to identify aspects of the application that should be labeled as Protection Elements. These
elements are combined to Protection Groups, and then users are assigned Roles for that Protection Group.

Shown in Table 4-1 are definitions of related security terms.

Related Concept Definition

A credential is a data or set of data which represents an individual unique to
a given application (username, password, etc.). Credential providers are
trusted organizations that create secure directories or databases that store
credentials. In an authentication transaction, organizations check with the
credential providers to verify entered information is valid. For example, the
NCI network uses a credential provider to verify that a user name and
password match and are valid before allowing access.

Credential Provider

Set of Java packages that enable services to authenticate and enforce access
controls upon users. JAAS implements a Java version of the standard

IAAS Pluggable Authentication Module framework, and supports user- based
authorization.
Credential providers may choose to store credential information using a
LDAP

directory based on LDAP. An LDAP is simply a set of protocols for accessing
information directories. Using LDAP, client programs can login to a server,

Related Concept

Definition

access a directory, and verify credential entries.

Credential providers may choose to store credential information with a

RDBMS RDBMS. Unlike with LDAP, credential data is stored in the form of related
tables.
Login Module Responsible for authenticating users and for populating users and groups. A

Login Module is a required component of an authentication provider, and
can be a component of an identity assertion provider if you want to develop
a separate LoginModule for perimeter authentication. LoginModules that
are not used for perimeter authentication also verify the proof material
submitted (for example, a user password).

Table 4-1 related security concept definitions

4.3 Minimal System Requirements

The following software is required and not included with CSM Software as listed in Table 4-3. The
software name, version, description, and URL hyperlinks are indicated in the table.

Software Description Version URL
JDK The J2SE Software Development Kit 1.5.0_11 | http://java.sun.com/j2se/1.5.0/d
(SDK) supports creating J2SE or higher | ownload.html
applications
Oracle Database Server’ 9i http://www.oracle.com/technol
ogy/products/oracle9i/index.ht
ml
MySQL 5.0.27 http://dev.mysql.com/download
s/mysql/5.0.html
JBoss Application Server' 4.0.5 http://labs.jboss.com/jbossas/do
whnloads
Tomcat 5.5.20 http://tomcat.apache.org/downl
oad-55.cgi
Ant Build Tool 1.6.5 http://ant.apache.org/bindownl
or higher | oad.cgi

Table 4-3 Minimal software requirements

' Only one is required.

5. CSM API User Guide

http://java.sun.com/j2se/1.5.0/download.html
http://java.sun.com/j2se/1.5.0/download.html
http://www.oracle.com/technology/products/oracle9i/index.html
http://www.oracle.com/technology/products/oracle9i/index.html
http://www.oracle.com/technology/products/oracle9i/index.html
http://dev.mysql.com/downloads/mysql/5.0.html
http://dev.mysql.com/downloads/mysql/5.0.html
http://labs.jboss.com/jbossas/downloads
http://labs.jboss.com/jbossas/downloads
http://tomcat.apache.org/download-55.cgi
http://tomcat.apache.org/download-55.cgi
http://ant.apache.org/bindownload.cgi
http://ant.apache.org/bindownload.cgi

5.1

Workflow

This workflow section outlines the basic steps, both strategic and technical, for successful CSM
integration.

1)

2)

3)

4)

5)

6)

7)

8)
9)

Decide which services you would like to integrate with an application. If the application should
authenticate users against an LDAP or other directory, select Authentication. If granular data
protection is important, also integrate with the authorization and provisioning services. These
options allow administrators to specify which users have access to particular components of the
application.

Read the CSM Guide for Application Developers (this document). It provides an overview, workflow,
and specific deployment and integration steps. If using the provisioning service, also read the UPT
User Guide available in this document

Appoint a Security Schema Administrator who is familiar with the application and its user base.
Using the User Provisioning Tool (UPT), these individuals input users, roles, etc., and ultimately gives
privileges to users for certain application elements.

Determine a security authorization strategy. In this step, the Schema Administrator and the
application team determines what data or links should be protected and what groups of people
should have access to what.

Decide upon a deployment approach. As discussed in Section 6.7.2, authorization data can be stored
on separate servers or as part of a common authorization schema. Similarly, the UPT can be hosted
locally or commonly. Your decision may be made based on speed, security, user commonality, or
other factors.

Deploy Authentication, Authorization, and User Provisioning. These steps are listed in detail in this
document.

Decide if you want to enable Audit Logging for these services or not. If yes then configure Audit
Logging as explained later in the document

Input the authorization data using the UPT.

Integrate the application code using the integration steps for Authentication, Authorization, and User
Provisioning.

10) Test and refine CSM integration with your application. Confirm that your authorization policy and

5.2

implementation meets requirements.

API Services

The Security API’s consist of primary components — Authentication, Authorization and User Provisioning.

The following corresponding managers control these components:

o AuthenticationManager — for Authentication

e AuthorizationManager — for Authorization and User Provisioning.

AuthenticationManager

The AuthenticationManager is an interface that authenticates a user against a credential provider. See
Integrating with the CSM Authentication Service to learn how to integrate with the
AuthenticationManager. Developers will work primarily with the login method. Detailed descriptions about
each method’s functionality and its parameters are present in the CSM API Javadocs.

AuthorizationManager

The AuthorizationManager is an interface which provides run-time methods with the purpose of checking
access permissions. See section Integrating with the CSM Authorization Service to learn how to integrate
with the AuthorizationManager. This manager also provides an interface where application developers
can provision user access rights. The user provisioning functionality is primarily used internally by the User
Provisioning Tool (UPT) hence there is no integration shown in this document. Detailed descriptions about
each method’s functionality and its parameters are present in the CSM API Javadocs.

5.3 Authentication

The CSM Authentication Service provides a simple and comprehensive solution for user authentication.
Developers can easily incorporate the service into their applications with simple configuration and coding
changes to their applications. Authentication service allows authentication using LDAP and RDBMS
credential providers.

5.3.1 Integrating with the Authentication Service
Importing the CSM Authentication Manager Class

To use the CSM Authentication Service, add the highlighted import statements (last two) as shown in
Figure 5.1 to the action classes that require authentication.

import gov.nih.nci.abcapp.UserCredentials;

import gov.nih.nci.abcapp.model.Form;

import gov.nih.nci.abcapp.util.Constants;

import gov.nih.nci.security.SecurityServiceProvider;

import gov.nih.nci.security.AuthenticationManager;

Figure 5.1 Example ABC application - Import statements in an action class

The class SecurityServiceProvider is the common interface class exposed by the CSM application. It
contains methods to obtain the correct instance of the AuthenticationManager configured for that
application. The client application abcapp then uses the AuthenticationManager to perform the actual
authentication using the CSM.

Using the CSM Authentication Manager Class

Figure 5.2 illustrates an example of how to use the CSM AuthenticationManager Service class in the ABC
application.

UserCredentials credentials = new UserCredentials();
credentials.setPassword (Form.getPassword());
credentials.setUsername (Form.getUsername ()) ;

//Get the user credentials from the database and login
try{

AuthenticationManager authenticationManager =
SecurityServiceProvider.getAuthenticationManager (“abcapp”) ;

boolean loginOK =
authenticationManager.login (credentials.getUsername (),
credentials.getPassword()) ;

if (loginOK)System.out.println ("SUCESSFUL LOGIN") ;
else System.out.println ("ERROR IN LOGIN");
}catch (CSException cse) {

System.out.println ("ERROR IN LOGIN");

Figure 5.2 Example code to use the CSM AuthenticationManager Service class in the ABC application

The client class obtains the default implementation of the AuthenticationManager by calling the static
getAuthenticationManager method of the SecurityServiceProvider class by passing the application Context
name — in this example “abcapp”. It then invokes the login method - passing the user’s ID and password.
Note that the application name should match the name used in the configuration files for JAAS to work
correctly. If the credentials provided are correct then a Boolean true is returned indicating that the user is
authenticated. If there is an authentication error, a CSException is thrown with the appropriate error
message embedded.

5.3.2 Installation and Deployment configurations

This section serves as a guide to help developers integrate applications with CSM’s Authentication Service.
It outlines a step by step process that addresses what developers need to know in order to successfully
integrate CSM’s Authentication, which includes:

e (CSM API jar placement

e Database properties and configuration

e LDAP properties and configuration

e If audit logging, CLM API jar placement and configuration.

The CSM Authentication Service is available for any application and it can be used exclusively and is
effective on its own. CSM’s Authentication Service does not need to replace existing authentication in an
application. It can be used to supplement an application’s current authentication mechanism. Currently,
only RDBMS-based and LDAP-based authenticated is supported.

5.3.2.1 JAR Placement

The CSM API’s Application is available as a JAR file, csmapi.jar, which needs to be placed in the class path
of the application. Along with this JAR, there are many supporting JARs on which the CSM API depends. In
case of web applications, these should be added in the folder <application-web-root>\WEB-INF\lib.

5.3.2.2 Configuring Lock out in Authentication Manager

If desired the application developers can use the optional user lockout feature provided by CSM’s default
JAAS implementation of Authentication Manager. Three properties are available to configure the lockout
feature and its use. For the client application to use the lockout manager all the three properties must
have valid values or the lockout manager will be disabled. To be valid, these values must be non-zero
positive integers.

e lockout-time: This property specifies the time in milliseconds that the user will be locked out after
the configured number of unsuccessful login attempts has been reached.

¢ allowed-login-time: This property specifies the time in milliseconds in which the configured
number of unsuccessful login attempts must occur in order to lock the user out.

e allowed-attempts: This property specifies the number of unsuccessful login attempts allowed
before the user account is locked out.

The default values for the lockout parameters are as given below

e |ockout-time = 1800000 milliseconds
e allowed-login-time = 60000 milliseconds

e allowed-attempts =3

Alternatively the user, in the client application class, can call and provide values for the lockout parameters
by using the following method of SecurityServiceProvider Class.

public static AuthenticationManager getAuthenticationManager(String applicationContextName, String
lockoutTime, String allowedLoginTime, String allowedAttempts) throws CSException, CSConfigurationException

5.3.2.3 RDBMS Credential Provider properties and Login Module configuration

In order to authenticate using the RDBMS database, developers must provide:

e The details about the database
e The actual query which will make the database calls

The CSM goal is to make authentication work with any compatible application or credential provider.

Therefore we use the same Login Modules to perform authentication, and these must possess a standard
set of properties.

The properties needed to establish a connection to the database include:

Driver - The database driver loaded in memory to perform database operations
URL - The URL used to locate and connect to the database

User - The user name used to connect to the database

Password - The password used to connect to the database

The following property provides the query to be used for the database to retrieve the user.

Query - The query which will be fired against the RDBMS tables to verify the user id and the password
passed for authentication

The Configuring a Login Module in JAAS section on this page shows how to configure using JAAS or the
JBoss login-config.xml file.

Configuring a Login Module in JAAS

Developers can configure a login module for each application by making an entry in the JAAS configuration
file for that application name or context.

The general format for making an entry into the configuration files is shown in Figure 5.3.2.

Application 1 {
ModuleClass Flag ModuleOptions;
ModuleClass Flag ModuleOptions;

2
Application 2 {
ModuleClass Flag ModuleOptions;

5

Figure 5.3.2 configuring a login module

For abcapp, which uses RDBMSLoginModule, the JAAS configuration file entry is shown in Figure 5.3.2.

abcapp

{
gov.nih.nci.security.authentication.loginmodules.RDBMSLoginModule Required
driver="oracle.jdbc.driver.OracleDriver"
url="jdbc:oracle:thin:@oracle_db_server:1521:abcappdb"
user="USERNAME"
passwd="PASSWORD"
query="SELECT * FROM users WHERE username=? and password="?"

Figure 5.3.2 abcapp JAAS configuration file entry

The configuration file entry contains the following:
e The application is abcapp.
e The ModuleClass is gov.nih.nci.security.authentication.loginmodules.RDBMSLoginModule

e The Required flag indicates that authentication using this credential source is a must for overall
authentication to be successful.

e The ModuleOptions are a set of parameters which are passed to the ModuleClass to perform its
actions.

In the prototype, the database details as well as the query are passed as parameters:
driver="oracle.jdbc.driver.OracleDriver"

url="jdbc:oracle:thin:@oracle_db_server.nci.nih.gov:1521:abcappdb"
user="USERNAME"

passwd="PASSWORD"

query="SELECT * FROM users WHERE username=? and password=?"

As shown in Figure 5.4, since ‘abcapp’ application has only one credential provider, only one
corresponding entry was made in the configuration file. If the application uses multiple credential
providers, then the LoginModule’s can be stacked. A single configuration file can contain entries for
multiple applications.

Configuring a Login Module in JBOSS

If an application uses the JBoss Server, developers can perform login module configuration differently.
Rather than creating a JAAS configuration file, simply use the JBoss login-config.xml file which is located at
{iboss-home}\server\{server-name}\conf\login-config.xml.

Shown in Figure 5.5 is the entry for the abcapp application:

<application-policy name = "abcapp">
<authentication>
<login-module code = "gov.nih.nci.security.authentication.loginmodules.RDBMSLoginModule" flag = "required" >
<module-option name="driver"> oracle.jdbc.driver.OracleDriver</module-option>
<module-option name="url">jdbc:oracle:thin:@oracle_db_server:1521:abcappdb</module-option>
<module-option name="user">USERNAME</module-option>
<module-option name="passwd">PASSWORD</module-option>
<module-option name="query">SELECT * FROM users WHERE username=? and password=?</module-option>
<module-option name="encryption-enable">YES</module-option>
</login-module>
</authentication>

</application-policy>

Figure 5.5 Example abcapp entry in login-config.xm/

As shown in this example:

e The application-policy specifies the application for which we are defining the authentication policy
which is abcapp.

e The login-module is the LoginModule class which is to be used to perform the authentication task;
in this case it is gov.nih.nci.security.authentication.loginmodules.RDBMSLoginModule

e The flag provided is “required”.

e The module-options list down the parameters which are passed to the LoginModule to perform the
authentication task. In this case they are:

<module-option name="driver">oracle.jdbc.driver.OracleDriver</module-option>

<module-option name="url">jdbc:oracle:thin:@cbiodb2-d.nci.nih.gov:1521:cbdev</module-option>
<module-option name="user">USERNAME</module-option>

<module-option name="passwd">PASSWORD</module-option>

<module-option name="query">SELECT * FROM users WHERE username="?

and password=?</module-option>

Enabling Encryption in the RDBMS Login Module

Since CSM v3.2 the RDBMS Login Module is now enhanced to support encrypted passwords. CSM 4.0 now
by default encrypts passwords and stores them into the CSM database. Hence if an application is using the
CSM’s User Table as credential provider then it needs to specify to the RDMBS Login Module to use
encryption as shown Figure 5.5 in the JBoss login-config.xml entry where

<module-option name="encryption-enable">YES</module-option>

Encryption-enable option with a YES value uses the default CSM encryption to encrypt the user entered
password before verifying it against the CSM’s User Table.

5.3.2.4 LDAP Credential Provider properties and Login Module configuration

The CSM default implementation also provides an LDAP-based authentication module to be used by the
client applications. In order to authenticate using the LDAP, developers must provide:

e The details about the LDAP server

e The label for the user ID Common Name (CN) or User Identification (UID) in the LDAP server

The properties needed to establish a connection to the LDAP include:
e IdapHost — The URL of the actual LDAP server.
e |dapSearchableBase — The base of the LDAP tree from where the search should begin.

e |dapUserldLabel — The actual user id label used for the CN entry in LDAP.

For LDAP Credential Providers that don’t allow anonymous binding to verify the user credentials, then in
that case you will need to provide the common admin user name and password as additional properties to
the LDAP Login module configuration.

e IdapAdminUserName — The fully qualified name of the common admin user or the look up which
would be used to bind to the LDAP server to be able to verify individual user ids and password

o IdapAdminPassword — Password for the LDAP Admin User mentioned above.

Configuring LDAP Login Module in JAAS

For abcapp, which uses LDAPLoginModule, the JAAS config file entry is shown in Figure 5.6.

abcapp

gov.nih.nci.security.authentication.loginmodules.LDAPLoginModule Required
IdapHost= “Idaps://ncids2b.nci.nih.gov:636”
IdapSearchableBase= “ou=nci,o=nih”

IdapUserldLabel="cn”;

Figure 5.6 Example JAAS configuration file entry

As shown in Figure 5.6:
e The application is abcapp.
e The ModuleClass is gov.nih.nci.security.authentication.loginmodules.LDAPLoginModule.

e The Required flag indicates that authentication using this credential source is a must for overall
authentication to be successful.

o The LDAP details are passed:
IdapHost="Idaps://ncids2b.nci.nih.gov:636"
IdapSearchableBase= “ou=nci,0o=nih”

IdapUserldLabel="cn”

Since abcapp has only one credential provider, only one corresponding entry was made in the
configuration file. If the application uses multiple credential providers then the LoginModules can be
stacked. A single configuration file can contain entries for multiple applications.

Configuring LDAP Login Module in JBoss

If an application uses the JBoss Server, developers can perform login module configuration differently.
Rather than creating a JAAS configuration file, simply use the JBoss login-config.xml file which is located at
{iboss-home}\server\{server-name}\conf\login-config.xml.

Shown in Figure 5.7 is the entry for the abcapp application:

<application-policy name = "abcapp">
<authentication>
<login-module code = "gov.nih.nci.security.authentication.loginmodules.LDAPLoginModule" flag = "required" >
<module-option name="ldapHost">ldaps://ncids2b.nci.nih.gov:636</module-option>
<module-option name="ldapSearchableBase">ou=nci,o=nih</module-option>
<module-option name="IdapUserldLabel">cn</module-option>
</login-module>
</authentication>

</application-policy>

Figure 5.7 Example LDAP JBoss configuration file

As shown in Figure 5.7:
e The application-policy is the application for which we are defining the authentication policy —in this
case abcapp.

e The login-module is the LoginModule class which is to be used to perform the authentication task;
in this case it is gov.nih.nci.security.authentication.loginmodules.LDAPLoginModule.

e The flag provided is “required”.

e The module-options list down the parameters which are passed to the LoginModule to perform the
authentication task. In this case they are:

<module-option name="ldapHost">ldaps://ncids2b.nci.nih.gov:636</module-option>
<module-option name="ldapSearchableBase">ou=nci,0o=nih</module-option>

<module-option name="ldapUserldLabel">cn</module-option>

Configuring LDAP Login Module using Anonymous Bind
If an application uses an LDAP Server that doesn’t support anonymous binds to perform a lookup, in that
case you need to specify an admin (or a lookup user) id and a password to be able to bind to the LDAP
server to verify user name and password. In order to do so additional parameters needs to be passed to
the LDAP LoginModule entry in the JAAS Login Configuration file. Following is an entry for the same using
JBoss’s Login-Config.xml file

Shown in Figure 5.7 is the entry for the abcapp application:

<application-policy name = "OpenLDAP">
<authentication>
<login-module code = "gov.nih.nci.security.authentication.loginmodules.LDAPLoginModule" flag = "required" >
<module-option name="ldapHost">ldap://ncicbds-dev.nci.nih.gov:389</module-option>
<module-option name="ldapSearchableBase">ou=csm,dc=ncicb-dev,dc=nci,dc=nih,dc=gov</module-option>
<module-option name="IdapUserldLabel">uid</module-option>

<module-option name="IdapAdminUserName">uid=csmAdmin,ou=csm,dc=ncicb-dev,dc=nci,dc=nih,dc=gov</module-
option>

<module-option name="ldapAdminPassword">PASSWORD</module-option>
</login-module>
</authentication>

</application-policy>

Figure 5.8 Example LDAP JBoss configuration file for LDAP Servers requiring Binding

As shown in Figure 5.7:

e The application-policy is the application for which we are defining the authentication policy —in this
case abcapp.

e The login-module is the LoginModule class which is to be used to perform the authentication task;
in this case it is gov.nih.nci.security.authentication.loginmodules.LDAPLoginModule.

e The flag provided is “required”.

e The module-options list down the parameters which are passed to the LoginModule to perform the
authentication task. In this case they are:

<module-option name="ldapHost">ldaps://ncids2b.nci.nih.gov:636</module-option>
<module-option name="ldapSearchableBase">ou=nci,0o=nih</module-option>
<module-option name="ldapUserldLabel">cn</module-option>

<module-option name="IdapAdminUserName">uid=csmAdmin,ou=csm,dc=ncicb-
dev,dc=nci,dc=nih,dc=gov</module-option>

<module-option name="ldapAdminPassword">PASSWORD</module-option>

5.3.2.5 Activating CLM Audit Logging

In order to activate the CLM’s Audit Logging capabilities for Authorization, the user needs to follow the
steps to deploy Audit Logging service as mentioned in the Audit Logging section below

5.4 Authorization

The security APIs have been provided to facilitate the security needs at run time. These APIs can be used
programmatically. They have been written using Java, so it is assumed that developers know the Java
language.

5.4.1 Integrating CSM API’s Overview

This section provides instruction for integrating the CSM APIs with JBoss. The integration is flexible enough
to meet the needs for several scenarios depending on the number of applications hosted on JBoss and
whether or not a common schema is used. Following are the scenarios:

1. JBOSS is hosting a number of applications
a. use common schema
b. use separate schema
2. JBOSS is hosting only one application
a. use common schema
b. use separate schema

5.4.1.1 Integrating with the CSM Authorization Service

Importing and Using the CSM Authorization Manager Class

To use the CSM Service, add the highlighted import statements (last two) as shown in Figure 5.9 to the
action classes that require authorization.

import gov.nih.nci.abcapp.UserCredentials;

import gov.nih.nci.abcapp.model.Form;

import gov.nih.nci.abcapp.util.Constants;

import gov.nih.nci.security.SecurityServiceProvider;

import gov.nih.nci.security.AuthorizationManager;

Figure 5.9 Example ABC application - Import statements in an action class

The class SecurityServiceProvider is the common interface class exposed by the CSM application. It
contains methods to obtain the correct instance of the AuthorizationManager configured for that

application. The client application abcapp then uses the AuthorizationManager to perform the actual
authentication using the CSM.

Figure 5.10 illustrates an example of how to use the CSMService class in the ABC Application.

try {

AuthorizationManager authorizationManager =
SecurityServiceProvider.getAuthorizationManager(“abcapp”);

boolean hasPermission = authorizationManager.checkPermission(“user name” , “resource name”,
“operation”);

if (hasPermission){ System.out.printIn(“PERMISSION GRANTED.");
lelse{ System.out.printin(“PERMISSION DENIED "); }
}catch (CSException cse){

System.out.printIn("ERROR IN AUTHORIZATION ");

Figure 5.10 Example code to use the CSMService class in the ABC application

The client class obtains the default implementation of the AuthorizationManager by calling the static
getAuthorizationManager method of the SecurityServiceProvider class by passing the application Context
name — in this example “abcapp”. It then invokes the checkPermission method — passing the user’s ID, the
resources which it is trying to access and the operation which it wants to perform. Note that the
application name should match the name used in the configuration files as well as configured in the
databases for authorization to work correctly. If the user has the required access permission, then a
Boolean true is returned indicating that the user is authenticated. In case of any authorization error, a
CSException is thrown with the appropriate error message embedded.

5.4.2 Software Products and Scripts
Table 5.11 displays descriptions of software products used for authorization.

Software Product Description

JBoss Server The JBoss/Server is the leading open source, standards-
compliant, J2EE-based application server implemented in 100%
Pure Java. A majority of caCORE applications use this server to
host their applications.

MySQL Database MySQL is an open source database. Its speed, scalability and
reliability make it a popular choice for Web developers. CSM
recommends storing authorization data in a MySQL database
because it is a light database, easy to manage and maintain.

Oracle Database Oracle’s relational database was the first to support the SQL

language, which has since become the industry standard. It is a
proprietary database which requires licenses.

Hibernate Hibernate is an object/relational persistence and query service
for Java. CSM requires developers to modify a provided Table
Hibernate configuration file (hibernate.cfg.xml) in order 511

to connect to the appropriate application authorization schema.

Authorization software products

File Description
hibernate.cfg.xml The sample XML file which contains the hibernate-
mapping and the database connection details.
AuthSchemaMySQL.sgl This Structured Query Language (SQL) script is
OR used to create an instance of the Authorization

AuthSchemaOracle.sql database §ch§ma which will be used for the purpose
of authorization. In 3.0.1 and subsequent releases,
OR this script populates the database with CSM
AuthSchemaPostgres.sql Standard Privileges that can be used to authorize
users. The same script can be used to create
instances of authorization schema for a variety of

applications.
DataPrimingMySQL.sqgl This SQL script is used for priming data in the
OR authorization schema. Note that if the authorization

database is going to host the UPT also then you
need to use UPT Data Priming Scripts instead and
add the application through the UPT

DataPrimingOracle.sqgl
OR
DataPrimingPostgres.sqgl

mysgl-ds.xml This file contains information for creating a
OR datasource. One entry is required for each database
oracle—ds . xml connection. Place this file in the JBoss deploy

directory.
OR y

Postgres-ds.xml

Table 5.12 Authorization configuration and SQL files

5.4.3 Installation and Deployment configurations

This section serves as a guide to help developers integrate applications with CSM’s Authorization Service. It
outlines a step by step process that addresses what developers need to know in order to successfully
integrate CSM’s Authorization, which includes:

e (CSM API jar placement
e Database properties and configuration
e If audit logging, CLM API jar placement and configuration.

5.4.4.1 Jar Placement
The CSM Application is available as a JAR which needs to be placed in the classpath of the application. Along with
this JAR, there are many supporting JARs on which the CSM API depends. These should be added in the folder
<application-web-root>\WEB-INF\1lib.

5.4.4.2 Database Properties and configuration

Create and Prime Database

Note: When deploying Authorization, application developers may want to make use of a previously-
installed common Authorization Schema. In this case, a database already exists, so skip this step. Follow
the steps below to install a new Authorization Schema. Note that the Authorization Schema used by the
run-time APl and the UPT has to be the same.

1.

Log into the database using an account id which has permission to create new databases. Since CSM

caCORE 3.0.1 release you can now use either MySQL or Oracle as your database of choice to host the
authorization data. Based on the database you have selected, you must follow the same step during

the entire installation

In the AuthSchemaMySQL.sql or AuthSchemaOracle.sql script, replace the “<<database_name>>" tag
with the name of the authorization schema (e.g. “caArray”).

Run this script on the database prompt. This should create a database with the given name. The
database will include CSM Standard Privileges.

Now in the DataPrimingMySQL.sql or DataPrimingOracle.sql file, replace the
“<<application_context_name>>" with the name of application. This is the key to derive security for
the application. This will be called application context name.

Now in the DataPrimingMySQL.sql or DataPrimingOracle.sql file, replace the
“<<super_admin_login_id>>", “<<super_admin_first_name>>" and “<<super_admin_last_name>>"
with the super admin user’s login id, first name and the password. NOTE: that the default password is
always “changeme” and this should used for logging into the application’s UPT for the first time. It

should be changed immediately

Run this script on the database prompt. This should populate the database with the initial data. Verify
this by querying the application table. It should include one record only.

Configure Datasource

1.

Modify the provided mysgl-ds.xml or oracle-ds.xml file which contains information for
creating a datasource. One entry is required for each database connection. Edit this file to replace:

a. The<<application context name>>tag with the name of the authorization schema (for
example, “csmupt”).

b. The <<database user_ id>> withthe useridand <<database user password>> with
the password of the user account, which will be used to access the Authorization Schema created
in Step 1 above.

c. The<<database url>> with the URL needed to access the Authorization Schema residing on
the database server.

Shown in Figure 5.11 is an example of the mysgl-ds.xml file.

<datasources>

<local-tx-datasource>
<jndi-name>csmupt</jndi-name>
<connection-url>jdbc:mysql://mysqgl_db:3306/csmupt</connection-url>
<driver-class>org.gjt.mm.mysql.Driver</driver-class>
<user-name>name</user-name>
<password>password</password>

</local-tx-datasource>

<local-tx-datasource>
<jndi-name>security</jndi-name>
<connection-url>jdbc:mysql://mysqgl_db:3306/csd</connection-url>
<driver-class>org.gjt.mm.mysql.Driver</driver-class>
<user-name>name</user-name>
<password>password</password>

</local-tx-datasource>

</datasources>

Figure 5.11 Example mysql-ds.xml file

2. Placethemysgl-ds.xml or oracle-ds.xml file in the JBoss deploy directory.

5.4.4.3 Activate CLM Logging

In order to activate the CLM’s Audit Logging capabilities for Authorization, the user needs to follow the
steps to deploy Audit Logging service as mentioned in the Audit Logging section.

5.5 User Provisioning Tool

CSM User Provisioning Tool is a web application used to provision an application’s authorization data. The
UPT provides functionality to create authorization data elements like Roles, Protection Elements, Users,
etc., and also provides functionality to associate them with each other. The runtime API can then use this
authorization data to authorize user actions.

See the User Provisioning Tool User Guide section for details on usage of UPT. The UPT User Guide section
also explains how to deploy the UPT from start to finish — from uploading the Web Application Archive
(WAR) and editing configuration files, to synching the UPT with the application.

5.6 Audit Logging

5.6.1 Introduction

In an effort to make CSM compliant with CRF 21/ part 11, CSM will provide auditing and logging
functionality. Currently CSM is using log4j for logging application logs. However, CRF21/ part 11 requires
that certain messages are logged in a specific way. For example, all objects should be logged in a manner
that allows them to be audited at later stage. There are two types of audit logging: Event logging and
Object state logging. Audit logging capability will be provided through the Common Logging API that is
available from clm.jar. Audit logging is configurable by the client application developer via an application
property configuration file. By placing the clm.jar along with the application property configuration file in
the same class path as the csmapi.jar file, the client application will be able to utilize the inbuilt audit
logging functionality. The logging results will be saved into a database or a flat text file depending on the
configuration. In addition, the logging can be enabled and disable for any fully qualified class name.

5.6.2 Purpose

This section serves as a guide to help developers integrate Audit Logging for the CSM. This section outlines
a step-by-step process that addresses what developers need to know in order to successfully integrate
Common Logging Module (CLM), including:

e Jar placement

e Configuring the JDBC Appender configuration file or the regular log4j configuration file

5.6.3 Jar Placement

The Audit Logging Application is available as a JAR, called clm.jar. This jar along with the csmapi.jar needs
to be placed in the classpath of the application. If the client application is integrating the CSM API’s as part
of a web application on JBoss then cimwebapp.jar should be placed in the lib directory of the WEB-INF
folder and the cIm.jar should be placed in the common lib directory of JBoss.

5.6.4 Enabling CLM APIs in Integration with CSM APIs

The various services exposed by CSM have been enabled for the purpose of Audit and Logging using the
CLM. If configured properly, client applications using the CSM APIs can enable the internal CLM based
Audit and Logging capabilities.

The CLM APIs provide the following major components of the Audit and Logging capabilities provided by
CSM.

Event Logging

Both the Authentication and Authorization service have been modified to enable the logging of every
event that the user performs. For Authentication Services, the CSM APIs log the login and logout events of
the user. In addition, when a user lockout event occurs, a log is generated that records the username that
was locked out. For Authorization Service the CSM APIs track all create, update and delete operations that
the client application invokes. The ‘read’ operations are not logged because they are not needed for Audit
and Logging.

The UPT can perform all of the audit and logging services because it uses the CSM APIs (which use CLM
APIs) to perform operations on the database.

Since the CLM APIs are based on logdj, the following logger names are used in the CSM APIs to perform the
event logging.

Authentication Event Logger Name:
CSM.Audit.Logging.Event.Authentication

Authorization Event Logger Name:
CSM.Audit.Logging.Event.Authorization

The log4j log level used for all the event logs is INFO

In order to enable these loggers, they should be configured in the log4j.xml config file of Jboss as shown in
JDBC Appender section below.

Object State Logging
The Authorization Service of the CSM is enabled to log the object state changes using the automated
object state logger available through CLM APIs. This logger tracks all the object state changes that are

made using the CSM APIs. It also uses the log4j based CLM APls and the following Logger Name:

Authorization Object State Logger Name:
CSM.Audit.Logging.ObjectState.Authorization

The log4j log level used for all the object state logs is INFO

In order to enable object state logging for CSM APIs the above mentioned logger should be configured in
the log4j.xml config file of JBoss as shown in JDBC Appender section below.

User Information

In order to track which user is performing the specific operation for the purpose of Audit Logging, CSM
needs to know user information like user id and session id and also the organization to which the user
belongs. Since these values are only available with the client application, they need to be passed to the
CSM APIs. To accomplish this, the client application must use the utility class “UserinfoHelper” provided by

the underlying CLM APIs. This information needs to be set before calling any of the create, update or
delete functions of the CSM APIs.

Common Logging Database

This is the persistence storage that the JDBC appender uses to store the Audit Logs. The Log Locator
application of CLM connects to this database to allow the user to browse the logs.

JDBC Appender

To persist these Audit logs the CLM provides an asynchronous JDBC Appender. Thus, an application that
wants to enable the audit logging for CSM APIs should also configure this Appender. A sample log4j entry is
show below.

<?xml version="1.0" encoding="UTF-8" ?><!DOCTYPE log4j:configuration SYSTEM
".\logdj.dtd">

<log4j:configuration xmlns:log4j='http://jakarta.apache.org/log4j/"'>

<appender name="CLM APPENDER"
class="gov.nih.nci.logging.api.appender.jdbc.IJDBCAppender">
<param name="application" value="csm" />
<param name="maxBufferSize" value="1" />
<param name="dbDriverClass" value="org.gjt.mm.mysqgl.Driver" />
<param name="dbUrl"
value="jdbc:mysqgl: //<<SERVER_NAME>> : <<PORT>>/<<CLM_SCHEMA_NAME>>" />
<param name="dbUser" value="<<DB USER>>" />
<param name="dbPwd" value="<<PASSWORD>>" />
<param name="useFilter" value="true" />
<layout class="org.apache.log4j.PatternLayout">

<param name="ConversionPattern" value=":: [%d{IS08601}] %-5p
$c{l}.%M() %$x - %Sm%n" />

</layout>
</appender>

<category name="CSM.Audit.Logging.Event.Authentication">
<level value="info" />
<appender-ref ref="CLM APPENDER" />
</category>

<category name="CSM.Audit.Logging.Event.Authorization">
<level value="info" />
<appender-ref ref="CLM APPENDER" />
</category>

<category name="CSM.Audit.Logging.ObjectState.Authorization">
<level value="info" />
<appender-ref ref="CLM APPENDER" />

</category>

</log4j:configuration>

Figure 5.6.4-1 Example log4j.xml file

NOTE: CSM is capable of performing both event and object state audit logging only for the operations and
data pertaining to CSM. In order to CLM features without using CSM, the client application can separately
download and install CLM. In this case CLM can be used (even without using CSM) to provide event logging
and automated object state logging capabilities using the special appender and schema. Also the log
locator tool can be used for the purpose of viewing the logs.

5.6.5 Deployment Steps
In order for a client application to enabling the Audit Logging capabilities provided by CSM (via CLM), the
following steps must be performed:

Step 1: Create and Prime MySQL Logging Database

1. A database has to be created which will persist the audit logs that are generated as a basis of usage of
the CSM APIs

2. Refer to the CLM’s guide for application developers for creating and priming the database for storing
the audit logs.

Step 2: Configure the logdj.xml file for JBoss

1. Use the sample logdj file provided in the CSM’s release to configure the log4j.xml file for JBoss. (see
figure 4-9 above)

2. Replace the <<SERVER_NAME>>, <<PORT>> and the <<CLM_SCHEMA_NAME>> with corresponding
values where the schema created in Step 1 is hosted.

3. Replace the values for the <<DB_USER>> with the user name that has access on the schema. Also
replace the <<PASSWORD>> with the corresponding password for the user.

4. Based on whether the application wants to enable the event audit logging for Authentication &
Authorization or object state audit logging for the Authorization; the corresponding logger needs to be
configured. Note: The names of loggers must not differ from the sample.

5. Incase of UPT the same log4j config file can be used.

Step 3: View the Logs

1. CLM provides a web-based locator tool that can be used to browse audit logs.

2. The configuration steps for setting up the browser are mentioned in the CLM’s guide for application
developers.

6. User Provisioning Tool Users Guide

6.1 Introduction

The User Provisioning Tool (UPT) provides a Graphical User Interface to create authorization data elements
like Roles, Protection Elements, Users, etc., and also provides functionality to associate them with each
other. The runtime API can then use this authorization data to authorize user actions.

This guide’s intended audience is all users of the UPT, including Super Administrators who may add
applications and associated administrators, and Administrators who will perform provisioning for a
particular application. This guide provides an overview of the application, outlines a suggested workflow,
and explains how to perform all UPT operations.

6.2 Workflow

The UPT includes two modes — Super Admin and Admin. The Super Admin operations are typically
performed first, as they register the application and application administrators. The primary mode
operations, including authorization user provisioning, occur next.

Super Admin

When first deploying the UPT for a particular application, the developer registers the application in the
Super Admin mode. (For details, refer to the CSM Guide for Application Developers. Deployment details
can be found in the Provisioning subsection of the Deployment Models section.)

Once the application is registered, the Super Admin can add users who will serve as application
administrators. The Super Admin can also register additional applications as they become available. This
document details these steps in the Super Admin Workflow section.

Admin

The primary (Admin) mode is for performing user provisioning for a particular application. The Admin
mode follows a simple workflow of creating elements, assigning them, and then associating them. This
document details these steps in the Admin Workflow section.

Login

The Login page includes summary text, What’s New, Did You Know, and most importantly the Login
section itself: Login ID, Password, and Application Name. For a majority of UPT implementations, the
NCICB LDAP serves as the authentication mechanism. Therefore the user’s Login ID will be the same as the
user’s NCICB user name (in Figure 6.1 and Figure 6.2, user Eric Copen’s NCICB user name is copene).
Similarly, the Password will equal the NCICB password. The rules from the authentication system are
applied to the user name and password.

If logging on as Super Admin, enter the Application Name csmupt (see Figure 6.1). If loggingin as an
Admin, enter the appropriate application name. For Example Security is used in Figure 6.2.

LOGIN TO U.P.T.

LOGIN ID |copene

PASSWORD ||uuu

APPLICATION
NAME |‘35”"”F't

LOGIN TO U.P.T.

LOGIN ID |copene

PASSWORD eessees |

AFFLICATION
MAME

|se'::|_|ri’r"-,r

Figure 6.1 Login as a Super Admin Figure 6.2 Login as an Admin

Since UPT uses CSM’s Authentication Manager, it can be configured to lock a user out if they try to make
an unauthorized entry into the UPT. If configured appropriately, UPT can lock the user out after a pre-
configured number of unsuccessful attempts have been reached in the allowed login time frame. Once
locked out, the user can log in only after the configured amount of lockout time has elapsed. This provides
security from hacking attempts to break into the UPT.

6.3 Common Basic Functions

Within the UPT, there are several common operations that are repeated for most elements. These
operations include Create New, Search and Update, Delete, and Assign/Associate. This section describes
how these operations are performed..

Create New

When creating a new element follow the steps outlined below. The same basic steps can be followed to
create any element; in this example a User is created.

Step 1: On the element Home page select Create a New...(Figure 6.3)

USER LINKS

Create a New User
Click to add a new user.

Select an Existing User
Enter search criteria to find the user you wish
to operate on.

Figure 6.3 New and Existing User options

Step 2: Enter details (Figure 6.4.4):

* indicates a required field
ENTER THE NEW USER DETAILS

&

User Login Name | smithj

User First Name || John

User Last Name || Smith

Liser Organization | | MNIH

Figure 6.4 Entering new user details

Step 3: Select Add to save the new element (in this case User) to the database. This save occurs
immediately. Back acts exactly like the back button in a browser — returning the user to the home page.
Reset clears the data from the entire form. Remember that no data is saved until the Add button is
selected.

Step 4: Upon a successful save, the system displays Add Successful just below the menu and before the
text. In addition, a new set of buttons appears below the details table in Admin mode (Figure 6.5).

[Bacl-c] ’ Update] ’ Delete]

l Associated Groups] [Associated PE & Privileges] [Associated PG & Roles] l Assign PG & Roles l

Figure 6.5 A new set of buttons appear below the menu after you have successfully added a new user. Note: the additional
set of buttons is visible in Admin mode only.The Super Admin mode shows limited buttons.

Example Error Messages:

The User Interface performs basic data validation, including field lengths and formats. Figure6.6 is an
example of a message displayed when a user enters an improperly formatted email address:

ERRCR
User Email Id is an invalid e-mail address.

Figure6.6 Error message after entering incorrect email address
The system displays the message in Figure 6.7 (or similar) if a user tries to add an entry (e.g. smithj) when
it already exists in the system:

ERRCR
An error occured in creating the User. Duplicate entry was found in the database for the entered data

Figure 6.7 Error message after entering a user already in the system

Search for and Select Existing Elements

When searching for and selecting an element follow the steps outlined below. The same basic steps can
be followed for any element; in this example, a Role is searched for and selected.

Step 1: On the element Home page select Select an Existing...(Figure).

Create a New Role
Click to add a new role.

Select an Existing Role
Enter search criteria to find the role you wish
to operate on.

Figure 6.8 Selecting an existing Role

Step 2: Enter search criteria. Use the * character to perform wildcard searches (see Figure). For example,
searching for Role* returns Role_name_1, Role_name_2, or any other role beginning with role. A search
of *1 returns anything ending with 1 — Role_name_1, Role_name_101, Role_name_51, etc. Select Search
for results. Back returns the user to the home page. Reset clears the data.

ENTER THE ROLE SEARCH CRITERIA

Role Name |*‘| |

[Bacl-c] I Search] [Reset]

Figure 6.9 Entering search criteria for Role

Step 3: The system returns a list of matching roles. The results are sorted alphabetically for all search
result screens. (6.10):

SEARCH RESULTS
Select Role Hame Role Description
"y | Role_name_1 Role_Desc_1
() | Role_name_10+ Role_Desc_10
Role_name_51 Role_Dezc S
(O | Role_name_ _Desc_

Figure 6.10 Role search results

Step 4: Select the desired element, in this case Role_name_1, by clicking on the radio button in the Select
column (Figure). You can select one element at a time to view.

*) |Role_name_1 Role_Desc 1

Figure 6.11 Example of selecting an element with a radio button

Step 5: Click on the View Details button below the Search Results table:
The system then displays this element’s details. (See the following section, Update.)

Example Error Messages: If the search criteria results in no matches, the system displays an error
indicating there are no matches in a search. Modify the search criteria and repeat until the intended
results appear.

Update

When updating an element follow these steps. The same basic steps can be followed for any element; in
this example, a Protection Element is updated.

Step 1: Reach the details screen. There are two ways to reach the details screen — either create a new
element (See Create New) or search for and select an existing element (See Search for and Select Existing
Elements). The details screen (Figures 6.10 and 6.11) displays information such as name and description:

PROTECTION ELEMENT DETAILS
g Protection Element Name | TestPE Name1103749550261 |

Protection Element Dezcription Test Desc

Figure 6.12 Protection element details

Step 2: Simply replace existing text, and select Update.

PROTECTION ELEMENT DETAILS
Protection Element Name |Test PE Mame1103749550261

This=s i= my new text I want to -
'.deate.l o

Protection Element Description

Figure 6.13 Entering text for a Protection Element

Step 3: Upon a successful update, the system displays Update Successful just below the menu and before
the text.

Example Error Messages: The User Interface performs basic data validation, including field lengths and
formats. The systems also check for duplicates; it prevents changing the element name to one that
already exists. See the Example Error Messages section for more detail.

Delete

When deleting an element, follow these steps. The same basic steps can be followed for any element; in
this example, a Group is deleted.

Step 1: Reach the Group Details screen. From the home page, either create a new Group (see Create New)
or search for and select an existing Group (see Search for and Select Existing Elements). The element’s
Details screen displays a button containing the text Delete.

Step 2: Click on the button titled Delete.

Step 3: A pop-up window asks Are you sure you want to delete the record?. Click Okay to confirm.
Clicking Cancel negates the operation and returns the display to the Details screen.

Step 4: Upon confirming the deletion, the system returns you to the Group home page and displays in blue
text the words, Delete Successful.

6.4 Assignments and Associations

The elements Role, Protection Group, and Group are simply collections of other elements — Privileges,
Protection Elements, and Users respectively. Provisioning includes assigning elements to elements or
removing elements from an element (we call this deassign). For example, assigning Users to Groups
greatly improves the ease by which one can provision access rights. An Admin can instantly assign a role
and protection group to an entire group of people instead of repeating the same assignment for each
individual.

Assign or Deassign Privileges, Roles, ProtectionGroups, Groups:

Step 1: Navigate to the Association screen. From the element home page, either create a new element
(see Create New) or search for and select an existing element (see Search for and Select Existing Elements).
The element’s Details screen displays a button containing the text Associated, Assign, or something similar
depending on the element type.

Step 2: With this Ul implementation, associations can be established or removed by simply selecting
elements and moving them from one box to another. The box on the top lists the Available Groups
(unassigned) and the box below lists the Groups assigned to the User — Group_Northeast,
Group_ProjectLead, and Group_Research_A. Simply highlight a Group and select Assign to move it to the
Assigned Groups box. Select Deassign to move it back to the Available Groups box.

There are multiple ways to highlight the elements within the box:

1. Select one by clicking on the user name entry.

2. Select multiple users entries by holding down control while selecting and/or deselecting.

3. Select multiple by holding down the shift button while selecting the first and then last of a
collection.

Asz=ign or Deassign multiple Groups for the selected User. To remove the complete association Deassign all the Groups.

AVAILABLE GROUPS

Group_Operations
Group_FPatient
Group_Research_B
Group_Sales
Group_Southeast
Group_Tampa

Assign Deassign

ASSIGNED GROUPS

Group_Mortheast
Group_ProjectLead
Group_Research_A

[Back] [Update

Figure 6.14 Available and Assigned Groups lists

Step 3: Save the association by clicking Update Association. No association is saved until this button is
selected.

Assign or Deassign Users and Protection Elements

Assign or Deassign Users and ProtectionElements:

Step 1: Navigate to the Association screen. From the element home page, either create a new element
(see Create New) or search for and select an existing element (see Search for and Select Existing
Elements). The element’s Details screen displays a button containing the text Associated, Assign, or
something similar depending on the element type.

Step 2: With this Ul implementation, associations can be established by selecting ‘Assign’. The box lists
the Assigned ProtectionElements. Simply select Deassign to deassign and remove a PE from the Assigned
PEs box.

There are multiple ways to highlight the elements within the box:

1. Select one by clicking on the user name entry.

2. Select multiple user’s entries by holding down control while selecting and/or deselecting.

3. Select multiple by holding down the shift button while selecting the first and then last of a
collection.

Azsign or Deasszign multiple Protection Elements for the selected Protection Group. To remove the complete association Deassign all the
Protection Elements.

ASSIGNED PEs

test1007
FE1

lAssign PE] [Deassign] l Update Association] ’Elau:k]

Figure 6.15 Assigned PEs list
On selecting the ‘Assign PE’ button, the popup search criteria screen is displayed.

2 NCI Security Admin Application - Microsoft Internet Explorer,

Search for an existing Protection Element by entering the Protection Element Hame, Protection Element Type, Protection Element Object Id or
Protection Element Attribute Hame.

Uze * to perform wildcard searches

ENTER THE PROTECTION ELEMENT SEARCH CRITERIA

Protection Element Matme |

Protection Element Type

|

| |

Protection Elsment Object Id || |
| |

Protection Element Attribute

[Search] [Reset]

Figure 6.16 Protection Element search criteria popup screen.

On clicking the search button the sorted search results for the given search criteria is displayed. One or
more checkboxes can be selected for assignment by checking and clicking the ‘Assign PE’. The selected
PE’s will be added to the Assigned PE’s box.

Protection Element

SEARCH RESULTS

Select |Protection Element Hame Prm::g:r':pft'i;“e"t P"’temT';';:'eme"t Object Id Attribute
PE1 PEIA
|:| FE1 - Mame PE1 - description & FE1 - Type PE1 - Ohject ID FE1 - attribute
PE2 PEIDZ
] |pEs PEID4
] |pEs PEIDS

Assign FE] I Back]

Figure 6.17 Protection Element search result popup screen.

Assign of Deassign multiple Protection Elements for the selected Protection Group. To remove the complete association Deazsign all the
Protection Elements.

ASSIGNED PEs

test1007
FE1
FE?

Assign PEI [Deassign l I pdate Assaociation I [Back]

Figure 6.18 Assigned PEs list.

Step 3: Save the association by clicking Update Association. No association is saved until this button is
selected.

6.5 Super Admin Mode

6.5.1 Overview

The Super Admin Mode includes operations pertaining to Users (Application Administrators), Applications,
and Privileges. Super Admins. may add, remove, or modify Application details. They may also assign users
to these Applications, modify user details, and remove users. Lastly, they may modify existing CSM
Standard Privileges or create new application-specific privileges.

6.5.2 Workflow

The CSM team designed the UPT as a flexible tool with a flexible workflow. Any operation can be
completed quickly, however, at first it may be difficult to know where to start. The following is a
suggested workflow for getting started in the Super Admin Mode:

1. Application — when first deploying the UPT for a particular application, the developer registers the
application in the Application section. (See the CSM Guide for Application Developers for details.)

Application — add and update Application details.
User — add and update users who will serve as Application Administrators.
Application — assign users to applications.

vk wn

Privilege — if necessary, add or edit CSM Standard Privileges.

6.5.3 Navigation

Use the gray menu to navigate through the Super Admin section. From the Home page, the menu looks
like this:

HOME | APPLICATION : USER @ PRIVILEGE @ LOGOUT :

Figure 6. 2 Home Page menu options

The menu option with a blue background designates the current location. Roll over the other choices until
they turn blue, and then click to navigate to that section. The Log Out selection returns the user to the
Login page.

Application

In the Application section, a Super Admin can add an application to the UPT and add or modify details.
Here are the available operations to perform:

1. Create a New Application
a. Go the Application home page.
b. Select Create a New Application.
c. Enter data into the Application Details form.

1. Application Name — uniquely identifies the Application, required field.
Application Description — a brief summary describing the Application.
Declarative Flag — indicates whether application uses Declarative security.
Application Active Flag — indicates if the Application is currently active.
Database URL — The JDBC Database URL for the given application.
Database User Name — The Username for the application database.
Database Password — The Password for the application database
Database Dialect — The Dialect for the application database.

Database Driver —The Driver for the application database

Lo NS WN

Please note: the Database fields should either be completed together or left blank
completely. They are all required fields if at least one of them is populated.

d. Select Add button.

2. Select an Existing Application and Update
a. Go to the Application home page.
b. Click on Select an Existing Application.
c. Enter data into the Application Search Criteria form.
1. Application Name — uniquely identifies the Application.
d. Click on the radio button corresponding with the intended Application name.

e. Select View Details.

f. Enter data into the Application Details form.

Application Name — uniquely identifies the Application, required field.
Application Description — a brief summary describing the Application.
Declarative Flag — indicates whether application uses Declarative security.
Application Active Flag — indicates if the Application is currently active.
Database URL — The JDBC Database URL for the given application.
Database User Name — The Username for the application database.
Database Password — The Password for the application database
Database Dialect — The Dialect for the application database.

Database Driver —The Driver for the application database

WooNOULEWNE

Please note: the Database fields should either be completed together or left blank
completely. They are all required fields if at least one of them is populated.

g. Select Update button.

3. Delete an Existing Application
a. Reach the Application Details form by either creating a new Application or Selecting an
Existing Application.
b. Select Delete.
c. Inthe pop-up window, click Okay to confirm intent to delete the Application.

4. Application and Admin Association

a. Reach the Application Details form by either creating a new Application or Selecting an
Existing Application.

b. Select Associated Admins.
1. Associate Users (See Assignments and Associations for details).

c. Click on the Assign and Deassign buttons until the proper association is displayed.

d. Save the association by clicking on Update Association. No association is saved until this
button is selected.

User

In this section Users can be assigned as UPT administrators for their particular application(s). They will
have the right to create and modify Roles, Groups, etc. In this section you may create new Users or modify
exiting User details. Here are the available operations:

1. Create a New User
a. Gotothe User home page.
b. Select Create a New User.
c. Enter data into the User Details form.

Name — uniquely identifies the User, required field.

First Name and Last Name — attributes that help identify the User.

Organization — Organization for which the User works. An example is the National
Cancer Institute (NCI).

Department — Department for which the User works. An example is caArray.

Title — Title for User.

Phone Number — provides contact information, typically the direct business phone
number for the User. The phone number field accepts the following formats:
0123456789, 012-345-6789, (012)3456789, (012)345-6789, (012)-345-6789

Email Id — provides the email contact details for the User. An email ID must contain an
‘@’ sign.

Password— an optional field used if the schema for Authorization will also be used for
Authentication. The only characters visible within this field are stars ‘*’ so the password
is not visible on the screen.

Confirm Password — a copy of the password field. It ensures the intended password
was entered correctly. This field must match the password field exactly.

User Start Date and User End Date — Indicates user start date and end date..

Select Add button.

2. Select an Existing User and Update

Go to the User home page.

Click Select an Existing User.

Enter data into the User Search Criteria form.

a.
b.
C.

User Name — uniquely identifies the User.

Click on the radio button corresponding with the intended User name.
Select View Details.
Enter data into the User Details form.

Name — uniquely identifies the User, required field.

First Name and Last Name — attributes that help identify the User.

Organization — Organization for which the User works. An example is the National
Cancer Institute (NCI).

Department — Department for which the User works. An example is caArray.

Title — Title for User.

Phone Number — provides contact information, typically the direct business phone
number for the User. The phone number field accepts the following formats:
0123456789, 012-345-6789, (012)3456789, (012)345-6789, (012)-345-6789

Email Id — provides the email contact details for the User. An email ID must contain an
asterisk.

Password— an optional field used if the schema for Authorization will also be used for
Authentication. The only characters visible within this field are stars ‘*’ so the password
is not visible on the screen.

Confirm Password — a copy of the password field. It ensures the intended password
was entered correctly. This field must match the password field exactly.

User Start Date and User End Date — determine the period for which the User is a valid
User.

Select Update button.

3. Delete an Existing User
a. Reach the User Details form by either creating a new User or Selecting an Existing User.
b. Select Delete.
c. Inthe pop-up window, click Okay to confirm intent to delete the User.

Privilege

A Privilege refers to any operation performed upon data. Assigning Privileges helps control access to
important components of an application (Protection Elements).

The UPT installs with CSM Standard Privileges that were agreed upon by the Security Working Group.

These privileges include the following:

Standard Privileges

Within CSM, users may possess one or more of the following privileges for a particular protection element:

Privilege Privilege Definition Applying the

Name Privilege (Example)

CREATE This privilege grants permission to a user to A user can
create an entity. This entity can be an object, a create a
database entry, or a resource such as a network | database entry.
connection.

ACCESS This privilege allows a user to access a particular | A user can gain
resource. Examples of resources include a access to a
network connection, database connection, particular
socket, module of the application, or even the module in an
application itself. application.

READ This privilege permits the user to read data from | A user can view
a file, URL, socket, database, or an object. This personal
can be used at an entity level signifying that the information such
user is allowed to read data about a particular as a Social
entry (which can be object or database row, etc.) | Security

Number.

WRITE This privilege allows a user to write data to a file, | A user can add
URL, socket, database, or object. This can also be | texttoa
used at an entity level signifying that the user is database entry.
allowed to write data about a particular entity
(which may include an object, database row,
etc.)

UPDATE This privilege grants permission at an entity level | A user can
and signifies that the user is allowed to update modify an
and modify data for a particular entity. Entities object’s
may include an object, an attribute of the object, | attribute data.
a database row, etc.

DELETE This privilege permits a user to delete a logical A user can
entity. This entity can be an object, a database delete record.

entry, a resource such as a network connection,
etc.

EXECUTE This privilege allows a user to execute a A user can click
particular resource. The resource can be a on a button to
method, function, behavior of the application, perform a
URL, button etc. method.

If necessary in this section you may create new application-specific Privileges or modify existing Privilege
details. Here are the available operations:

1. Create a New Privilege
a. Go to the Privilege home page.
b. Select Create a New Privilege.
c. Enter data into the Privilege Details form.
e Name — uniquely identifies the Privilege, required field.
e Description — a brief summary describing the Privilege.
d. Select Add button.

2. Select an Existing Privilege and Update details
a. Go to the Privilege home page.
Click Select an Existing Privilege.
Enter data into the Privilege Search Criteria form. Search Privilege name.
Click on the radio button corresponding with the intended Privilege name.
Select View Details.
Enter data into the Privilege Details form.
e Name — uniquely identifies the Privilege, required field.
o Description — a brief summary describing the Privilege.
g. Select Update button.

m0ooCT

3. Delete an Existing Privilege
a. Reach the Privilege Details form by either creating a new Privilege or Selecting an Existing
Privilege.
b. Select Delete.
c. Inthe pop-up window, click Okay to confirm intent to delete.

6.6 Admin Mode

6.6.1 Overview

The Admin Mode of the UPT is divided into six major sections: Groups, Privileges, Protection Groups, Roles,
and Users. In these sections an Admin can perform basic functions such as modify, delete, or create, and
manage associations between the objects. For example, you may assign Privileges to a Role. Figure 6.3
helps to illustrate how all objects (also referred to as elements) are related in the Authorization schema.
Table 2 follows with definitions of each category of authorization.

C S
| — Groups] !

Users

'

| | Final

Protection] . Pratection] . Association
Elements | Groups |

Privileges | Roles 1 |

1. Create 2. Assign 3. Associate

]

Figure 6.3 Relationships between objects in the Authorization Schema

Definitions for Authorization Status

User A User is someone who requires access to your application. Users
can become part of a Group, and can have an associated Protection
Group and Roles.

Protection Element A Protection Element is any entity (typically data) that has controlled
access. Examples include Social Security Number, City, and Salary.

Privilege A Privilege refers to any operation performed upon data. CSM
makes use of a standard set of privileges. This will help standardize
authorization to comply with JAAS and Authorization Policy and
allow for adoption of technology such as SAML in the future.

Definitions for Authorization Status

Group

A Group is a collection of application users. By combining users into
a Group, it becomes easier to manage their collective roles and
access rights in your application.

Protection Group

A Protection Group is a collection of application Protection
Elements. By combining Protection Elements into a Protection
Group, it becomes easier to associate Users and Groups with rights
to a particular data set. Examples include Address and Personal
Information.

Role

A Role is a collection of application Privileges. Examples include
Record Admin and EmployeeModify.

Final Association

The final association is the correlation between a User and his Roles
for a particular Protection Group.

Each User (and Group) assumes Roles (rights) for a Protection Group (protected entities). For
example, User John has a Role EmployeeModify for all elements in the Address Protection
Group. Assign PGs and Roles from the User or Group sections of the UPT.

Table 2 Categories of authorization status

6.6.2 Workflow

The CSM team designed the UPT as a flexible tool with a flexible workflow. Any operation can be
completed quickly, however, at first it may be difficult to know where to start. The general concept of the
workflow is to create the base elements first and then create the groupings and associations. Here is the
suggested workflow for getting started in the Admin Mode:

1. Create base objects — Users and Protection Elements (CSM Standard Privileges are provided).
2. Create collections of these objects (in any order):

a.

Groups

i. Create Groups.

ii. Assign Users to Groups.

Protection Groups

i. Create Protection Groups.

ii. Assign Protection Elements to Protection Groups.
Roles

i. Create Roles.

ii. Assign Privileges to Roles.

3. Associate rights with Users and Groups (in any order).

i. Assign a Protection Group and Roles to Users.
ii. Assign a Protection Group and Roles to Groups.

6.6.3 Navigation

Use the gray menu to navigate through the Admin section. From the Home page, the menu looks like this:

HOME | USER : PROTECTION ELEMENT | PRIVILEGE | GROUF | FROTECTION GROUF | ROLE : INSTANCE LE¥EL | LOG OUT |

Figure 6.4 Menu options in the Admin section of the home page
The menu option with a blue background designates the current location. Roll over the other choices until
they turn blue, and then click to navigate to that section. The Log Out selection returns the user to the
Login page.

User

A User is simply someone that requires access to an application. In this section create new Users, modify
existing User details, and associate or disassociate Users with a Protection Group and Roles. The available
operations are:

1. Create a New User
a. Goto the User home page.
b. Select Create a New User.
c. Enter data into the User Details form.

e Name — uniquely identifies the User, required field.

e First Name and Last Name — attributes that help identify the User.

e Organization — Organization for which the User works. An example is the National Cancer
Institute (NCI).

e Department — Department for which the User works. An example is caArray.

o Title —Title for User.

e Phone Number — provides contact information, typically the direct business phone number
for the User. The phone number field accepts the following formats: 0123456789, 012-345-
6789, (012)3456789, (012)345-6789, (012)-345-6789

e Email Id — provides the email contact details for the User. An email ID must contain an
asterisk.

e Password- an optional field used if the schema for Authorization will also be used for
Authentication. The only characters visible within this field are stars ‘*’ so the password is
not visible on the screen.

e Confirm Password — a copy of the password field. It ensures the intended password was
entered correctly. This field must match the password field exactly.

e User Start Date and User End Date — determine the period for which the User is a valid
User.

d. Select Add button.

2. Select an Existing User and Update details
a. Gotothe User home page.
b. Click on Select an Existing User.
c. Enter data into the User Search Criteria form. Search by any combination of the below:
e Name — uniquely identifies the User, required field.
e First Name and Last Name — attributes that help identify the User.
e Organization — Organization for which the User works. An example is the National Cancer

g.

Institute (NCI).

e Department — Department for which the User works. An example is caArray.

e Email Id — provides the email contact details for the User. An email ID must contain an
asterisk.

Click on the radio button corresponding with the intended User name.

Select View Details.

Enter data into the User Details form.

e Name — uniquely identifies the User, required field.

e First Name and Last Name — attributes that help identify the User.

e Organization — Organization for which the User works. An example is the National Cancer
Institute (NCI).

e Department — Department for which the User works. An example is caArray.

e Title —Title for User.

e Phone Number — provides contact information, typically the direct business phone number
for the User. The phone number field accepts the following formats: 0123456789, 012-345-
6789, (012)3456789, (012)345-6789, (012)-345-6789

e Email Id — provides the email contact details for the User. An email ID must contain an
asterisk.

e Password- an optional field used if the schema for Authorization will also be used for
Authentication. The only characters visible within this field are stars ‘*’ so the password is
not visible on the screen.

e Confirm Password — a copy of the password field. It ensures the intended password was
entered correctly. This field must match the password field exactly.

e User Start Date and User End Date — determine the period for which the User is a valid
User.

Select Update button.

The User Details page displays the three buttons displayed in figure 18 below. The numbers above these
buttons correspond to the operations that follow:

Associated Groups] [Associated PE & Privileges] [Associated PG & Roles] [Assign PG & Roles

Figure 6. 5 User Details Page button options

3. Assign a User to a Group or Groups ©

a.
b.
C.

Reach the User Details form by either creating a new User or Selecting an Existing User.
Select Associated Groups.

Determine which of the available Groups to which the User should be assigned. Select these
Groups by highlighting them (See Assignments and Associations for details).

Click on the Assign and Deassign buttons until the proper association is displayed.

Save the association by clicking on Update Association. NOTE: No association is saved until
this button is selected.

4. View User Report @

This feature is new to the 3.0.1 release in response to a requirement formed by the caCORE team.

This reporting functionality shows a user’s privileges for all of his protection elements.

a.
b.
C.

Reach the User Details form by either creating a new User or Selecting an Existing User.
Select Associated PE & Privileges.
View user’s privileges for each protection element.

5. Update Roles associated with the assigned Protection Groups ©

a.
b.

@ =0 oo

Reach the User Details form by either creating a new User or Selecting an Existing User.

Select Associated PG & Roles. The system displays a list of all associated Protection Groups and
their Roles.

Select the radio button that corresponds with the intended Protection Group.

Determine which Roles you would like to assign to the User.

Select the Role by highlighting the name (See Assignments and Associations for details).

Click on the Assign and Deassign buttons until the proper association is displayed.

Save the association by clicking on Update Association. NOTE: No association is saved until
this button is selected.

6. Assign a Protection Group and Roles to a User @

a.
b.
C.

Reach the User Details form by either creating a new User or Selecting an Existing User.

Select Assign PG & Roles.

Determine which Protection Group and Roles you would like to assign to the User.

1. Select the Protection Group by highlighting the name (See Assignments and Associations for
details).

2. Select the Roles by highlighting them.

Click on the Assign and Deassign buttons until the proper association is displayed.

Save the association by clicking on Update Association. NOTE: No association is saved until

this button is selected.

7. Delete an Existing User

a.
b.
c.

Reach the User Details form by either creating a new User or Selecting an Existing User.
Select Delete.
In the pop-up window, click Okay to confirm intent to delete.

Protection Element

A Protection Element is any entity (typically data) that is subject to controlled access. CSM allows for a
broad definition of Protection Element. Nearly everything in an application can be protected — data, table,
buttons, menu items, etc. By identifying individual Protection Elements, it becomes easier to control
access to important data. In this section you may create new Protection Elements or modify existing
Protection Element details. Here are the available operations:

1. Create a New Protection Element

a.
b.
C.

Go to the Protection Element home page.

Select Create a New Protection Element.

Enter data into the Protection Element Details form.

e Name — uniquely identifies the Protection Element, required field.

Object Id — a string that the Application team assigns to the Protection Element

Attribute Name — helps to further identify the Protection Element

Description — a brief summary describing the Protection Element.

Update Date — indicates the date when the Protection Element's Details were last updated
Type — a string that the application team can assign to indicate type of protection element.
Select Add button.

2. Select an Existing Protection Element and Update details

a.
b.
c.

Go to the Protection Element home page.

Click Select an Existing Protection Element.

Enter data into the Protection Element Search Criteria form. Search by any combination of the
fields below:

e Name — uniquely identifies the Protection Element.

e Object Id — a string that the Application team assigns to the Protection Element

e Attribute Name — helps to further identify the Protection Element

Click the radio button corresponding with the intended Protection Element name.

Select View Details.

Enter data into the Protection Element Details form.

e Name — uniquely identifies the Protection Element.

e Object Id — a string that the Application team assigns to the Protection Element

e Attribute Name — helps to further identify the Protection Element

e Type —a string that the application team can assign to indicate type of protection element.

Select Update button.

3. Delete an Existing Protection Element

a.

Reach the Protection Element Details form by either creating a new Protection Element or
Selecting an Existing Protection Element.

Select Delete.

In the pop-up window, click Okay to confirm intent to delete.

4. Assign a Protection Element to a Protection Group or Protection Groups

a.

Reach the Protection Element Details form by either creating a new Protection Element or
Selecting an Existing Protection Element.

Select Associated PGs.

Determine which of the available Protection Groups to which the Protection Element should be

assigned.
1. Select these Protection Groups by highlighting them (See Assignments and Associations for
details).

Click on the Assign and Deassign buttons until the proper association is displayed.
Save the association by clicking on Update Association. NOTE: No association is saved until
this button is selected.

Privilege

A Privilege refers to any operation performed upon data. Assigning privileges helps control access to
important components of an application (Protection Elements). CSM provides a standard set of privileges
that populate automatically when creating the authorization schema (See Standard Privileges).

Because Standard Privileges are provided the Privilege section does not contain Create, Delete, or Update
functions. However, you may search for and view existing privileges. Use the Role section to assign
privileges to roles.

1. Select an Existing Privilege
a. Go to the Privilege home page.
Click Select an Existing Privilege.
Enter data into the Privilege Search Criteria form. Search Privilege name.
Click on the radio button corresponding with the intended Privilege name.
Select View Details.
View data in the Privilege Details form.
e Name — uniquely identifies the Privilege, required field.
o Description — a brief summary describing the Privilege.

moao0T

Protection Group

A Protection Group is a collection of application Protection Elements. By combining Protection Elements
into a Protection Group, it becomes easier to associate Users and Groups with rights to a particular data
set. In this section you may create new Protection Groups, modify existing Protection Group details, assign
Protection Elements, and assign a parent for a Protection Group.

The Protection Group is the only element that can have a Parent. Using Parents is a way to group
Protection Groups within Protection Groups. This makes organizing users and their authorization rights
easier.

Here are the available Protection Group operations:

1. Create a New Protection Group
a. Go to the Protection Group home page.
b. Select Create a New Protection Group.
c. Enter datainto the Protection Group Details form.
e Name — uniquely identifies the Protection Group, required field.
e Description — a brief summary describing the Protection Group.
e Large Count Flag — used to indicate if the Protection Group has a large number of
associated Protection Elements.
e Update Date — indicates the date when this Protection Group’s Details were last updated
d. Select Add button.

2. Select an Existing Protection Group and Update details
a. Go to the Protection Group home page.
b. Click Select an Existing Protection Group.
c. Enter data into the Protection Group Search Criteria form. Search by Protection Group name.

Click on the radio button corresponding with the intended Protection Group name.

Select View Details.

Enter data into the Protection Group Details form.

e Name — uniquely identifies the Protection Group, required field.

e Description — a brief summary describing the Protection Group.

e Large Count Flag — used to indicate if the Protection Group has a large number of
associated Protection Elements.

e Update Date — indicates the date when this Protection Group’s Details were last updated

Select Update button.

3. Delete an Existing Protection Group

a.

Reach the Protection Group Details form by either creating a new Protection Group or Selecting
an Existing Protection Group.

Select Delete.

In the pop-up window, click Okay to confirm intent to delete.

4. Assign Protection Elements to the Protection Group

5.

Role

a.

Reach the Protection Group Details form by either creating a new Protection Group or Selecting
an Existing Protection Group.

Select Associated PEs.

Determine which of the available Protection Elements should be assigned to the Protection

Group.
1. Select these Protection Groups by highlighting them (See Assignments and Associations for
details).

Click on the Assign and Deassign buttons until the proper association is displayed.
Save the association by clicking on Update Association. NOTE: No association is saved until this
button is selected.

Assign a Parent for the Protection Group

a.

Reach the Protection Group Details form by either creating a new Protection Group or Selecting
an Existing Protection Group.

Select Associated Parent PG.

Determine which available Protection Group should be designated as the Protection Group
Parent.

1. Select the Parent by highlighting the name. Only one parent may be assigned.

Click on the Assign and Deassign buttons until the proper association is displayed.

Save the association by clicking on Update Association. NOTE: No association is saved until
this button is selected.

A Role is a collection of Privileges. By combining Privileges into a Role, it becomes easier to associate Users
and Groups with rights to a particular data set. In this section you may create new Roles, modify existing
Role details, and assign or deassign Privileges to the Role. Here are the available operations:

1. Create a New Role

a. Go tothe Role home page.

b. Select Create a New Role.

c. Enter data into the Role Details form.
e Name — uniquely identifies the Role, required field.
e Description — a brief summary describing the Role.
e Active Flag — indicates if the Role is currently active.

d. Select Add button.

2. Select an Existing Role and Update details
a. Go to the Role home page.
b. Click Select an Existing Role.
c. Enter data into the Role Search Criteria form. Search by Role name.
d. Click the radio button corresponding with the intended Role name.
e. Select View Details.
f. Enter data into the Role Details form.
e Name — uniquely identifies the Role, required field.
e Description — a brief summary describing the Role.
e Active Flag — indicates if the Role is currently active.
g. Select Update button.

3. Delete an Existing Role
a. Reach the Role Details form by either creating a new Role or Selecting an Existing Role.
b. Select Delete.
c. Inthe pop-up window, click Okay to confirm intent to delete.

4. Assign Privileges to the Role

a. Reach the Role Details form by either creating a new Role or Selecting an Existing Role.

b. Select Associated Privileges.

c. Determine which of the available Privileges should be assigned to the Role.
1. Select these Roles by highlighting them (See Assignments and Associations for details). Click

on the Assign and Deassign buttons until the proper association is displayed.

d. Save the association by clicking on Update Association. NOTE: No association is saved until

this button is selected.

Group

A Group is a collection of application users. By combining users into a Group, it becomes easier to manage
their collective roles and access rights in your application. Simply select an existing group, and associate a
new Protection Group and Roles. Upon doing so, everyone in that particular Group has the same rights.
Under the User portion of UPT you may assign users to Groups. In this section you may create new Groups,
modify existing Group details, and associate or disassociate Groups' Protection Groups and Roles. Here are
the available operations:

1. Create a New Group
a. Go tothe Group home page.
b. Select Create a New Group.
c. Enter data into the Group Details form.
e Name — uniquely identifies the Group, required field.
e Description — a brief summary describing the Group.
d. Select Add button.

2. Select an Existing Group and Update details
a. Go to the Group home page.
Click on Select an Existing Group.
Enter data into the Group Search Criteria form. Search by Group name.
Click on the radio button corresponding with the intended Group name.
Select View Details.
Enter data into the Group Details form.
e Name — uniquely identifies the Group, required field.
o Description — a brief summary describing the Group.
g. Select Update button.

S

The Group Details page displays the two buttons displayed in Figure 6.6. The numbers above these buttons
correspond to the operations that follow:

[Associated Users] [Associated PE & Privileges] [Associgted PG & Raoles] [Azsign PG & Roles]

Figure 6.6

3. Associated Users ©
h. Select Associated Users button.
i. The Group and User Association screen displays a list of Assigned Administrators.
j. Click Assign User to assign additional Users to the Group.
k. Click Deassign User to deassign users.
I. Select Update Association to save the changed associations.
m. Select Back to return to the Group details screen.

4. Associated PE & Privileges @
This feature is new to the 3.0.1 release in response to a requirement formed by the caCORE team.

This reporting functionality shows a group’s privileges for all of its protection elements.

a. Reach the Group Details form by either creating a new User or Selecting an Existing Group.
b. Select Associated PE & Privileges.
c. View group’s privileges for each protection element.

5. Assign a Protection Group and Roles to a Group ©

d. Reach the Group Details form by either creating a new Group or Selecting an Existing Group.
Select Assign PG & Roles.

f. Determine which Protection Group and Roles you would like to assign to the Group.

1. Select the Protection Group by highlighting the name (See Assignments and Associations
for details).

2. Select the Roles by highlighting them.

Click on the Assign and Deassign buttons until the proper association is displayed.

Save the association by clicking on Update Association. NOTE: No association is saved until

this button is selected.

= ¢

6. Update Roles associated with the assigned Protection Groups @
a. Reach the Group Details form by either creating a new Group or Selecting an Existing Group.
b. Select Associated PG & Roles.
c. The system displays a list of all associated Protection Groups and their Roles.
d. Select the radio button that corresponds with the intended Protection Group.
e. Determine which Roles you would like to assign to the Group.
1. Select the Role by highlighting the name (See Assignments and Associations for details).
Click on the Assign and Deassign buttons until the proper association is displayed.
Save the association by clicking on Update Association. NOTE: No association is saved until
this button is selected.

g

7. Delete an Existing Group
a. Reach the Group Details form by either creating a new Group or Selecting an Existing Group.
b. Select Delete.
c. Inthe pop-up window, click Okay to confirm intent to delete.

InstancelLevel

Instance Level is a feature provided by CSM to allow filtering of the instance of data directly at the database
level by creating filter criteria’s and linking them with allowed values from CSM tables. In this section you
may create upload an application jar file containing the Hibernate file and the Domain Objects, Create a new
Filter Clause or Search for existing filter clauses. Please begin by selecting Upload the Jar File, Add New
Security Filter or Select an Existing Security Filter

INSTAMNCE LE¥EL LINKS

Upload the Jar File
Click to upload a Jar File.

Add Mew Security Filter
Click to add a new Instance Level Security
Setting.

Select an Existing Security Filter
Enter the Class Mame to find the Instance Level
Security Filter for it,

1. Uploading a File

* indicates a required field

UPLOAD THE APPLICATION JAR FILE

W

Application Jar File |L:\,UP'|"-,exampIe—beans.jar " Browse...]

Application Jar File |L:‘.,UPT‘.,exampIe—Drm.jar |[Browse... l

Hibernate Configuration File Hame |hibernate.l:fg.xm| |

[LJle:nad] [Feszet] [Back]

a. Go to the Instance Level home page.
b. Select Upload the Jar File.
c. On the File Upload Form enter the following:

Application Jar File — The path of the application jar file containing hibernate configuration
and mapping files and domain object.

Application Jar File — In case of any SDK generated system there are two jar generated. The
second jar can be uploaded using this field

Hibernate Configuration File Name — The fully qualified name of the hibernate
configuration file in the jar.

d. Select Upload button.

2. Add New Security Filter

*indicates a required field

ENTER THE NEW FILTER CLAUSE DETAILS

Class

* Hame | gow.nih.nci. cacoresdk domain.other levelassociation. Deck V|
gov.nih.nci.cacoresdk.domain.other. levelassociation. Suit - suitCaollection V|
Filter : - - L -
* Chain || 92v-nih.nci.cacoresdk.domain.other levelassociation. Card - cardCollection V|
[Adld][Femove][Done]
Target
" atrite
Attribute || M358 ¥
Hame
Target | |
Clazs Alias
Target
Class | |
Attribute
Alias

[bdd | [Reset | [Back |

a. Go to the Instance Level home page.
b. Click Add New Security Filter.
c. Onthe Add New Security Filter screen enter the following:

Class Name - This the class for which you want to create a filter clause.

Filter Chain — This is a chain of the associated objects on which the security of the class
depends upon. In case of the inherited security you can follow the trail to the target class by
selecting the associated class and pressing the Add button. You can remove the last
associated class by pressing Remove button. If the security of the Class is dependant on it
own self, then you can select the same Class (with the suffix self) in the Filter Chain. Once
you have done selecting the filter chain, you can press Done to indicate that.

Target Class Attribute Name - Field get populated with the all the attributes of the Final
Target Class.

o Target Class Name — Alternatively if you want to provide an alias for the Target Class Name
then you can do so by providing a value for the Target Class Alias field.
e Target Class Attribute Name — Same way you can provide an alias for the Target Class
Attribute Name by providing a value for the Target Class Attribute Alias field.
d. The click the final Add button to add the filter into the screen

3. Selecting an Existing Security Filter
a. Go to the Instance Level home page.
b. Click Select an Existing Security Filter.
c. On the Search Criteria Screen enter the following:
e Class Name - This the class for which you want to retrieve the filter clause.

Uze *ta perform wildcard searches

ENTER THE FILTER CLAUSE SEARCH CRITERIA

Clazsz Mame | |

[Bearch] [Feset] [Back]

d. On the Result screen select the Filter Clause which you want to update or delete.
e. On the Filter Clause Details Screen there is only one screen editable
e Generated SQL - This is the only editable field on this page. It is the filter SQL that is
generated by Hibernate based on filter criteria selected above by the user. NOTE: Once you
edit the SQL there is no way it can be regenerated without deleting and creating the filter
clause again. Also, make sure you follow the Hibernate Filter SQL specifications and have a
valid working filtering SQL.

FILTER CLAUSE DETAILS

Clazs Mame | gov.nih.nci.cabio.domain. Taxon

Fitter Chain | geneCallection

irarget Clazs Mame | gov.nih.nci.cabio.domain Gene - geneCollection

Target Class Attribute Mame | symbal

Target Class Attribute Type |java lang String

Target Clazs Alias

Target Class Attribute Aliaz

TAECN ID in (select ~
* Generated SOL || tslle name cswm . TAICON ID from s«

Update Date | 100272007 (MRMDDA ™Y YY)

[Update] [Delete] [Back]

f. In order to update the record click Upload button or use the Delete button to delete the
record.

6.7 UPT Installation and Deployment

6.7.1 Release Contents

The UPT is released as a compressed web application in the form of a WAR (Web Archive) File. Along with
the WAR, the release includes sample configuration files that help developers configure the UPT with their
application(s).

The UPT Release contents can be found in the UPT.zip file found on the NCICB download site
(http://ncicb.nci.nih.gov/download/index.jsp). The UPT Release contents include the files in Table 6.24

File Description
upt.war The UPT Web Application
Hibernate.cfg.xml The sample XML file which contains the hibernate-

mapping and the database connection details.

AuthSchemaMySQL.sql This Structured Query Language (SQL) script is used to
OR create an instance of the Authorization database
schema which will be used for the purpose of
authorization. In the 3.0.1 and subsequent releases,
this script populates the database with CSM Standard
Privileges that can be used to authorize users. The
same script can be used to create instances of
authorization schema for a variety of applications.

AuthSchemaOracle.sql

DataPrimingMySQL.sql This SQL script is used for priming data in the UPT’s
OR authorization schema.

DataPrimingOracle.sql

mysql-ds.xml This file contains information for creating a
OR datasource. One entry is required for each database
connection. Place this file in the JBoss deploy

oracle-ds.xml

directory.

Table 6.24 UPT release contents

6.7.2 Installation Modes

UPT was developed as a flexible application that can be deployed in multiple ways depending on the need
or scenario. The three primary modes to install the UPT include the following and are described in the
following sections:

e Single Installation, Single Schema
e Single Installation, Multiple Schemas

e Local installation, Local schema

http://ncicb.nci.nih.gov/download/index.jsp

6.7.2.1 Single Installation, Singe Schema

In the single installation, single schema deployment scheme as shown in Figure 6-25, there is only one
instance of UPT hosted on a Common JBoss Server. A common installation is used to administer the
authorization data for all applications. The authorization data for all the applications is stored on a
common database. Therefore an application using UPT does not have to install its own authorization
schema. Also, all applications can use the same hibernate-config file since they point to the same
database.

App 1l

UPT

\ 4

N App 2

v‘/
Common

Authorization
Database

N

Figure 6-25 Single installation, single schema deployment scheme

6.7.2.2 Single Installation, Multiple Schema

As in the single schema deployment, the single installation, multiple schemas deployment calls for the UPT
to be hosted on a single JBoss Common Server as shown in Figure 6-26. A common installation is also used
to administer the authorization data for all applications. What makes this mode different is that an
application can use its own authorization schema on a separate database if preferred. The authorization
data can sit on individual databases, and at the same time some applications can still opt to use the
Common Authorization Schema. Using this mode requires each application to maintain its own hibernate-
config file pointing to the database where its Authorization Schema is located. So when an application uses
the UPT, the UPT communicates to the authorization schema of that application only.

UPT

N
N

Common
Authorization

Database

N

<

App 3

App 2

App 1

Authorization

database for App
1

Authorization
database for App
2

Figure 6-26 Single installation, multiple schemas deployment scheme; the three colors of arrows

correspond to the three different applications shown

6.7.2.3 Local Installation, Local Schema

The local installation, local schema deployment is the same as single installation, single schema, except
that the UPT is hosted locally by the application as shown in Error! Reference source not found.. This
nstallation of UPT is not shared with other applications. This local installation is used to administer the
authorization data for that particular application (or set of related applications) only. The authorization
data for the application sits on its own database. In this scenario, the application requires its own
hibernate-config file pointing to the database where its Authorization Schema is located.

UPT

A

App 1

o
N

Authorization

Database

N~

Figure 6-27 Single installation, single schema deployment scheme

6.7.3 Deployment Checklist

Before deploying the UPT, verify the following environment and configuration conditions are met. This
software and access credentials/parameters are required.
e Environment
o JBoss 4.0 Application Server
o MySQL 4.0 OR Oracle 9i Database Server (with an account that can create databases)
e UPT Release Components
o upt.war
o AuthSchemaMySQL.sql | AuthSchemaOracle.sql
o DataPrimingMySQL.sql | DataPrimingOracle.sql

6.7.4 Deployment Steps

Step 1: Create and Prime MySQL Database

1. Loginto the database using an account id which has permission to create new databases. As you follow
the deployment steps, use the files containing the name corresponding with your database. Make sure
that the database you are about to create doesn’t already exist. If it does, then drop it to recreate new
one.

2. In the AuthSchemaMySQL.sql file replace the <<database_name>> tag with the name of the UPT
Authorization schema — csmupt.

3. Run this script on the database prompt. This should create a database with the given name.
4. In the DataPrimingMySQL.sql file, replace:

o The<<super admin login id>> with the login id of the user who is going to act as the
Super Admin for that particular installation

o Also provide the first name and last name for the same by replacing
<<super admin first name>> with first name and <<super admin last name
>> with last name.

5. Replace the <<application context name>> with a application name of the application for
which UPT is being hosted

6. Run the script on the database prompt. This should populate the database with the initial data. Verify
by querying the csm_application, csm_user, csm_protection_element and
csm_user_protection_element tables. They should have one record each. The database will include
CSM Standard Privileges and the csm_privilege table should have 7 entries.

Step 2: Configure Datasource

1. Modify the mysgl-ds.xml file which contains information for creating a datasource. One entry is
required for each database connection. Edit this file to replace:

o The<<application context name>> tag with the name of the authorization schema —
csmupt.

o The<<database user id>>withthe user id - ncisecurity.
<<database user password>> with the password of the user account.

o The <<database url>> with the URL needed to access the Authorization Schema residing on
the database server - jJdbc:mysql://<<prod _database_server_name>>:3306/csmupt

Shown in Figure is an example mysgl-ds.xml file.

<?xml version="1.0" encoding="UTF-8"?>
<datasources>
<local-tx-datasource>
<jndi-name>csmupt</jndi-name>

<connection-
url>jdbc:mysgl://Prod DB.nci.nih.gov:3306/csmupt</connection-url>

<driver-class>org.gjt.mm.mysqgl.Driver</driver-class>
<user-name>name</user-name>
<password>password</password>

</local-tx-datasource>

</datasources>

Figure 1 Example mysql-ds.xml file

2. Place the mysgl-ds.xml file in the JBoss deploy directory - { jboss-
home}/server/default/deploy/

Step 3: Configure the JBoss JAAS Login parameters
In order to configure the UPT to verify against the LDAP, create an entry in the 1ogin-config.xml of

JBoss as shown in Figure . This entry configures a login-module against the UPT application context. The
location of this file is {jboss-home} /server/default/conf/login-config.xml.

<application-policy name = "csmupt">
<authentication>

<login-module code =
"gov.nih.nci.security.authentication.loginmodules.LDAPLoginModule"
flag = "required" >

<module-option
name="ldapHost">ldaps://ncidsd4a.nci.nih.gov:636</module-option>

<module-option name="ldapSearchableBase">ou=nci,o=nih</module-
option>

<module-option name="ldapUserIdLabel">cn</module-option>
</login-module>

</authentication>

Figure 2 Example login-config.xml entry

As shown in Figure :

e Theapplication-policy isthe name of the application for defining the authentication policy — in
this case, csmupt.

e The login-module is the LoginModule class which is used to perform the authentication task; in this
case, it iS-gov.nih.nci.security.authentication.loginmodules.LDAPLoginModule.

e The flag provided is “required”.

e Themodule-options list the parameters which are passed to the LoginModule to perform the
authentication task. In this case, they are pointing to the NCICB LDAP Server:

<module-option name="ldapHost">ldaps://ncids4a.nci.nih.gov:636</module-
option>

<module-option name="ldapSearchableBase">ou=nci,o=nih</module-option>

<module-option name="ldapUserIdLabel">cn</module-option>

Step 4: Deploy the UPT war file

1. Copy the upt.war in the deployment directory of JBoss which can be found at { jboss-
home}/server/default/deploy/

Step 5: Enable Audit Logging

1. In order to activate the CLM’s Audit Logging capabilities for UPT, the user needs to following the steps
to deploy Audit Logging service as mentioned in the section above.

2. Also the clm.jar needs to be placed in the common lib directory of the JBoss server

Step 5: Start JBoss

1. Once the deployment is completed, start JBoss. Check the logs to confirm there are no errors while the
UPT application is deployed on the server.

2. Once the JBoss server has completed deployment, open a browser to access the UPT. The URL will be
http://<<jboss-server>>/upt, where the <<jboss-server>>isthe IP or the DNS name
of JBoss Server.

3. The UPT Login Page displays. Enter the UPT Application using the login-id that was assigned to the
Super Admin in Step 1 and its password. Also use the UPT Application Name specified in Step 4 for the
Application Name.

4. You should be able to login successfully and the UPT Application Home Page displays.

Note: In case of any errors, follow a debugging and trouble shooting procedure to diagnose and solve the
issues.

7. CSM Web Services Users Guide

7.1 Overview

The Common Security Module Security Web Services are introduced to expose the CSM authentication
and Authorization service features. The Security Web Services currently provide only two operations;
namely Login and CheckPermission. The operations are exposed versions available in CSM API’s.

7.2

7.2.1 Security Web Service WSDL

Web Service WSDL and Operation

The CSM Security Web Service WSDL is shown in the below. The name of the exposed web service is
‘SecurityService’. Currently two operations are available namely Login and CheckPermission. The web
service operations are explained in detail in the following sections.

Operations

: Logir
—-B4 Input wsLoginRequesthessage
L part: LoginRequest authentication:LoginF g
— Output wgLoginR esponzebeszage
e part: LoginResponse authentication: LoginA
+ B Fault wi ErnoMessage
2 |CheckPermission
+@ Input. ws: CheckPermizsionRequestteszag
+E Output; we:CheckPermizsionFesponzeies:
-5 Faul wi:EnoMeszage

PortTypes

Bindings

H

) |

| =

Figure 7.1 Security Web Service WSDL.

7.2.2 Login Operation

-8 SecunityServiceSoapBinding

-" Login
_M Input
| L@ soapBody
B Output
: g soapBody
-4 Faul
@ zoap:Fault
—2 CheckPemission
=B Input
. g soapBuody
<B4 Output
-5 Faul

Services

=

= (:ﬂ SecutyService

------ % SecurityServiceSoapPart

The Login web service operation is a request/response operation. This operation receives a
LoginRequestMessage, performs authentication and responds with LoginResponseMessage to the web
service consumer. If there are any problems with the processing the LoginRequestMessage and/or

performing authentication on the user credentials then the web service operation will return a SOAP Fault

response error message indicating an error code and the error details.

<xs:schema targetNamespace="http://security.nci.nih.gov/ws/authentication"

xmlns:authentication="http://security.nci.nih.gov/ws/authentication"
elementFormDefault="qualified"
attributeFormDefault="qualified"
version=".1">
<xs:element name="LoginRequest" type="authentication:LoginRequest"/>
<xs:complexType name="LoginRequest">
<xs:sequence>
<xs:element name="UserName" type="xs:string"/>
<xs:element name="Password" type="xs:string"/>

<xs:element name="ApplicationContext" type="xs:string"/>

Figure 7.2 Schema (XSD) for Authentication

As displayed in the Figure 7.2. The LoginRequest message consists of three parameters, namely Username,
password and ApplicationContext. The Apache AXIS framework validates all request and response
messages against the Schema specified in the Security WS WSDL. When the LoginRequest message is
received by the web service operation, the User credentials from the LoginRequest message are used by
the CSM API to authenticate the user against privilege for the ‘ApplicationContext’. If the User is
authenticated and has privilege to access the ApplicationContext then a LoginResponse is returned with
result value of ‘true’. If the user is not authenticated and does not have access privilege for the
‘ApplicationContext’ then a LoginResponse is returned with the result value of ‘false’.

7.2.3 CheckPermission Operation

The Checkpermisson web service operation is a request/response operation. This operation receives a
CheckPermissionRequestMessage, performs a permission check and responds with
CheckPermissionResponseMessage. If there are any problems then the web service operation will return a
SOAP Fault response error message indicating an error code and the error details.

<xs:schema targetNamespace="http://security.nci.nih.gov/ws/authorization"

xmlins:authorization="http://security.nci.nih.gov/ws/authorization"
elementFormDefault="qualified"
attributeFormDefault="qualified" version=".1">
<xs:element name="CheckPermissionRequest" type="authorization:CheckPermissionRequest"/>
<xs:complexType name="CheckPermissionRequest">
<xs:sequence>
<xs:choice>
<xs:element name="UserName" type="xs:string"/>
<xs:element name="GroupName" type="xs:string"/>
</xs:choice>
<xs:element name="0bjectld" type="xs:string"/>

<xs:element name="Attribute" type="xs:string" nillable="true"/>

Figure 7.3 Schema for Authorization

As displayed in the Figure 7.3. The CheckPermission request message consists of User name or Group
name, Objectld, Attribute, Privilege and ApplicationContext. The Apache AXIS framework validates all
request and response messages against the Schema specified in the Security WS WSDL. When the
CheckPermission request message is received by the web service operation, the CSM API’s
checkpermission method is invoked to check permission. If the User or Group has permission then a
CheckPermissionResponse is returned with result value ‘true’ otherwise result value is ‘false’.

7.3 Workflow for CSM Security Web Service

This workflow section outlines the basic steps, both strategic and technical, for successful CSM Security
Web Services integration.

1) Read the deployment steps from this document and also read the CSM Guide for Application
Developers. It provides an overview, workflow, and specific deployment and integration steps.

2) Determine the security requirements and provision security with CSM’s UPT.

3) After the Security Web Service is deployed and user security provisioned with UPT. The Security
Web Service is ready operable and consumption

4) Using the CSM Web Services Interface use the authentication and authorization operation
exposed.

5) Using the LoginRequestMessage invoke and consume Login Web Service Operation.

6) Using the CheckPermissionRequestMessage invoke and consume the CheckPermission Web
Service operation.

7.4 Installation of CSM Security Web Service

Step 1: Create and Prime Database

1. Log into the database using an account id which has permission to create new databases. As you
follow the deployment steps, use the files containing the name corresponding with your database.
Make sure that the database you are about to create doesn’t already exist. If it does, then drop it
to recreate new one.

2. In the AuthSchemaMySQL.sql file replace the <<database_name>> tag with the target applications
scheme — csmupt.

3. Run this script on the database prompt. This should create a database with the given name.
4. In the DataPrimingMySQL.sql file, replace:

o The <<super_admin_login_id>> with the login id of the user who is going to act as the Super
Admin for that particular installation. For example “doej” for John Doe admin.

o Also provide the first name and last name for the same by replacing
<<super_admin_first_name>> with Doe and <<super_admin_last_name >> with Joe.

5. Replace the <<application_context_name>> with a test application entry — ‘abc_app’. For example:
Application name is ‘abc_app’ and application schema name is ‘abc_app’. For the sake of this
document we will use schema ‘abc_app’ and the application as ‘abc_app’.

6. Run the script on the database prompt. This should populate the database with the initial data.
Verify by querying the application, user, protection_element and user_protection_element tables.
They should have one record each. The database will include CSM Standard Privileges and the
privilege table should have 7 entries.

Step 2: Configure Datasource

Modify the mysql-ds.xml file which contains information for creating a data source. One entry is
required for each database connection. Edit this file to replace:

o The --database_user_name-- with the user id. . --database_user_password--with the password of
the user account.

o The --database_url-- with the URL needed to access the Authorization Schema residing on the
database server - jdbc:mysql://<<stage_database_server_name>>:<<port>>/<<database_name>>

Shown in Figure is an example mysql-ds.xml file.

<?xml version="1.0" encoding="UTF-8"?>
<datasources>
<local-tx-datasource>
<jndi-name>abc app ds</jndi-name>

<connection-url>
jdbc:mysqgl://<<database server name>>:<<port>>/<<database name>></con
nection-url>

<driver-class>org.gjt.mm.mysqgl.Driver</driver-class>
<user-name>name</user-name>
<password>password</password>
</local-tx-datasource>

</datasources>

Figure 7.4 Example mysql-ds.xml file
2. Place the mysql-ds.xml file in the JBoss deploy directory - {jboss-home}/server/default/deploy/
Step 3: Configure the JBoss JAAS Login parameters

1. In order to configure the CSM Web Service to verify against the LDAP, create an entry in the login-
config.xml of JBoss as shown in Figure . This entry configures a login-module against the ‘abc_app’
application context. The location of this file is {jposs-home}/server/default/conf/login-config.xml.

<application-policy name = "abc app">
<authentication>

<login-module code =
"gov.nih.nci.security.authentication.loginmodules.LDAPLoginModule" flag

= "required" >

<module-option
name="ldapHost">ldaps://ncidsd4a.nci.nih.gov:636</module-option>

<module-option name="ldapSearchableBase">ou=nci,o=nih</module-option>
<module-option name="ldapUserIdLabel">cn</module-option>
</login-module>
</authentication>

</application-policy>

Figure 7.5 Example login-config.xml entry

As shown in Figure :

e The application-policy is the name of the application for defining the authentication policy —in this
case, ‘abc_app’.

e The login-module is the LoginModule class which is used to perform the authentication task; in this
case, it is -gov.nih.nci.security.authentication.loginmodules.LDAPLoginModule.

e The flag provided is “required”.

e The module-options list the parameters which are passed to the LoginModule to perform the
authentication task. In this case, they are pointing to the NCICB LDAP Server:

<module-option name="IdapHost">ldaps://ncids4a.nci.nih.gov:636</module-option>
<module-option name="IdapSearchableBase">ou=nci,0=nih</module-option>

<module-option name="IdapUserldLabel">cn</module-option>

Simultaneously you can also point to a RDBMS database containing the username and password
information. The configuration steps for the same are provided in the CSM’s Guide for Application’s
Developers

Step 4: Deploy the Security WS war file

1. Copy the securityws.war in the deployment directory of JBoss which can be found at { jboss-
home}/server/default/deploy/

8. CSM Instance Level and Attribute Level Security

8.1.1 Prior to CSM 4.0

Previously CSM APIs provided instance level and attribute level security. However this security is provided
in the java tier. The typical flow of events in case of instance level security would be as follows. The user
fires a business query on the database to obtain the resultset. Now the entire resultset is iterated through
in java and for each and every record in it, a call is made to the CSM APIs to check if the user has access to
that particular instance or not. Also in case of attribute filtering the for each of the accessible object in the
resultset you need to invoke the CSM APIs to check which attributes the user can see.

In the both the solutions mentioned above, there are several issues

1. The entire result set is to be returned from the database to the application resulting in network traffic
and latency

2. Once the resultset is obtained, it needs to be iterated through in java adding to processing time
3. For each record there is a database call to CSM to determine if the user has access or not.

As part of CSM 4.0 the design addresses all the performance issues mentioned above.

8.1.2 Instance Level

8.1.2.1 Requirements Addressed

As part of CSM 4.0, following functional requirements are addressed and provided as part of the instance
level security solution

1. Direct Instance Level Security
The solution provides Direct Instance Level Security. Direct Instance Level Security can be defined as

where security for a particular instance is dependent on its own self. A user has access to a particular
object based on the value of one of its attribute. There is no relation or association with another
object. This type of instance level security is adhoc and dependant on the associations done between
that instance and the user by security admin

For e.g. Out of 456 patients in the patient table, user ABC has access to these assigned 28 based on the
patient id.

Here out of the total patients in that database, the security admin has assigned 28 patient ids to the
user ABC. Based on this the solution should filter any query fired on that patient table such that for
that user ABC only those 28 records are accessible.

2. Cross Dependant Instance Level Security
The solution provides Cross Dependant Instance Level Security. Cross Dependant Instance Level

Security can be defined as where security for a particular instance is dependent on some other object.
A user has access to a particular object based on its association to some other higher level object on
which the user has been granted access. There is an association with another object which is generally
higher up in the data graph. This type of instance level security is based on the relationship between
the queried tables to the table to which the security is assigned. This type of security is used generally
where it is much easier to assigned and manage security at a higher level of data

For eg. User has access only those Lab Results which are associated to the Study (via patients) on which
he as access.

Here in this example there can be 1000s of Lab Results where as the Studies could be in 10s. Also as
per the business rule, if you are assigned access to the Study then you can access everything associated
to that study. Also in case the assignment and management of security is much easier with Studies as
they are less in number.

3. Provides Integration of Instance Level Security for an SDK generated system
The instance level solution is integrated with SDK so that it can be provided as an out of the box

solution for SDK generated systems.

4. Provides Instance Level Security Support for a Non SDK system

The Solution provided is adaptable for Non SDK systems with minor modifications if required. The general
principle should be same as for an SDK generated system. It can be assumed that users will need to
configure the solution and adapt it for their application.

8.1.2.2 Overall Design

In order to provide instance level security, CSM utilizes the filter capability provided by hibernate. These
filters contain filtering queries which are injected to the actual business queries which are fired by the
user. These filters are applied at class level. So whenever that class is queried the attached filter is
appended to the actual business query directly by Hibernate.

CSM provides capabilities for creating these filters through its UPT tool. It allows you to configure these
filters for either the Direct of Cross Dependant type of instance level security. These filters contain queries
which join with the CSM tables to obtain the instances of data on which the user has access. These filters
are stored in the CSM database. At run time the client application calls CSM’s helper methods which
retrieve these filters from the CSM Database. They also inject these filter into hibernate configuration for
the appropriate classes.

Now since these filters are to be applied for a particular user, the user name is passed as parameters to
these filters. So at run time filter queries are inject into the actual user queries. This combined query is
fired at the database and the resulting data is filtered based on the instances on which the user has access.

8.1.2.3 Provisioning Instance Level Security

A new menu tab has been added to UPT for the purpose of provisioning Instance Level Security. This tab
lets them configure the filter clauses for various classes in their application. Once the filtering clauses are
configured then the admins can create Protection Elements for the Instances of Objects on which the users
have access and assign them access. The following activity diagram shows how the new menu tab for
adding the filter clause would operate. These details for these operations are provided in the UPT User
Guide Section of this document.

Also Protection Element has been enhanced to now include a new value field which the admins can use to
provide values for the instances on which the users have access.

Following is the workflow for provisioning instance level security

1. Uploading an Application File
The first step is to upload a file which contains the hibernate files along with the domain objects. This
file should be a valid java archive and contain the following

e Hibernate Configuration File — with database connection information

e Hibernate Mapping files

e Domain Objects

In case of an SDK generated system, there are two jar files generated containing the Hibernate and
Domain Objects separately. In this case both these files have to be uploaded.

Also a fully qualify hibernate configuration file name should be provided along with the files. Once the
file is successfully uploaded a success message is given to the user.

. Creating a Filter Clause
Once the file containing Hibernate information is uploaded we can use it to create filter clause for

different objects.

On the filter clause screen, user first has to select the class for which he wants to add the filter. Once
the class is selected, the second combo box is automatically populated with the associated classes.
NOTE: There is an entry for the master class itself in the list. This is to allow for direct instance level
security.

If you want to provision a Direct Instance Level Security then select the class itself in the second combo
and press done.

In case of Cross Dependant Security, select the associated class in the second combo. Note that you
can drill down the class hierarchy by pressing the Add button. This will bring the associated child
classes. Once you have reached the final class on which the security for the class is dependant you can
press done.

On pressing done the attribute list combo is populated with the attributes from the last class in the
filter chain. Select the attribute on whose value the user will be granted access.

Once selected you can also provide an alias for the target class name and attribute. This is in cases
where the attribute selected holds value for some other class. For example you have a Patient Object
which has an attribute Security Key on whose value you want to filter the instances. However from a
business perspective, the actual value in the Security Key is the value of the Study Id to which the
patient belongs. In this case even though the security filter is set for the Patient based on the security
key attribute, however in business sense the filtering is happening at the Study Id Level. Hence you can
provide this alias which will be used to determine the protection elements on which the user has been
granted access.

Once everything is selected, pressing the Add filter will create the filter. Once the filter is created a
filtering SQL is generated and displayed back to the user. Note that this field is kept editable to allow
users to modify the SQL in case if they want to optimize it further.

. Creating Protection Element
Once the security filters have been created, you need to provision the actual instances on which the

user has access. This is done by creating protection elements for these instances and providing the
access to the users.

Following is description of the Protection Element Fields which admin has to create and grant it to the user

Field Name

Description

Protection Element Name

Distinct name which can identify the Protection Element

Protection Element Description

Description for the Protection Element

Protection Element Type

Can be left blank

Protection Element Object Id

The target class name on which the security of the master class
depends. If an alias class name is used, then the alias should be entered
here.

Protection Element Attribute

The name of the attribute of the target class on which the security of
the master class depends. If an alias attribute name is used then the
alias should be entered here

Protection Element Value

The actual value of the attribute on which user has access.

Update Date

Date when the protection element was last updated

Table 8.1 Protection Element fields.

ad Instance Level Activitiy Flow

Lopgin

Instance Level Home
Screen

*

Upload the Hibernate Jar Search for Filter Clause

File

o
NI

New Filter Clause Entry
Screen
Create a new Filter
Clause

List of Resulting Filter
Clause

N

Select a Filter Clause

Filter Clause Detail
Screen

C Delete Filter Clause) C Modify Filter Clause)

NG

Figure 8.2 Instance Level activity Flow

8.1.2.4 Using Instance Level Security

In order for the Client application to inject Instance Level Security, CSM provides a helper class which
assists them. This class contains methods which allow the user to add these filters to the Hibernate

Configuration at the time of loading of the system and also initialize and parameterize these filters at run
time for a particular user who is firing the query.

public static void addFilters(AuthorizationManager authorizationManager, Configuration configuration)

This method should be called only once for an application just after the Hibernate Configuration object is
created by reading the configuration file and before the Session Factory Method is created. This method
injects the security filters which are created for this application. It retrieves a list of all the filters which
have been defined for this application from the CSM Database. Now for each filter in the list, it creates a
new FilterDefinition (Hibernate) object. It then retrieves the Persistent Class from the passed Configuration
Object using the class name for which the filter is defined. It then adds the filter to the persistent class by
setting the filtering query.

public static void initializeFilters (String userName, Session session, AuthorizationManager authorizationManager)

This method is ivoked after obtaining the Session from the SessionFactory and just before executing the
user query. This method initializes the filters that are already added to the Sessionfactory. This method
first obtains the list of all the defined filters from the SessionFactory in the passes Session object. It then
just iterates through the filter list and sets the user name and the application name parameter. It retrieves
the Application Name from the passed Authorization Manager.

8.1.2.5 Known Issues

1. In case of eager loading filtering of the child object doesn’t work
Hibernate by default inject only the filter for the parent object, so incase you have the eager loading

mode set to true, the child object’s (the associated objects which are eagerly loaded) filter are not
injected. SDK by default comes with eager loading set to false leaving up to the users to explicitly turn
it on.

2. Multiple filters on a single object will be always ANDed
If you have multiple filters defined for a single domain object, Hibernate would inject all of them with

an AND conditions between them. This is the default behavior of Hibernate and would require
programmatic enhancements to handle the ORing of filters

3. Filtering incase of inheritance needs to be further investigated
Hibernate DTD has a limitation not allowing user to add a filter for the inherited classes. The DTD

allows filters only to be added to the super class. However Hibernate API allows adding of these filters.
This issue will be investigated in detail during implementation and results will be posted accordingly.

8.1.3 Attribute Level

8.1.3.1 Requirements Addressed

As part of CSM 4.0, following functional requirements are addressed and provided as part of the attribute

level security solution

1.

Attribute Level Security
The solution provides Attribute level security at object level. Attribute level security can be defined as

security where you can control access to the attributes of an object. A user can be granted and revoked
access to these attributes. Based on the user’s access level, those attributes should be visible to the
user or not.

For example: A Patient object has the following five attributes Name, Address, Social Security, Phone
Number and Disease. Then a researcher who has access to all the attributes except Social Security
should be able to see the Patient object with all attributes except the Social Security attributed filled
with data.

It works for both single or many object retrieval
The solution provides Attribute level security both for queries which result in a single object being

returned from the database as well as a list of the objects being returned from the database. In case of
the list each object in the list should be filtered based attributes to which the user has access too.

It automatically provides Attribute Level Security for an SDK generated system
Attribute Level Security is integrated with SDK so that it can be provided as an out of the box solution

for SDK generated systems.

Solution should provide Attribute Level Security Support for a Non SDK system
The Solution provided should be adaptable for Non SDK systems with minor modifications if required.

The general principle should be same as for an SDK generated system. It can be assumed that users will
need to configure the solution and adapt it for their application.

8.1.3.2 Overall Design

CSM utilized the Sessioninterceptor feature provided by Hibernate to inject attribute level security. It traps

a user session during the loading of an object from the underlying database. During the load process it

intercepts the incoming stream of result data from the underlying database and checks as to which

attributes the user has access to. If not then it just nullifies the attribute value such that the resulting

object contains value for only those attributes on which they have access.

Since it would need to access CSM table to check if user has access to an attribute or not every time an

object is loaded, the solution implements a cache which holds the users attribute access map. The

interceptor looks up against this cache to inject attribute level security this way speeding up the overall
filtering process.

8.1.3.3 Provisioning Attribute Level Security

There are new special changes in the UPT for provisioning of Attribute Level Security. If attribute level
security is turned on, by default all object attributes are secured. So if you want to grant access to an
attribute to the user then you will have to create a protection element for that attribute and grant access
to it to the user like any other protection element.

Following is description of the Protection Element Fields which admin has to create and grant it to the user

Field Name Description

Protection Element Name Distinct name which can identify the Protection Element

Protection Element Description | Description for the Protection Element

Protection Element Type Can be left blank

Protection Element Object Id The class name on whose attribute the user is to be granted access
Protection Element Attribute The attribute name on which the user is to be granted access
Protection Element Value Can be left blank

Update Date Date when the protection element was last updated

Table 8.3 Protection Element Fields.

8.1.3.4 Using Attribute Level Security

In order to use Attribute Level Security, the Client Application will have to attach the attribute level Session
interceptor to its session. This can be done at the time of obtaining the Hibernate Session from the
SessionFactory object as shown below. Once the session interceptor is in place it will inject Attribute level
security every time an object is loaded from the database for a query

Session session = sessionFactory.openSession(new AttributeSecuritySessioninterceptor());

8.1.3.5 Know Issues

1. Incase of eager loading the attribute filtering happens only for parent object

The onLoad method is invoked for each record returned from the database. However this works only
for the parent object, so if you have eager loading set to true, the child object’s (the associated objects
which are eagerly loaded) attributes aren’t filtered. SDK by default comes with eager loading set to
false leaving up to the users to explicitly turn it on.

2. Primitive attribute type filtering is not possible
Since a primitive data type cannot be set to null, the current attribute solution doesn’t work if the

domain objects contain primitive data types as attribute. The default values for primitive (0 for int,
false for a boolean) can be a valid value, hence setting primitive attributes to their default values is also
not an option.

3. Filtering on queries with projection on certain attributes won’t work
For queries, where the user have set a project on certain attributes of the object rather than returning

the whole object back, this solution won’t work. This is because in case of projections, Hibernate
returns the attribute value is directly from the database as Java data types. As a result, the onLoad
method of the session interceptor is not invoked thereby not injecting the attribute level security.

9. CSM Acegi Adapter

9.1 Overview

The Acegi Framework® is quickly becoming the preferred framework for many Spring2 framework powered
applications to implement security. Acegi Security is the de facto standard for security in Spring
Framework. Existing applications and new applications wanting to leverage CSM can do so now with the
CSM Acegi Adapter. The CSM Acegi Adapter allows applications to use CSM’s Authentication and
Authorization under the Acegi Security Framework.

CSM Acegi Adapter implementation provides Authentication, Authorization - Method Level Security and
Object Parameter level security.

9.1.1 Implementation

Acegi Security is widely used within the Spring community for comprehensive security services to Spring-
powered applications. It comprises a set of interfaces and classes that are configured through a Spring loC
container. The design of Acegi Security allows many applications to implement the common enterprise
application security requirements via declarative configuration settings in the loC container. Acegi Security

! http://www.acegisecurity.org/
% http://www.springframework.com/

http://www.acegisecurity.org/
http://www.springframework.com/

is heavily interface-driven, providing significant room for customization and extension. Important Acegi
Security, like Spring, emphasizes pluggability.

AuthenticationEntry uses
. - it
Point
(Defines Security Realm) Handles exceptions
om
uses
(Defines secured resources
and authonzations)
uses
Authenticati isi
uMZia;Zf " (Manages validation of ﬁmﬂmsmn (Grants access based on vote)
principal's credentials) i
¢uses iuses
DaoAuthentication :
. (retrieves usernames, B ' :
oleVoter otes whether to grant access
Provider passwords and roles) S -)

l‘IJ.SES

UserDetailsSarvica | (contains usemames, passwords
and roles)

Figure 9.1 Authentication and Authorization in Acegi Framework.

Figure 9.1 demonstrates the control flow by Acegi for authentication and authorization. The CSM Acegi
Adapter uses this approach to provide CSM Adapter. Authentication is implemented by extending this
design. Acegi provides Interceptors which can be configured through Acegi Security Configurations in
Spring. For a detailed understanding of the Acegi Frameworks Authentication and Authorization
implementation by CSM please refer the following section.

NOTE: The detailed explanation of Acegi interfaces that are implemented by CSM Acegi Adapter is beyond
the scope of this guide. Refer the Acegi Security CSM Adapter Design document for details and check out
acegi security reference documentation.

Currently the CSM Acegi Adapter implementation provides Method Level and Method Parameter Level

security.

9.1.1.1 Method Level Security

http://www.acegisecurity.org/guide/springsecurity.html

The current out of box implementation of the CSM Acegi Adapter provides method level security. The
Adapter implements Acegi’s MethodInterceptor The CSMMethodSecuritylnterceptor, CSM’s custom
implementation of the MethodInterceptor, enables security at method level by intercepting method calls
on the secured bean specified in the MethodDefinitionSource. All the methods will be intercepted for each
secured bean. Please see the Workflow and Integrating and Configuring sections for more details.

9.1.1.2 Method Parameter Level Security

In this implementation the CSM Acegi Adapter provides method parameter level security. Applications that
need method parameter level security have to implement CSM’s SecurityHelper. The SecurityHelper
interface, provided by CSM, allows the application to control authorization. Refer the CSM API source for

more details.

9.1.2 Workflow

1) Determine the level of security required for your application — Method level, Object Parameter
Level etc.

2) Define the beans that need to be protected

3) Define appropriate Security Interceptors.

4) Define Security Interceptors for various beans that need protection.

5) Configure the csm-acegi-security.xml acegi security configuration file.

6) Configure a JAAS LoginModule for the Application Context.

7) Configure Database properties.

8) Configure User provisioning using CSM UPT.

9.1.3 Integrating and Configuring

This section serves as a guide to help developers integrate applications with CSM Acegi Adapter. It outlines
a step by step process that addresses what developers need to know in order to successfully integrate
CSM’s Acegi Adapter into their applications, which includes:

e Configure Acegi Security in csm-acegi-security.xml
e Database properties and configuration
o Configure Datasource OR
o Configure Hibernate configuration file
e LDAP properties and configuration
e Provision user access authorization policy

https://gforge.nci.nih.gov/frs/download.php/2667/CSM_API_4_0_Source.zip

9.1.3.1 Configure Acegi Security

1. Define the beans that need to be protected.
For Example from Appendix A:
<bean id="applicationService' class="test.gov.nih.nci.security.acegi.sdk.ApplicationServicelmpl' /> .
This configuration will secure ApplicationServicelmpl class and intercept all its method calls.

2. Define the SecurityHelper Impl Class. This class needs to be implemented by the developers that want
to integrate CSM Adapter into their new or existing Application with Acegi Security Framework. In this
implementation it is a custom CSMMethodSecuritylnterceptor that intercepts any method calls on the
‘applicationService’ bean.

Example: <bean id="securityHelper' class="test.gov.nih.nci.security.acegi.sdk.SecurityHelperimpl' />

3. List the beans that need to be protected by the ‘securitylnterceptor’ for the ‘autoProxyCreator’.
Example:
<bean id="autoProxyCreator'
class='org.springframework.aop.framework.autoproxy.BeanNameAutoProxyCreator'>

<property name='interceptorNames'>
<list>
<value>securitylnterceptor</value>
</list>
</property>
<property name='beanNames'>
<list>
<value>applicationService</value>
</list>
</property>
</bean>

4. Specify the Application Context that will be used for CSM’s Authentication and Authorization service.
Example:
<bean id="userDetailsService"

class="gov.nih.nci.security.acegi.authentication.CSMUserDetailsService">
<!-- Specify the Application Context required by CSM -->
<property name="csmApplicationContext">
<value>acegitest</value>
</property>
</bean>

9.1.3.2 Database properties and configuration

Create and Prime Database

Note: When deploying Authorization, application developers may want to make use of a previously-
installed common Authorization Schema. In this case, a database already exists, so skip this step. Follow
the steps below to install a new Authorization Schema. Note that the Authorization Schema used by the
run-time APl and the UPT has to be the same.

7.

10.

11.

12.

Log into the database using an account id which has permission to create new databases. Based on the
database you have selected, you must follow the same step during the entire installation

In the AuthSchemaMySQL.sql or AuthSchemaOracle.sql script, replace the “<<database_name>>" tag
with the name of the authorization schema (e.g. “acegitest”).

Run this script on the database prompt. This should create a database with the given name. The
database will include CSM Standard Privileges.

Now in the DataPrimingMySQL.sql or DataPrimingOracle.sql file, replace the
“<<application_context_name>>" with the name of application. This is the key to derive security for
the application. This will be called application context name.

Now in the DataPrimingMySQL.sql or DataPrimingOracle.sql file, replace the
“<<super_admin_login_id>>", “<<super_admin_first_name>>" and “<<super_admin_last_name>>"
with the super admin user’s login id, first name and the password. NOTE: that the default password is
always “changeme” and this should used for logging into the application’s UPT for the first time. It

should be changed immediately

Run this script on the database prompt. This should populate the database with the initial data. Verify
this by querying the application table. It should include one record only.

Configure Datasource

1. Modify the provided mysgl-ds.xml or oracle-ds.xml file which contains information for
creating a datasource. One entry is required for each database connection. Edit this file to replace:

a. The<<application context name>> tag with the name of the authorization schema (for
example, “acegitest’).

b. The <<database user id>> withthe useridand <<database user password>> with
the password of the user account, which will be used to access the Authorization Schema created
in Step 1 above.

c. The<<database url>> with the URL needed to access the Authorization Schema residing on
the database server.

Shown in Figure 5.11 is an example of the mysqgl-ds.xml file.

<datasources>

<local-tx-datasource>
<jndi-name>csmupt</jndi-name>
<connection-url>jdbc:mysql://mysql_db:3306/csmupt</connection-url>
<driver-class>org.gjt.mm.mysq|l.Driver</driver-class>
<user-name>name</user-name>
<password>password</password>

</local-tx-datasource>

<local-tx-datasource>
<jndi-name>acegitest</jndi-name>
<connection-url>jdbc:mysql://mysqgl_db:3306/csd</connection-url>
<driver-class>org.gjt.mm.mysql.Driver</driver-class>
<user-name>name</user-name>
<password>password</password>

</local-tx-datasource>

</datasources>

Figure 9.2 Example mysgl-ds.xml file

4. Place the mysgl-ds.xml or oracle-ds.xml file in the JBoss deploy directory.

If the integrating Application does not want to use datasources then the hibernate configuration file can

be used.

Configure Hibernate Configuration file

1. Modify the provided mysgl-ds.xml or oracle-ds.xml file which contains information for
creating a datasource. One entry is required for each database connection. Edit this file to replace:

a. The<<application context name>>tag with the name of the authorization schema (for

example, “csmupt”).

b. The <<database user_ id>> withthe useridand <<database user password>> with
the password of the user account, which will be used to access the Authorization Schema created

in Step 1 above.

c. The<<database url>> with the URL needed to access the Authorization Schema residing on

the database server.

Shown in Figure 5.11 is an example of the acegitest.new.csm.hibhernate.xml file for application

context ‘acegitest’.

<?xml version="'1.0' encoding='UTF-8'?>

<IDOCTYPE hibernate-configuration PUBLIC "-//Hibernate/Hibernate Configuration DTD 2.0//EN"
"http://hibernate.sourceforge.net/hibernate-configuration-2.0.dtd">

<hibernate-configuration>
<session-factory>
<property name="connection.url">jdbc:mysql://<<server>>:<<port>>/acegitest</property>
<property name="dialect">org.hibernate.dialect.MySQLDialect</property>
<property name="connection.username">USERNAME</property>
<property name="connection.password">PASSWORD</property>
<property name="connection.driver_class">org.gjt.mm.mysql.Driver</property>
<property name="hibernate.show_sql">false</property>
<property name="connection.zeroDateTimeBehavior">convertToNull</property>
<property name="hibernate.cache.use_query_cache">false</property>

<property name="hibernate.cache.use_second_level cache">false</property>

<mapping resource="gov/nih/nci/security/authorization/domainobjects/Privilege.hbm.xml"/>
<mapping resource="gov/nih/nci/security/authorization/domainobjects/Application.hbm.xml"/>
<mapping resource="gov/nih/nci/security/authorization/domainobjects/Role.hbm.xml"/>
<mapping resource="gov/nih/nci/security/dao/hibernate/RolePrivilege.hbm.xml"/>

<manning resniirce="onv/nih/nci/<ecuiritv/dan/hihernate/llserGraiin hhm yml" />

Figure 9.3 Example acegitest.new.csm.hibernate.cfg.xml

9.1.3.3 Configure JAAS LoginModule

Configuring a Login Module in JAAS

Developers can configure a login module for each application by making an entry in the JAAS configuration
file for that application name or context.

The general format for making an entry into the configuration files is shown in Figure 5.3.2.

Application 1 {
ModuleClass Flag ModuleOptions;
ModuleClass Flag ModuleOptions;

L
Application 2 {
ModuleClass Flag ModuleOptions;

5

Figure 9.1.3.3 configuring a login module

For acegitest, which uses RDBMSLoginModule, the JAAS configuration file entry is shown in Figure 5.3.2.

acegitest
{
gov.nih.nci.security.authentication.loginmodules.RDBMSLoginModule Required
driver=" org.gjt. mm.mysql.Driver"
url=" jdbc:mysql://<<server>>:<<port>>/acegitest "
user="USERNAME"
passwd="PASSWORD"
query="SELECT * FROM users WHERE username=? and password="?"
encryption-enabled="YES";
}

Figure 9.1.3.3 acegitest application JAAS configuration file entry

The configuration file entry contains the following:
e The application is acegitest.
e The ModuleClass is gov.nih.nci.security.authentication.loginmodules.RDBMSLoginModule

e The Required flag indicates that authentication using this credential source is a must for overall
authentication to be successful.

e The ModuleOptions are a set of parameters which are passed to the ModuleClass to perform its
actions.

In the prototype, the database details as well as the query are passed as parameters: driver="
org.gjt.mm.mysql.Driver "

url=" jdbc:mysql://<<server>>:<<port>>/acegitest "
user="USERNAME"

passwd="PASSWORD"

query="SELECT * FROM users WHERE username=? and password="?"
encryption-enabled="YES"

As shown in Figure 9.5, since ‘acegitest’ application has only one credential provider, only one
corresponding entry was made in the configuration file. If the application uses multiple credential
providers, then the LoginModule’s can be stacked. A single configuration file can contain entries for
multiple applications.

9.1.3.4 User provisioning via UPT

e Create Protection Elements for objects that need to be secured.
e Create Protection Group for the Protection Elements.

e Create a Role with Privilege assigned to it.

e C(Create a User.

e Assign Protection Group and Role to the Users that are allowed access.

10. CSM caGrid Integration

caGrid? is a core infrastructure project of the cancer Bio Informatics Grid. It consists of architectural
components and tools which enable any applications to be deployed on the grid as a node. It also provides
tools for discovering these services and invoking them.

In order to be able to securely invoke the grid services, the caGrid architecture needs to authenticate and
authorize the user trying to make the service call. This would require both a authoring mechanism to
provide appropriate permissions to the user and a run time mechanism to verify these granted permission.

Since CSM provides the above mentioned capabilities, the below mentioned solution describes how CSM
can be leveraged in the grid environment.

10.1 Authentication

CSM is enhanced to return a subject for a user upon authentication. This subject contains user’s attributes
like Last Name, First Name and Email Id that are required to prepare the SAML which is to be sent to
Dorian®.

10.1.1 CSM configuration for IdP / Authentication Service

As Part of v3.2, CSM is also integrated into the caGrid IDP module to facilitate local authentication. In order

® http://cagrid.or
* http://www.cagrid.org/mwiki/index.php?title=GAARDS:Main

http://cagrid.org/
http://www.cagrid.org/mwiki/index.php?title=GAARDS:Main

to support creation of SAML assertions by the IDP, CSM needs to retrieve user attributes from the
Credential Providers and supply them back to the caGrid component. In order to be able to retrieve these
attributes, CSM provides configuration settings which can be used to map them to individual credential
providers. These attributes are returned as CSM currently return Principles in a JAAS Subject as part of the
following new method added to the AuthenticationManager

public Subject authenticate(String userName, String password) throws CSException, CSLoginException,
CSInputException, CSConfigurationException, CSInsufficientAttributesException;

Following are the attributes that are returned and their corresponding PrincipleNames

o First Name - gov.nih.nci.security.authentication.principal.FirstNamePrincipal
e Last Name - gov.nih.nci.security.authentication.principal.LastNamePrincipal
e Email ld - gov.nih.nci.security.authentication.principal.EmailldPrincipal
o First Name - gov.nih.nci.security.authentication.principal.LoginldPrincipal

Both RDBMSLoginModule and LDAPLoginModule have been updated to return these attributes. Following
two sections talk about how it is done.

10.1.1.1 Configuring RDBMS Login Module for CSM-caGrid IDP Integration

If an application uses an RDMBS Server from which the user attributes are to be retrieved to the above
mentioned attribute mapping should be added in the JAAS login-config file. Following is a sample entry for
the same in JAAS login.conf file

RDBMSGRID{
gov.nih.nci.security.authentication.loginmodules.RDBMSLoginModule Required
driver="org.gjt.mm.mysql.Driver"
url="jdbc:mysql://mysqgl_db_server:3620/CSMAuthSchema"
user="USER "
passwd="PASSWORD"

TABLE_NAME="CSM_USER"
USER_LOGIN_ID="LOGIN_NAME"
USER_PASSWORD="PASSWORD"
USER_FIRST_NAME="FIRST_NAME"
USER_LAST_NAME="LAST_NAME"

USER_EMAIL_ID="EMAIL_ID";

5

Where

TABLE_NAME is the name of the table where the attributes can be found
USER_LOGIN_ID is the name of the column in the table storing the user’s login id
USER_PASSWORD is the name of the column in the table storing the user’s password
USER_FIRST_NAME-= is the name of the column in the table storing the user’s first name
USER_LAST_NAME-= is the name of the column in the table storing the user’s last name
USER_EMAIL_ID=is the name of the column in the table storing the user’s email id

NOTE: In order to activate the CLM’s Audit Logging capabilities for the Authentication Service, the user
needs to follow the steps to deploy Audit Logging service as mentioned in the Audit Logging section below

10.1.1.2 Configuring LDAP Login Module for CSM-caGrid IDP Integration

If an application uses an LDAP Server from which the user attributes are to be retrieved to the above
mentioned attribute mapping should be added in the JAAS login-config file. Following is a sample entry for
the same in JAAS login.conf file

LDAPGRID{
gov.nih.nci.security.authentication.loginmodules.LDAPLoginModule Required
IdapHost="ldap://ncicbds-dev.nci.nih.gov:389"
IdapSearchableBase="ou=csm,dc=ncicb-dev,dc=nci,dc=nih,dc=gov"
IdapUserldLabel="uid"
IdapAdminUserName="uid=csmAdmin,ou=csm,dc=ncicb-dev,dc=nci,dc=nih,dc=gov"
IdapAdminPassword="PASSWORD"
USER_FIRST_NAME="givenName"
USER_LAST _NAME="sn"
USER_EMAIL_ID="mail";

5

Where

e USER_FIRST_NAME is the Idap attribute which stores the first name
e USER_LAST_NAME is the Idap attribute which stores the last name
e USER_EMAIL_ID is the Idap attribute which stores the email id

10.2 Authorization

10.2.1 Using Grid Group Names for Check Permission

As part of the CSM caGrid Integration, CSM now allows users to check permission using the Grid Grouper
Group Name. Earlier the check permission method took only user name and checked permission for that
particular user. However now new methods have been introduced which can take in a group name and
check permission against the group name.

Alternatively there are other two methods provided which returns the list of all the groups which have the
said privilege on a particular resource.

Following are the method definition. More details are provided in the javadocs

public boolean checkPermissionForGroup(String groupName, String objectld, String attributeName, String privilegeName)
throws CSException;

public boolean checkPermissionForGroup(String groupName, String objectld, String privilegeName) throws CSException;
public List getAccessibleGroups(String objectld, String privilegeName) throws CSException;

public List getAccessibleGroups(String objectld, String attributeName, String privilegeName) throws CSException;

NOTE: if you are using Group level security then at the time of provisioning you need make sure that the
group name provided to the group (via UPT) is same as the Grid Grouper group name

10.3 Migrating from CSM v3.2 to CSM v4.0

10.3.1 MySQL Migration

The following procedure defines in detail the steps needed to update the MySQL database from an existing
3.1 authorization schema to a new 4.0 authorization schema:

1. Obtain the CSM API v4.0 Release from NCICB Download Center [http://ncicb.nci.nih.gov/download]

2. Inthe MigrationScript3.2MySQL.sql from the CSM API v4.0 Release, change the <<database name>>
with the name of the database.

3. Go to the directory which contains the executables for MySQL and provide the following command.

mysqgl --user=[user_name] --password=[password] -h [hostname] [auth_schema] <
MigrationScript4.0MySQL.sql

e [user_name] is the user name used to connect the MySQL database

e [password] is the password for the user name

e [hostname] is the host URL where the MySQL database is hosted. If you are running this command
from the same machine where MySQL is hosted, you do not need to provide this parameter.

e [auth_schema] is the name of the database created using the new authorization schema.

e [MigrationScript4.0MySQL.sql] is the file containing the data exported from the old schema, which
needs to be loaded into the new schema

4. Verify that there are no errors in the SQL Script executed. Also make sure that the database has been
appropriately updated.

10.3.2 Oracle Migration

The following procedure defines in detail the steps needed to update the Oracle database from an existing
3.2 authorization schema to a new 4.0 authorization schema:

1. Obtain the CSM API v4.0 Release from NCICB Download Center [http://ncicb.nci.nih.gov/download]

2. Log onto Oracle Server into the Schema where the CSM Database is present using either SQL Plus or
TOAD or any other tool.

3. Copy all the SQL commands from MigrationScript4.00racle.sql from the CSM API v4.0 Release, and
paste them on the SQL Editor/Console. Now execute all these commands in a batch.

4. Verify that there are no errors in the SQL Script executed. Also make sure that the database has been
appropriately updated.

Appendix A: CSM Acegi Sample configuration File

<?xml version="1.0" encoding="UTF-8"?>

<IDOCTYPE beans PUBLIC -//SPRING//DTD BEAN//EN' 'http://www.springframework.org/dtd/spring-
beans.dtd">

<beans>

<I-- This is the bean that needs to be protected. -->
<bean id="applicationService'
='test.gov.nih.nci.security.acegi.xyzApp.ApplicationServicelmpl' />

<l—The application integrating CSM Acegi adapter needs to provide actual implementation for
SecurityHelper. The class name to reflect the impl of SecurityHelper-->

<bean id="securityHelper'

="test.gov.nih.nci.security.acegi.xyzApp.SecurityHelperimpl' />

<I-- This bean defines a proxy for the protected bean. Notice that -->
<I-- the id defined above is specified. When an application asks Spring -->
<I-- for a applicationService it will get this proxy instead. -->
<bean id="autoProxyCreator'
='org.springframework.aop.framework.autoproxy.BeanNameAutoProxyCreator'>
<property name='"interceptorNames'>
<list>
<value>securitylnterceptor</value>
</list>
</property>
<property name='beanNames'>
<list>
<value>applicationService</value>
</list>
</property>
</bean>

<I-- This bean specifies which roles are authorized to execute which methods. -->

<bean id="securityInterceptor'

='gov.nih.nci.security.acegi. CSMMethodSecurityInterceptor'>
<property name="securityHelper' ref="securityHelper' />
<property name="authenticationManager’
='authenticationManager' />
<property name="accessDecisionManager"
='accessDecisionManager' />
<property name="afterInvocationManager’
="afterInvocationManager' />
<property name="'objectDefinitionSource'
='csmMethodDefinitionSource' />

</bean>

<bean id="csmMethodDefinitionSource'
='gov.nih.nci.security.acegi.authorization.CSMMethodDefinitionSource'>
<property name="methodMapCache'
='ehCacheBasedMethodMapCache' />
</bean>
<bean id="ehCacheBasedMethodMapCache'
='gov.nih.nci.security.acegi.authorization.EhCacheBasedMethodMapCache'>
<property name="cache">
<bean
="org.springframework.cache.ehcache.EhCacheFactoryBean">
<property name="cacheManager">
<bean
="org.springframework.cache.ehcache.EnCacheManagerFactoryBean" />
</property>
<property name="cacheName" value="userCache" />
</bean>

</property>
</bean>

<I-- This bean specifies which roles are assigned to each user. -->
<bean id="userDetailsService"
="gov.nih.nci.security.acegi.authentication.CSMUserDetailsService">

<l-- -->
<l-- Specify the Application Context required by CSM -->
<l-- -->

<property name="csmApplicationContext">
<value>acegitest</value>
</property>
</bean>

<I-- This bean specifies that a user can access the protected methods -->
<I-- if they have any one of the roles specified in the objectDefinitionSource above. -->
<bean id="accessDecisionManager'
='org.acegisecurity.vote. AffirmativeBased'>
<property name='decisionVoters'>
<list>
<ref bean="roleVoter' />
</list>
</property>
</bean>

<I-- The next three beans are boilerplate. They should be the same for nearly all applications. -->
<bean id="authenticationManager'
='org.acegisecurity.providers.ProviderManager'>
<property name="providers'>
<list>
<ref bean="authenticationProvider' />
</list>
</property>
</bean>

<bean id="authenticationProvider'
='gov.nih.nci.security.acegi.authentication.CSMAuthenticationProvider'>

<property name="userDetailsService' ref="userDetailsService' />
</bean>

<bean id="roleVoter'
='gov.nih.nci.security.acegi.authorization.CSMRoleVoter' />

<bean id="afterInvocationManager’
='gov.nih.nci.security.acegi. CSMAfterInvocationProviderManager'>
<property name='"providers'>
<list>
<ref bean="afterInvocationProvider' />
</list>
</property>
</bean>

<bean id="afterInvocationProvider'
='gov.nih.nci.security.acegi. CSMATfterInvocationProvider' />

</beans>

Glossary

The following table contains a list of terms used in this document, with accompanying definitions.

Term

Definition

Acegi

Acegi is a security framework that provides a powerful, flexible security
solution for enterprise software, with a particular emphasis on
applications that use the Spring Framework. Acegi Security provides
comprehensive authentication, authorization, instance-based access
control, channel security and human user detection capabilities. See
http://www.acegisecurity.org/ for more information.

Ant

Apache Ant is a Java-based build tool used to perform various build
related tasks. For more information on how Ant is used within the SDK.
See http://ant.apache.org/ for more information on Ant itself.

caGrid

The cancer Biomedical Informatics Grid, or caBIG™, is a voluntary virtual
informatics infrastructure that connects data, research tools, scientists,
and organizations to leverage their combined strengths and expertise in
an open federated environment with widely accepted standards and
shared tools. The underlying service oriented infrastructure that supports
caBIG™ is referred to as caGrid. See http://www.cagrid.org

Ehcache

Ehcache is a simple, fast and thread safe cache for Java that provides
memory and disk stores and distributed operation for clusters. CSM uses
ehcache in conjunction with Hibernate. See
http://sourceforge.net/projects/ehcache for more information.

Hibernate

Hibernate is an object-relational mapping (ORM) solution for the Java
language, and provides an easy to use framework for mapping an object-
oriented domain model to a traditional relational database. Its purpose is
to relieve the developer from a significant amount of relational data
persistence-related programming tasks. See http://www.hibernate.org/

for more information.

JAR

JAR file is a file format based on the popular ZIP file format and is used
for aggregating many files into one. A JAR file is essentially a zip file that
contains an optional META-INF directory.

JAAS

The JAAS 1.0 API consists of a set of Java packages designed for user
authentication and authorization. It implements a Java version of the
standard Pluggable Authentication Module (PAM) framework and

http://www.acegisecurity.org/
http://ant.apache.org/
http://sourceforge.net/projects/ehcache
http://www.hibernate.org/

Term

Definition

compatibly extends the Java 2 Platform's access control architecture to
support user-based authorization.

SAML

Security Assertion Markup Language (SAML) is an XML standard for
exchanging authentication and authorization data between security
domains, that is, between an identity provider (a producer of assertions)
and a service provider (a consumer of assertions). SAML is a product of
the OASIS Security Services Technical Committee

Spring

Spring Framework is a leading full-stack Java/JEE application framework.
Led and sustained by Interface21, Spring delivers significant benefits for
many projects, increasing development productivity and runtime
performance while improving test coverage and application quality. See
http://www.springframework.org/ for more information.

WSDD

An acronym for Web Service Deployment Descriptor, which can be used
to specify resources that should be exposed as Web Services. See
http://ws.apache.org/axis/java/user-

guide.html#CustomDeploymentintroducingWSDD for more information.

WSDL

An acronym for Web Services Definition Language, which is an XML-
based language that provides a model for describing Web services. See
http://www.w3.org/TR/wsdl.html or http://en.wikipedia.org/wiki/WSDL
for more information.

http://www.springframework.org/
http://ws.apache.org/axis/java/user-guide.html#CustomDeploymentIntroducingWSDD
http://ws.apache.org/axis/java/user-guide.html#CustomDeploymentIntroducingWSDD
http://www.w3.org/TR/wsdl.html
http://en.wikipedia.org/wiki/WSDL

