

CAGRID 1.1

PROGRAMMER’S GUIDE

Center for Bioinformatics

September 17, 2007

 i

Credits and Resources

caGrid Development and Management Teams

Development Support (Systems, QA,
Documentation)

Management

Scott Oster (Lead Architect)
1
 Aynur Abdurazik

9
 Avinash Shanbhag (Product

Manager)
9

Stephen Langella
1
 Ye Wu

9
 Michael Keller

8

Shannon Hastings
1
 Todd Cox

9
 Arumani Manisundaram

8

David Ervin
1
 Wendy Erickson-Hirons

7

Tahsin Kurc
1
 Chet Bochan

11

Joel Saltz
1
 Vanessa Caldwell

11

Ravi Madduri
2
 Craig Fee

11

Ian Foster
2
 Alan Klink

11

Patrick McConnell
3
 Gavin Brennan

11

Joshua Phillips
5

Vijay Parmar
10

1
Ohio State University -

Biomedical Informatics
Department

2
University of Chicago/Argonne

National Laboratory

3
Duke Comprehensive Cancer

Center

4
ScenPro, Inc.

5
SemanticBits, LLC.

6
Science Application

International Corporation
(SAIC)

7
Northern Taiga Ventures, Inc.

(NTVI)

8
Booz Allen Hamilton

9
NCI - Center for Biomedical

Informatics and Information
Technology (CBIIT)

10
Ekagra Software Technologies,

Ltd.

11
Terrapin Systems LLC

(TerpSys)

Other Acknowledgements

GeneConnect – Project - Washington University

GridIMAGE – Project - Ohio State University

caBIO – Project - National Cancer Institute Center for Bioinformatics (NCICB)

caArray – Project - National Cancer Institute Center for Bioinformatics (NCICB)

caTRIP – Project – Duke Comprehensive Cancer Center

GenePattern – Project – Broad Institute

caGrid 1.1 Programmer’s Guide

ii

Other Acknowledgements

geWorkbench – Columbia University

caBiocondutor – Project – Fred Hutchinson Cancer Research Center

Contacts and Support

NCICB Application Support http://ncicbsupport.nci.nih.gov/sw/

Telephone: 301-451-4384

Toll free: 888-478-4423

LISTSERV Facilities Pertinent to caGrid

LISTSERV URL Name

cagrid_users-
l@list.nih.gov

https://list.nih.gov/archives/cagrid_users-l.html caGrid Users
Discussion Forum

http://ncicbsupport.nci.nih.gov/sw/
https://list.nih.gov/archives/cagrid_users-l.html

 iii

Table of Contents

Chapter 1 About This Guide.. 1

Purpose.. 1

Release Schedule .. 1

Audience .. 1

Getting Help ... 1

How to Use This Guide .. 1

Relevant Documents ... 2

Document Text Conventions ... 2

Chapter 2 Overview of caGrid ... 5

Introduction .. 5

Standards Compliant ... 6

Model Driven .. 6

Semantically Discoverable... 7

Secure and Manageable.. 9

Revolutionary Development .. 12

Chapter 3 caGrid Release Structure ... 15

Overview .. 15

caGrid Projects .. 15

Multiple Grid Support ... 22

Process .. 22

Chapter 4 caGrid Metadata Infrastructure .. 25

Code Example Information .. 25

Metadata API Usage Overview ... 25

API Details ... 28

API Usage Examples ... 31

Discovery API Usage Overview ... 34

API Details ... 36

API Usage Examples ... 51

caDSR Grid Service Usage Overview ... 55

API Details ... 58

API Usage Examples ... 61

EVS API Usage Overview ... 66

getMetaSources .. 66

Examples of Use ... 67

getVocabularyNames .. 67

searchDescLogicConcept.. 67

getHistoryRecords ... 69

searchMetaThesaurus ... 70

caGrid 1.1 Programmer’s Guide

iv

searchSourceByCode .. 71

Chapter 5 caGrid Security .. 73

Dorian Overview .. 73

Creating a Grid Proxy Programmatically ... 75

Grid Grouper Overview .. 77

Grid Grouper Object Model ... 78

Chapter 6 caGrid Data Services ... 83

Overview .. 83

CQL .. 83

Generic Data Service Clients .. 85

Client Side Utilities ... 86

Creating a Query ... 87

Query Result Iteration .. 88

Most Current Information and Examples ... 89

Utility Classes .. 89

Utilities ... 89

DataServiceIterator .. 90

DomainModelUtils ... 90

WsddUtil .. 91

Validation Tools ... 91

CQL Query Syntax .. 91

Domain Model Conformance ... 92

Results Validation .. 92

CQL Query Processors .. 93

Overview .. 93

Implementation .. 93

Service Styles Architecture .. 95

Functionality Extended by Styles .. 95

Federated Query Processor Usage Overview ... 96

Federated Query Engine ... 99

Federated Query Processor Service ... 99

Federated Query Results Service ... 99

Security Considerations ... 100

API Details ... 101

API Usage Examples ... 105

Removing Query Results ... 107

Scheduling Removal of Query Results .. 108

Using the Engine Directly to Access Protected Data Services ... 109

Chapter 7 WS-Enumeration ... 111

Overview .. 111

Client API ... 111

ClientEnumeration ... 111

 v

Examples ... 114

Command Line Clients .. 117

Service ... 117

Other Implementation Details .. 121

Chapter 8 Workflow Management Service ... 123

Overview .. 123

Workflow Architecture .. 123

WorkflowFactoryService API ... 125

WorkflowServiceImpl API .. 127

Security in WorkflowFactory and Context Services ... 130

Service Selection ... 131

Provenance Tracking ... 131

WS-RF Resources in Workflows ... 131

Creating a Web Service Instance .. 132

Invoking the Web Service Instance ... 133

Chapter 9 caGrid Global Model Exchange .. 139

Overview .. 139

Building the GME ... 139

Configuring and Deploying the GME ... 140

GME Client .. 143

GME Client API ... 143

GME Viewer .. 143

Appendix A References ... 145

Scientific Publications .. 145

Technical Manuals/Articles .. 148

caBIG Material ... 149

caCORE Material ... 150

Glossary ... 151

Index………………………………………...……………………………………………………………..155

caGrid 1.1 Programmer’s Guide

vi

 Chapter 1 About This Guide

 1

Chapter 1 About This Guide

Purpose
The cancer Biomedical Informatics Grid, or caBIG™, is a voluntary virtual informatics
infrastructure that connects data, research tools, scientists, and organizations to leverage
their combined strengths and expertise in an open environment with common standards and
shared tools. The current grid architecture of caBIG™ is dubbed caGrid. The software
embodiment and corresponding documentation of this architecture constitute the caGrid
release. This guide describes the APIs provided by caGrid.

Release Schedule
This guide has been updated for the caGrid 1.1 release. It may be updated between
releases if errors or omissions are found. The current document refers to the 1.1 version of
caGrid, released in September 2007 by caBIG.

Audience
The primary audience of this guide is the programmer who wants to learn about the APIs
provided by caGrid and/or requires access to one or more caGrid APIs. For additional
information about using caGrid, see the caGrid User‟s Guide.

This guide assumes that you are familiar with the java programming language and/or other
programming languages, database concepts, and the Internet. If you intend to use caGrid
resources in software applications, it assumes that you have experience with building and
using complex data systems.

Getting Help
NCICB Application Support

http://ncicbsupport.nci.nih.gov/sw/

Telephone: 301-451-4384

Toll free: 888-478-4423

How to Use This Guide
This guide is divided into sections that each describes a different caGrid API. The following list
briefly describes the contents of each chapter.

 Chapter 1, this chapter, provides an overview of the guide.

 Chapter 2 provides an overview of the cancer Biomedical Informatics Grid, or caBIG™, a
voluntary virtual informatics infrastructure that connects data, research tools, scientists,
and organizations to leverage their combined strengths and expertise in an open
federated environment with widely accepted standards and shared tools.

http://gforge.nci.nih.gov/frs/?group_id=25
http://ncicbsupport.nci.nih.gov/sw/

caGrid 1.1 Programmer’s Guide

2

 Chapter 3 describes the basic layout of the caGrid release.

 Chapter 4 describes the caGrid metadata infrastructure and describes the Discovery API,
caDSR Grid Service, and EVS APIs.

 Chapter 5 describes using Dorian and Grid Grouper as part of caGrid security.

 Chapter 6 describes the caGrid Data Services infrastructure.

 Chapter 7 describes the client-side APIs for enumerations.

 Chapter 8 describes the architecture and APIs for interacting with caGrid workflow.

 Chapter 9 describes the caGrid Global Model Exchange (GME).

Relevant Documents
This Programmer‟s Guide addresses caGrid Application Programming Interfaces (API) and API
examples. Additional information about caGrid architecture, design, user-oriented overview and
examples, and tool-specific guides can be found in:

Document Location

caGrid 1.1 User‟s Guide http://gforge.nci.nih.gov/frs/?group_id=25

caGrid 1.1 Design Documents
and Tool-specific Guides

http://gforge.nci.nih.gov/docman/index.php?gro
up_id=25&selected_doc_group_id=1870&langu
age_id=1

Document Text Conventions
The following table shows how text conventions are represented in this guide. The various

typefaces differentiate between regular text and menu commands, keyboard keys, and text that

you type.

Convention Description Example

Bold & Capitalized
Command

Capitalized command >
Capitalized command

Indicates a Menu command

Indicates Sequential Menu
commands

Admin > Refresh

TEXT IN SMALL CAPS Keyboard key that you press Press ENTER

TEXT IN SMALL CAPS + TEXT

IN SMALL CAPS

Keyboard keys that you press
simultaneously

Press SHIFT + CTRL and then
release both.

Special typestyle

Used for filenames, directory
names, commands, file listings,
source code examples and
anything that would appear in a
Java program, such as
methods, variables, and
classes.

URL_definition ::=

url_string

Boldface type Options that you select in dialog In the Open dialog box,

http://gforge.nci.nih.gov/frs/?group_id=25
http://gforge.nci.nih.gov/docman/index.php?group_id=25&selected_doc_group_id=1870&language_id=1
http://gforge.nci.nih.gov/docman/index.php?group_id=25&selected_doc_group_id=1870&language_id=1
http://gforge.nci.nih.gov/docman/index.php?group_id=25&selected_doc_group_id=1870&language_id=1

 Chapter 1 About This Guide

 3

Convention Description Example

boxes or drop-down menus.
Buttons or icons that you click.

select the file and click
the Open button.

Italics
Used to reference text that you
type.

Enter antrun.

Note:
Highlights a concept of
particular interest

Note: This concept is used
throughout the installation
manual.

Hyperlink
Links text to another part of the
document or to a URL

Overview

Table 1-1 Document Conventions

caGrid 1.1 Programmer’s Guide

4

 Chapter 2 Overview of caGrid

 5

Chapter 2 Overview of caGrid

This chapter provides an overview of the cancer Biomedical Informatics Grid, or caBIG™, a

voluntary virtual informatics infrastructure that connects data, research tools, scientists, and

organizations to leverage their combined strengths and expertise in an open federated

environment with widely accepted standards and shared tools.

Topics in this chapter include:

 Introduction on this page

 Standards Compliant on page 6

 Model Driven on page 6

 Semantically Discoverable on page 7

 Secure and Manageable on page 9

 Revolutionary Development on page 12

Introduction
The cancer Biomedical Informatics Grid, or caBIG™, is a voluntary virtual informatics
infrastructure that connects data, research tools, scientists, and organizations to leverage their
combined strengths and expertise in an open federated environment with widely accepted
standards and shared tools. The underlying service oriented infrastructure that supports
caBIG™ is referred to as caGrid. Driven primarily by scientific use cases from the cancer
research community, caGrid provides the core enabling infrastructure necessary to compose
the Grid of caBIG™. It provides the technology that enables collaborating institutions to share
information and analytical resources efficiently and securely, and allows investigators to easily
contribute to and leverage the resources of a national-scale, multi-institutional environment.

The caGrid 0.5 "test bed" infrastructure was released in September 2005 and included the initial

set of software tools to effectively realize the goals of caBIG™. The grid technologies and

methodologies adopted for caBIG™, and implemented in caGrid, provide a loosely coupled

environment wherein local providers are given freedom to implement choices and have ultimate

control over access and management. Local providers must also harmonize on community-

accepted virtualizations of the data they use, and make them available using standardized

service interfaces and communication mechanisms. caGrid enables numerous complex usage

scenarios but its base goals are to: enable universal mechanisms for providing interoperable

programmatic access to data and analytics to caBIG™, create a self-described infrastructure

wherein the structure and semantics of data can be programmatically determined, and provide a

powerful means by which resources available in caBIG™ can be programmatically discovered

and leveraged. Additional information about the caGrid 0.5 effort, and a good overview of the

motivation of the grid approach of caBIG™, can be found in the Bioinformatics Journal article

(http://bioinformatics.oxfordjournals.org/cgi/content/full/22/15/1910).

Building on the foundation of caGrid 0.5, caGrid 1.0 was extensively enhanced based on the

feedback and input from the early adopters of the caGrid 0.5 infrastructure and additional

requirements from the various caBIG™ Domain Workspaces. The release of caGrid version 1.0

http://bioinformatics.oxfordjournals.org/cgi/content/full/22/15/1910

caGrid 1.1 Programmer’s Guide

6

represented a major milestone in the caBIG™ program towards achieving the program goals. It

provided the implementation of the required core services, toolkits and wizards for the

development and deployment of community provided services, APIs for building client

applications, and some reference implementations of applications and services available in the

production grid. The caGrid 1.1 release represents a minor, backwards compatible release of

caGrid, with a focus on increased usability, bug fixes, and various feature enhancements. A

detailed listing of the changes from caGrid 1.0 can be found in the release notes and on the

project website.

Standards Compliant
A primary principle of caBIG™ is open standards. Thus, caGrid is built upon the relevant

community-driven standards of the World Wide Web Consortium (W3C http://www.w3.org/) and

OASIS (http://www.oasis-open.org). It is also informed by the efforts underway in the Open Grid

Forum (OGF http://ogf.org/), which is a community of users, developers, and vendors leading

the global standardization effort for grid computing. The OGF community consists of thousands

of individuals in industry and research, representing over 400 organizations in more than 50

countries. As such, while the caGrid infrastructure is built upon the 4.0 version of the Globus

Toolkit (GT4 http://globus.org/toolkit/), it shares a Globus goal to be programming language and

toolkit independent by leveraging existing standards. Specifically, caGrid services are standard

WSRF v1.2 services and can be accessed by any specification-compliant client.

caGrid 1.0 also represented an increased involvement in relevant working groups, standards

bodies, and organizations involved in the standardization and adoption of grid technologies. The

caGrid team consists of several members involved in both the development of the Globus

toolkit, and authors on some of the relevant specifications. Furthermore, some of the

components developed by caGrid have been published in peer-reviewed articles, have been

recognized by the grid community in several invited talks, and are undergoing an incubation

process to become part of the Globus toolkit itself.

Model Driven
Extending beyond the basic grid infrastructure, caBIG™ specializes these technologies to better

support the needs of the cancer research community. A primary distinction between basic grid

infrastructure and the requirements identified in caBIG and implemented in caGrid is the

attention given to data modeling and semantics. caBIG™ adopts a model-driven architecture

best practice and requires that all data types used on the grid are formally described, curated,

and semantically harmonized. These efforts result in the identification of common data

elements, controlled vocabularies, and object-based abstractions for all cancer research

domains. caGrid leverages existing NCI data modeling infrastructure to manage, curate, and

employ these data models. Data types are defined in caCORE UML and converted into ISO/IEC

11179 Administered Components, which are in turn registered in the Cancer Data Standards

Repository (caDSR). The definitions draw from vocabulary registered in the Enterprise

Vocabulary Services (EVS), and their relationships are thus semantically described. caGrid 1.0

represented a significant improvement in its leveraging of these technologies and the

corresponding information they make available. caGrid 1.0 added support for grid service

access to both the EVS and caDSR, and its new service metadata standards include significant

http://www.w3.org/
http://www.oasis-open.org/
http://ogf.org/
http://globus.org/toolkit/

 Chapter 2 Overview of caGrid

 7

additions of information extracted from the caDSR and EVS.

In caGrid, both the client and service APIs are object oriented, and operate over well-defined

and curated data types. Clients and services communicate through the grid using respectively

grid clients and grid service infrastructure. The grid communication protocol is XML, and thus

the client and service APIs must transform the transferred objects to and from XML. This XML

serialization of caGrid objects is restricted in that each object that travels on the grid must do so

as XML which adheres to an XML schema registered in the Global Model Exchange (GME). As

the caDSR and EVS define the properties, relationships, and semantics of caBIG™ data types,

the GME defines the syntax of their XML materialization. Furthermore, caGrid services are

defined by the Web Service Description Language (WSDL). The WSDL describes the various

operations the service provides to the grid. The inputs and outputs of the operations, among

other things, in WSDL are defined by XML schemas. As caBIG™ requires that the inputs and

outputs of service operations use only registered objects, these input and output data types are

defined by the XSDs which are registered in GME. In this way, the XSDs are used both to

describe the contract of the service and to validate the XML serialization of the objects which it

uses. Figure 2-1 details the various services and artifacts related to the description of and

process for the transfer of data objects between client and service.

Figure 2-1 caGrid Data Description Infrastructure

Semantically Discoverable
As caBIG™ aims to connect data and tools from more than 50 disparate cancer centers and

caGrid 1.1 Programmer’s Guide

8

many other institutions, a critical requirement of its infrastructure is that it supports the ability of

researchers to discover these resources. caGrid enables this ability by taking advantage of the

rich structural and semantic descriptions of data models and services that are available. Each

service is required to describe itself using caGrid standard service metadata. When a grid

service is connected to the caBIG™ grid, it registers its availability and service metadata with a

central indexing registry service (Index Service). This service can be thought of as the “yellow

pages” and “white pages” of caBIG™. A researcher can then discover services of interest by

looking them up in this registry. caGrid provides a series of high-level APIs and user

applications for performing this lookup which greatly facilitate the discovery process.

As the Index Service contains the service metadata of all the currently advertised and available

services in caBIG™, the expressivity of service discovery scenarios is limited only by the

expressivity of the service metadata. For this reason, caGrid provides standards for service

metadata to which all services must adhere. At the base is the common Service Metadata

standard that every service in caBIG™ is required to provide. This metadata contains

information about the service-providing cancer center, such as the point of contact and the

institution‟s name. Data Services, as a standardized type of caGrid services, also provide an

additional Domain Model metadata standard. Both of these standards leverage the data models

registered in caDSR and link them to the underlying semantic concepts registered in EVS. The

Data Service Metadata details the domain model from which the Objects being exposed by the

service are drawn. Additionally, the definitions of the Objects themselves are described in terms

of their underlying concepts, attributes, attribute value domains, and associations to other

Objects being exposed. Similarly, the common Service Metadata details the Objects, used as

input and output of the services operations, using the same format as the Data Service

metadata. In addition to detailing the Objects definitions, the Service Metadata defines and

describes the operations or methods the service provides, and allows semantic concepts to be

applied to them. In this way, all services fully define the domain objects they expose by

referencing the data model registered in caDSR, and identify their underlying semantic concepts

by referencing the information in EVS. The caGrid metadata infrastructure and supporting APIs

and toolkits are defined with extensibility in mind, encouraging the development of additional

domain or application specific extensions to the advertisement and discovery process.

 Chapter 2 Overview of caGrid

 9

Core Services

Grid

Service

Uses Terminology

Described In

Cancer Data

Standards

Repository

Enterprise

Vocabulary

Services

References Objects

Defined in

Index Service

Service

Data
Publishes

Subscribes To

and Aggregates

Queries Service

Data Aggregated In

Registers To

Discovery

Client API

Figure 2-2 caGrid Discovery Overview

As shown in Figure 2-2, the caGrid discovery API and tools allow researchers to query the Index

Service for services satisfying a query over the service metadata. That is, researchers can look

up services in the registry using any of the information used to describe the services. For

instance, all services from a given cancer center can be located, data services exposing a

certain domain model or objects based on a given semantic concept can be discovered, as can

analytical services that provide operations that take a given concept as input.

Secure and Manageable
Security is an especially important component of caBIG™ both for protecting intellectual

property and ensuring protection and privacy of patient related and sensitive information. caGrid

1.0 provided a complete overhaul of federated security infrastructure to satisfy caBIG™ security

needs, incorporating many of the recommendations made in the caBIG™ Security White Paper,

culminating in the creation of the Grid Authentication and Authorization with Reliably Distributed

Services (GAARDS) infrastructure. GAARDS provides services and tools for the administration

and enforcement of security policy in an enterprise Grid. caGrid 1.1 represents a major thrust to

deploy GAARDS to the cancer research community, in that its release is timed and informed by

the first set of policies and procedures created by the caBIG™ Security Working Group. The

Security Working Group is a collaborative effort of the caBIG™ Architecture and Data Sharing

and Intellectual Capital (DSIC) Workspaces that is intended to create and implement security

policies to enable data sharing across the caBIG Federation. The initial policies in place for

caGrid 1.1 formalize the envisioned Levels of Assurance for credentials in the grid, and detail

the policies and practices of a credential provider adhering to the initial Level of Assurance

(LOA1) which will govern the baseline credentials all caBIG™ participants may use.

GAARDS was developed on top of the Globus Toolkit and extends the Grid Security

caGrid 1.1 Programmer’s Guide

10

Infrastructure (GSI) to provide enterprise services and administrative tools for:

1) Grid user management

2) Identity federation

3) Trust management

4) Group/VO management

5) Access control policy management and enforcement

6) Integration between existing security domains and the grid security domain

Figure 2-3 GAARDS Security Infrastructure

Figure 2-3 illustrates the GAARDS security infrastructure. In order for users/applications to

communicate with secure services, they need grid credentials. Obtaining grid credentials

requires a Grid User Account. Dorian provides two methods for registering for a grid user

account: 1) registering directly with Dorian 2) having an existing user account in another trusted

security domain. In order to use an existing user account to obtain grid credentials, the existing

credential provider must be registered in Dorian as a Trusted Identity Provider. It is anticipated

that the majority of grid user accounts will be provisioned based on existing accounts. The

advantages to this approach are: 1) users can use their existing credentials to access the grid 2)

administrators only need to manage a single account for a given user. To obtain grid

credentials, Dorian requires proof (a digitally signed SAML assertion) that proves that the user

locally authenticated. The GAARDS Authentication Service provides a framework for issuing

SAML assertions for existing credential providers such that they may be used to obtain grid

 Chapter 2 Overview of caGrid

 11

credentials from Dorian. The Authentication Service also provides a uniform authentication

interface in on which applications can be built. Figure 2-3 illustrates the process for obtaining

grid credentials, wherein the user/application first authenticates with their local credential

provider via the Authentication Service and obtains a SAML assertion as proof they

authenticated. They then use the SAML assertion provided by the Authentication Service to

obtain grid credentials from Dorian. Assuming the local credential provider is registered with

Dorian as a trusted identity provider and that the user‟s account is in good standing, Dorian will

issue grid credentials to the user. It should be noted that the use of the Authentication Service is

not required; an alternative mechanism for obtaining the SAML assertion required by Dorian can

be used. If a user is registered directly with Dorian and not through an existing credential

provider, they may contact Dorian directly for obtaining grid credentials.

Once a user has obtained grid credentials from Dorian, they may invoke secure services. Upon

receiving grid credentials from a user, a secure service authenticates the user to ensure that the

user has presented valid grid credentials. Part of the grid authentication process is verifying that

grid credentials presented were issued by a trusted grid credential provider (e.g. Dorian or other

certificate authorities). The Grid Trust Service (GTS) maintains a federated trust fabric of all the

trusted digital signers in the grid. Credential providers such as Dorian and grid certificate

authorities are registered as trusted digital signers and regularly publish new information to the

GTS. Grid services authenticate grid credentials against the trusted digital signers in a GTS

(shown in Figure 2-3).

Once the user has been authenticated, a secure grid service next determines if a user is

authorized to perform what they requested. Grid services have many different options available

to them for performing authorization. It is important to note that all authorizing decisions are

made by the local provider, but GAARDS provides some services and tools which facilitate

some common authorization mechanisms. The GAARDS infrastructure provides two

approaches which can each be used independently or can be used together. It is important to

note any other authorization approach can be used in conjunction with the GAARDS

authentication/trust infrastructure. The Grid Grouper service provides a group-based

authorization solution for the Grid, wherein grid services and applications enforce authorization

policy based on membership to groups defined and managed at the grid level. Grid services can

use Grid Grouper directly to enforce their internal access control policies. Assuming the

authorization policy is based on membership to groups provisioned by Grid Grouper; services

can determine whether a caller is authorized by simply asking grid grouper whether the caller is

in a given group. The caCORE Common Security Module (CSM), an existing component many

providers are already using, is a more centralized approach to authorization. CSM is a tool for

managing and enforcing access control policy centrally. CSM supports access control policies

which can be based on membership to groups in Grid Grouper. Grid services that use CSM for

authorization simply ask CSM if a user can perform a given action. Based on the access control

policy maintained in CSM, CSM decides whether or not a user is authorized. In Figure 2-3, the

grid services defer the authorization to CSM. CSM enforces its group-based access control

policy by asking Grid Grouper whether the caller is a member of the groups specified in the

policy, and enforces any other local data access policies defined in CSM.

caGrid 1.1 Programmer’s Guide

12

Revolutionary Development
caGrid 1.0 represented a complete redevelopment of caGrid to better support the requirements

and current standards. Building on lessons learned from caGrid 0.5 and feedback from the

community, it provided a large number of additional features, services, and vast improvements

in caGrid technologies beyond what is described above. One such example was the

development of a unified grid service authoring toolkit, named Introduce. Introduce is an

extensible framework and graphic workbench which provides an environment for the

development and deployment of caBIG™ compatible grid enabled data and analytical services.

The Introduce toolkit reduces the service developer‟s responsibilities by abstracting away the

need to manage the low level details of the WSRF specification and integration with the Globus

Toolkit, allowing them to focus on implementing their business logic. Developers with existing

caBIG™ Silver compatible services need only follow simple a wizard-like process for creating

the “adapter” between the grid and their existing system. At the same time, extremely complex

and powerful new services can be created. All caGrid developed core services were

implemented with the Introduce toolkit. caGrid 1.1 adds the ability to migrate caGrid 1.0

Introduce services to caGrid 1.1 services, and provides the migration framework to handle all

such future migrations.

Another significant feature added with caGrid 1.0 is the service support for orchestration of grid

services using the industry standard Business Process Execution Language (BPEL). caGrid

provides a workflow management service, enabling the execution and monitoring of BPEL-

defined workflows in a secure grid environment. It is expected this work will provide the

groundwork for a large number of powerful applications, enabling the harnessing of data and

analytics made available as grid services. Another such higher-level support service made

available in caGrid 1.0, is the federated query infrastructure. The caGrid Federated Query

Infrastructure provides a mechanism to perform basic distributed aggregations and joins of

queries over multiple data services. Working in collaboration with the Cancer Translational

Research Informatics Platform (caTRIP) project, a caBIG™ funded project, an extension to the

standard Data Service query language was developed to describe distributed query scenarios,

as well as various enhancements to the Data Service query language itself. The Federated

Query Infrastructure contains three main client-facing components: an API implementing the

business logic of federated query support, a grid service providing remote access to that engine,

and a grid service for managing status and results for queries that were invoked asynchronously

using the query service.

Numerous improvements to the handling of large data sets and distributed information

processing were also made. Support for the implantation of the WS-Enumeration

(http://www.w3.org/Submission/WS-Enumeration/) standard has been implemented and added

to the Globus Toolkit. This standard and its corresponding implementation provide the capability

for a grid client to enumerate over results provided by a grid service (much like a grid-enabled

cursor). This provides the framework necessary for clients to access large results from a

service. This support has been integrated into the caGrid Data Service tooling providing a

mechanism for iterating query results. Additionally, an effort to standardize a “bulk data

transport” interface for large data was started in caGrid 1.0, and improved in caGrid 1.1, which

is intended to provide a uniform mechanism by which clients may access data sets from

arbitrary services. This initial work currently supports access via WS-Enumeration, WS-

http://www.w3.org/Submission/WS-Enumeration/

 Chapter 2 Overview of caGrid

 13

Transfer, and GridFTP. Additional enhancements and tooling are expected in a future release of

caGrid, based on feedback from the user community.

Lastly, caGrid 1.0 represented a significant improvement in the quality of caGrid, as a

considerable effort was placed on the development of unit, system, and integration testing.

Several hundred unit tests are executed every time the caGrid code base is changed, and a

variety of builds and tests are run each night. This effort was continued throughout the

development and release of caGrid 1.1, and several hundred additional tests have been added.

Interested users may view results of these tests on a centralized dashboard

(http://quality.cagrid.org:8081/caGrid-1.0/Dashboard/), execute these test frameworks locally, or

leverage the testing framework during the development of their own services.

http://quality.cagrid.org:8081/caGrid-1.0/Dashboard/

caGrid 1.1 Programmer’s Guide

14

 Chapter 3 caGrid Release Structure

 15

Chapter 3 caGrid Release Structure

This chapter describes the basic layout of the caGrid release.

Topics in this chapter include:

 Overview on this page

 caGrid Projects on this page

 Multiple Grid Support on page 22

Overview
caGrid is released as a source release, as well as with an automated installer. In order to use
any feature of caGrid or to develop applications with it, you must build caGrid. The installer will
do this automatically for you, but if you are using the source release, you must build it yourself.

You can find detailed instructions on building caGrid on the caGrid wiki:
http://www.cagrid.org/mwiki/index.php?title=CaGrid:How-To:Buildi.Generally you just

need to type the following command from the caGrid directory:

ant all

The caGrid release is oriented around a number of individual projects and the build process
manages inter-project dependencies. Each project provides a specific set of functionality, and is
self-contained once caGrid is built. That is, once caGrid is built, each of the projects can be
used independently. For example, if you are only interested in Introduce, you can safely copy
around caGrid/projects/introduce as a standalone copy of Introduce. The same is true for core
services; once caGrid is built, all their dependencies are copied into the lib and ext/lib directories
of the service.

caGrid Projects
The following is a list of the projects provided in the caGrid release and a brief description of
each.

 advertisement

o Description: This project contains the APIs needed for programmatically

registering a service with the Index Service.

o Type: Service APIs

o Usage: These APIs are automatically integrated into Introduce-created services,

and so are generally not needed by caGrid users, unless they are developing

their own services without using Introduce.

 authentication-service

o Description: This project contains the Authentication Service which provides a

standardized service interface for exposing Dorian Identity Providers on the grid.

o Type: Service

http://www.cagrid.org/mwiki/index.php?title=CaGrid:How-To:Buildi

caGrid 1.1 Programmer’s Guide

16

o Usage: Anyone wishing to integrate an institutional user management system as

a Dorian Identity Provider, can implement this service. Similarly, applications

which provide log-in capabilities should use the client APIs provided by this

service.

 authz

o Description: This project contains the various authorization components caGrid

provides for applying local authorization policy to services.

o Type: Service APIs

o Usage: Introduce provides integration with these components, but they can also

be used standalone by service developers.

 bulkDataTransfer

o Description: This project contains the Bulk Data Transfer service and Introduce

Extension, which is intended as a common interface for returning large data to a

client from a service.

o Type: Introduce Extension

o Usage: Introduce provides integration with this component for service

developers, but clients can use its client APIs for interacting with services that

support this interface.

 cabigextensions

o Description: This project contains a variety of Introduce extensions which

customize Introduce for caBIG needs. These extensions include the caGrid

metadata, ws-Enumeration, metadata viewers, and XMI based XSD creation

extensions.

o Type: Introduce Extension

o Usage: Introduce provides integration with these components and they generally

are not needed by caGrid users.

 cadsr

o Description: This project contains the caDSR Grid Service, which is detailed

later in this document.

o Type: Service

o Usage: This project contains the client APIs, code examples, and client tooling

for interacting with the caDSR Grid service, as well as the code and configuration

necessary to deploy a local instance.

 core

o Description: This project contains a common set of utilities and APIs used by

many caGrid projects.

o Type: APIs

o Usage: Most caGrid users will find the utilities provided by the project to be of

 Chapter 3 caGrid Release Structure

 17

general use in developing applications and services with caGrid. Some examples

in this document use some of these APIs, but a complete reference can be found

in the javadoc.

 data

o Description: This project contains the core data service infrastructure, tooling

and utilities, as well as the definition and APIs for CQL.

o Type: APIs/Service APIs

o Usage: Most of the service code provided by this project is already added to data

services which are created with Introduce, but the utilities it provides are of

general use for custom data service implementations. Those developing

applications which make use of data services or CQL will want to use the client

APIs and utilities this project provides.

 dataExtensions

o Description: This project contains the Introduce extensions which add support

for the data service infrastructure to Introduce.

o Type: Introduce Extension

o Usage: Introduce provides integration with these components and they generally

are not needed by caGrid users. However, those developing custom data service

extensions may find this a useful starting point.

 discovery

o Description: This project contains the APIs and code examples for discovering

services from the Index Service. Examples are provided elsewhere in this

document.

o Type: APIs

o Usage: Those developing applications which make use of discovery may use the

client APIs provided by this project.

 dorian

o Description: This project contains the Dorian Service which provides a user and

credential management service. Dorian is described elsewhere in this document.

o Type: Service

o Usage: The client APIs and utilities provided by this project can be used to

provide authentication capabilities to applications. It also provides an

administrative GUI, but its functionality can also be used through the general

security GUI. It also contains the code and configuration necessary to deploy a

local instance of Dorian.

 evs

o Description: This project contains the EVS Grid Service, which is detailed later

in this document.

caGrid 1.1 Programmer’s Guide

18

o Type: Service

o Usage: This project contains the client APIs, code examples, and client tooling

for interacting with the EVS Grid service, as well as the code and configuration

necessary to deploy a local instance.

 fqp

o Description: This project contains the Federated Query Processor (FQP) Grid

Service and engine, which are detailed later in this document.

o Type: Service / APIs

o Usage: This project contains the client APIs, code examples, and client tooling

for interacting with the FQP Grid service, the code and configuration necessary

to deploy a local instance, and the APIs for interacting with the FQP query engine

locally in an application.

 gme

o Description: This project contains the Global Model Exchange (GME) Grid

Service, which is detailed later in this document.

o Type: Service

o Usage: This project contains the client APIs, code examples, and client tooling

for interacting with the GME Grid service, as well as the code and configuration

necessary to deploy a local instance.

 grape

o Description: This project contains the Grid Application Environment (GrApE),

which is a framework for developing component-oriented applications.

o Type: APIs/Tools

o Usage: Various caGrid GUI tools (such as the security administrative portal and

workflow GUIs) leverage these APIs as a framework for developing graphical

applications. APIs and sample configurations can be found for those wishing to

build on this framework for “thick client” applications.

 gridca

o Description: This project contains various APIs and command line tools for

working with Certificates.

o Type: APIs/Tools

o Usage: Most caGrid users will not need to work with these APIs or command line

tools unless they are developing low level security components. Most of the

caGrid security components use these APIs internally.

 gridftpauthz

o Description: This project contains the code necessary to hook in caGrid

authorization to GridFTP..

 Chapter 3 caGrid Release Structure

 19

o Type: Service APIs

o Usage: Service developers wishing to make use of GridFTP and provide an

integrated security solution can make use of these APIs to secure the GridFTP

server with an authorization callout which the service can control. A GridGrouper

and Database implementation are provided.

 gridgrouper

o Description: This project contains the GridGrouper Grid Service, which is

detailed later in this document.

o Type: Service

o Usage: This project contains the client APIs, code examples, and client tooling

for interacting with the GridGrouper Grid service, as well as the code and

configuration necessary to deploy a local instance. It also provides an

administrative GUI, but its functionality can also be used through the general

security GUI.

 gts

o Description: This project contains the Grid Trust Service (GTS) Grid Service,

which provides the capability to manage the trust fabric of the grid.

o Type: Service

o Usage: This project contains the client APIs, code examples, and client tooling

for interacting with the GTS Grid service, as well as the code and configuration

necessary to deploy a local instance. It also provides an administrative GUI, but

its functionality can also be used through the general security GUI.

 index

o Description: This project contains the code necessary to deploy the Globus

Index Service.

o Type: Service

o Usage: Those wishing to deploy a local instance of the Index Service may use

this project.

 installer

o Description: This project contains the code used to create the caGrid installer.

o Type: APIs/Tools

o Usage: caGrid users generally do not need to use this project, though it could be

used to create a specialized installer.

 introduce

o Description: This project contains the Introduce graphical service development

toolkit.

o Type: APIs/Tools

caGrid 1.1 Programmer’s Guide

20

o Usage: Service developers can launch Introduce from this project (or using the

ant target in the main caGrid build file). Those wishing to develop extensions to

Introduce can also make use of its APIs and configuration examples.

 metadata

o Description: This project contains the schemas and beans for the caGrid

standard metadata formats.

o Type: APIs

o Usage: Those wishing to programmatically work with caGrid metadata can use

the libraries provided by this project.

 metadatautils

o Description: This project contains utilities for working with caGrid metadata and

retrieving it from services.

o Type: APIs

o Usage: Those wishing to programmatically work with caGrid metadata and

access it from services can use the libraries provided by this project.

 opensaml

o Description: This project contains a repackaged version of opensaml (to avoid

conflicts with the version used in Globus).

o Type: APIs

o Usage: This is used internally by Dorian and the Authentication Service, and is

not generally usable by caGrid users.

 portal

o Description: This project contains the caGrid Portal web application.

o Type: Web Application

o Usage: This project can be used by those wishing to deploy a local instance of

the portal or modify it.

 sdkQuery

o Description: This project contains the caCORE SDK version 3.1 implementation

of a CQL Query processor.

o Type: Service APIs

o Usage: These APIs are automatically integrated into Introduce-created, SDK-

backed, data services, and so are generally not needed by caGrid users, unless

they wish to create a modified version of the query processor.

 sdkQuery32

o Description: This project contains the caCORE SDK version 3.2.x

implementation of a CQL Query processor.

 Chapter 3 caGrid Release Structure

 21

o Type: Service APIs

o Usage: These APIs are automatically integrated into Introduce-created, SDK-

backed, data services, and so are generally not needed by caGrid users, unless

they wish to create a modified version of the query processor.

 security-ui

o Description: This project contains no source code and just holds the

configuration files and libraries necessary for the unified security GUI.

o Type: APIs/Tools

o Usage: This project can be used to launch the unified security GUI (in addition to

the main caGrid build file)

 service-security-provider

o Description: This project contains the client service implementation of the

operation used to configure operation security settings based on caGrid standard

security metadata.

o Type: Service APIs

o Usage: Introduce-generated clients already make use of these libraries, so they

are not explicitly needed by most service developers or clients. caGrid users

developing low level generic service consuming applications may find use for

them. Also, services wishing to override the default behavior of clients may also

modify this code.

 syncgts

o Description: This project contains the SyncGTS Grid Service and client APIs,

which provide the capability to manage a node‟s trust certificates by querying one

or more GTS services.

o Type: Service/APIs

o Usage: This project contains the client APIs, code examples, and client tooling

for managing a node‟s trusted certificates as well as the code and configuration

necessary to deploy a local SyncGTS service.

 wizard

o Description: This project contains a simple wizard framework for building swing

wizard-style interfaces.

o Type: APIs

o Usage: This is used internally by the caGrid installer, but may be of use to others

doing similar functions.

 workflow

o Description: This project contains the Workflow Factory Grid Service, which

provides the capability to execute BPEL-based workflows.

o Type: Service/Tools

caGrid 1.1 Programmer’s Guide

22

o Usage: This project contains the client APIs, code examples, and client tooling

for interacting with the workflow service, as well as the code and configuration

necessary to deploy a local instance. It also provides a GUI for executing and

monitoring workflows.

 wsEnum

o Description: This project contains the schemas, APIs, and utilities for

implementing and working with the WS-Enumeration standard.

o Type: APIs

o Usage: Clients wishing to use generic WS-Enumeration clients may use the

client libraries from this project.

 ws-transfer

o Description: This project contains the service and client APIs for the ws-transfer

specification, which provides a simple “get” operation for returning arbitrary data

from a service.

o Type: Service/APIs

o Usage: This project contains the ws-transfer client APIs and the code and

configuration necessary to deploy a local ws-transfer service.

Multiple Grid Support

caGrid 1.1 provides the ability to be easily reconfigured to access multiple different grid
environments. That is, when clients and applications access "the grid" they are configured with
the appropriate settings (e.g. service addresses, security settings, etc) for the appropriate grid.
The most common use for this capability is to easily target a development or training grid when
learning to use caGrid or while developing applications and services, and then retargeting the
official production grid for production development or deployment.

Process

Once caGrid is built, it is already configured to target a default grid. If you are using a
development checkout of caGrid, this will be the development grid. If you are using a 1.1
release, this will be the production grid. You can find details about which grid you are currently
targeting at anytime by typing the following command from the caGrid directory:

 ant configureHelp

Running this command should output something similar to the following.

 Chapter 3 caGrid Release Structure

 23

The first line shows the current target grid, and when caGrid was configured to use it. Next the
available target grids are listed. Finally, brief instructions are given for how to change to a
different grid.

In order to use the training grid, the following command should be run from the caGrid directory:

 ant -Dtarget.grid=training configure

Running this command will:

 runs through a process of reconfiguring all of the projects which have some dependency
on the grid.

 removes any locally stored preferences which are grid specific (such as those used by
Introduce and the security UIs).

 reinstalls all caGrid Introduce extensions into Introduce.

 synchronizes your local machine with the appropriate trust fabric.

 displays the configuration information that was just applied (as is shown above from the
configureHelp target).

configureHelp:

 [echo]

===

 [echo] | CONFIGURED TO USE GRID: osu_dev AT: 2007/06/05 22:34

 [echo] |

 [echo] | THE VALID TARGET GRIDS ARE:

 [echo] | - nci_dev

 [echo] | - nci_prod

 [echo] | - osu_dev

 [echo] | - training

 [echo] |

 [echo] --

 [echo] | NOTE: To use a different target grid, set property 'target.grid'

 [echo] | to the grid's name, and run the 'configure' target.

 [echo] |

 [echo] | For example, type:

 [echo] | ant -Dtarget.grid=osu_dev configure

 [echo]

===

BUILD SUCCESSFUL

Total time: 2 seconds

caGrid 1.1 Programmer’s Guide

24

Note: If the command is not successful, make sure you are using a target.grid as specified in
the list of valid grids from the configureHelp target, and you have previously built caGrid (ant
all). Also note that cleaning and rebuilding caGrid does not remove these settings; they must be
reset with the configure command (or configure-clean).

To return to the default grid at any time, type the following command from the caGrid directory:

 ant configure

 Chapter 4 caGrid Metadata Infrastructure

 25

Chapter 4 caGrid Metadata Infrastructure

This chapter describes the caGrid metadata infrastructure, the Discovery API, the caDSR Grid
Service, and the EVS APIs.

Topics in this chapter include:

 Code Example Information on this page

 Metadata API Usage Overview on page 25

 Discovery API Usage Overview on page 34

 caDSR Grid Service Usage Overview on page 55

 EVS API Usage Overview on page 66

Code Example Information
Unless otherwise fully specified, the following set of imports can be assumed for the code

examples provided in this chapter (they are omitted to make the examples more readable).

Metadata API Usage Overview
The following link provides a reference to the technical architecture and design document(s) for

caGrid metadata:

http://gforge.nci.nih.gov/plugins/scmcvs/cvsweb.php/~checkout~/cagrid-1-
0/Documentation/docs/metadata/caGrid-metadata-infrastructure-
design.doc?rev=1.12;content-type=application%2Foctet-stream;cvsroot=cagrid-1-0

All caGrid services are expected to expose a standard set of service metadata. Details about

this design and the specifics of the metadata can be found in the caGrid Metadata Design

Document. This section describes the high-level API, which can be used to access and

manipulate instances of this metadata. All the standard metadata models are representations,

which can be used to programmatically interact with the models. Figure 4-1 and Figure 4-2 are

the Standard Service (ServiceMetadata) and Data Service (DomainModel) metadata models

respectively. The APIs described here can be used access these models from services, and

import gov.nih.nci.cadsr.umlproject.domain.*;

import gov.nih.nci.cagrid.cadsr.client.*;

import gov.nih.nci.cagrid.cadsrservice.*;

import gov.nih.nci.cagrid.discovery.client.*;

import gov.nih.nci.cagrid.metadata.*;

import gov.nih.nci.cagrid.metadata.common.*;

import gov.nih.nci.cagrid.metadata.dataservice.*;

import gov.nih.nci.cagrid.metadata.exceptions.*;

import org.apache.axis.message.addressing.Address;

import org.apache.axis.message.addressing.EndpointReferenceType;

import org.apache.axis.types.URI.MalformedURIException;

http://gforge.nci.nih.gov/plugins/scmcvs/cvsweb.php/~checkout~/cagrid-1-0/Documentation/docs/metadata/caGrid-metadata-infrastructure-design.doc?rev=1.12;content-type=application%2Foctet-stream;cvsroot=cagrid-1-0
http://gforge.nci.nih.gov/plugins/scmcvs/cvsweb.php/~checkout~/cagrid-1-0/Documentation/docs/metadata/caGrid-metadata-infrastructure-design.doc?rev=1.12;content-type=application%2Foctet-stream;cvsroot=cagrid-1-0
http://gforge.nci.nih.gov/plugins/scmcvs/cvsweb.php/~checkout~/cagrid-1-0/Documentation/docs/metadata/caGrid-metadata-infrastructure-design.doc?rev=1.12;content-type=application%2Foctet-stream;cvsroot=cagrid-1-0

caGrid 1.1 Programmer’s Guide

26

serialize and deserialize them to and from XML. These methods complement the Discovery API.

Once an EPR (End Point Reference) is returned from the Discovery API, these methods can be

used to access and inspect the full metadata.

pd Serv ice Model

serv ice::Serv ice

XSDattribute

+ description: java.lang.String

+ name: java.lang.String

+ version: java.lang.String

common::PointOfContact

XSDattribute

+ affi l iation: java.lang.String

+ email: java.lang.String

+ firstName: java.lang.String

+ lastName: java.lang.String

+ phoneNumber: java.lang.String [0..1]

+ role: java.lang.String

serv ice::Operation

XSDattribute

+ description: java.lang.String

+ name: java.lang.String

serv ice::Output

XSDattribute

+ dimensionality: int

+ isArray: boolean

+ qName: QName

serv ice::InputParameter

XSDattribute

+ dimensionality: int

+ index: int

+ isArray: boolean

+ isRequired: boolean

+ name: java.lang.String

+ qName: QName

serv ice::Fault

XSDattribute

+ description: java.lang.String

+ name: java.lang.String

common::UMLClass

XSDattribute

+ className: java.lang.String

+ description: java.lang.String

+ id: java.lang.String

+ packageName: java.lang.String

+ projectName: java.lang.String

+ projectVersion: java.lang.String

common::UMLAttribute

XSDattribute

+ dataTypeName: java.lang.String

+ description: java.lang.String

+ name: java.lang.String

+ publicID: long

+ version: float

serv ice::Serv iceContext

XSDattribute

+ description: java.lang.String

+ name: java.lang.String

serv ice::ContextProperty

XSDattribute

+ description: java.lang.String

+ name: java.lang.String

serv ice::CaDSRRegistration

XSDattribute

+ registrationStatus: java.lang.String

+ workflowStatus: java.lang.String

common::SemanticMetadata

XSDattribute

+ conceptCode: java.lang.String

+ conceptDefinition: java.lang.String

+ conceptName: java.lang.String

+ order: int [0..1]

+ orderLevel: int [0..1]

common::ValueDomain

XSDattribute

+ longName: java.lang.String

+ unitOfMeasure: java.lang.String [0..1]

common::Enumeration

XSDattribute

+ permissibleValue: java.lang.String

+ valueMeaning: java.lang.String

+inputParameter 1

+umlClass 0..1

+umlClass 1

+umlAttributeCollection 0..*

+service 1

+serviceContextCollection 1..*

+serviceContext 1

+operationCollection 0..*

+umlClass

1

+semanticMetadataCollection

0..*

+umlAttribute

1

+semanticMetadataCollection

0..*

+service

1

+pointOfContactCollection

0..*

+operation

1

+inputParameterCollection

0..*

+output 1

+umlClass 0..1

+operation 1

+faultCollection 0..*

+enumeration 1

+semanticMetadataCollection 0..*

+serviceContext

1

+contextPropertyCollection

0..*

+service

1

+caDSRRegistration

0..1
+service

1

+semanticMetadataCollection 0..*

+operation

1

+semanticMetadataCollection

0..*

+umlAttribute

1+valueDomain

0..1

+valueDomain 1

+semanticMetadataCollection

0..*

+valueDomain

1

+enumerationCollection

0..*

+operation 1

+output 0..1

Figure 4-1 Service Model

 Chapter 4 caGrid Metadata Infrastructure

 27

cd Data Model

common::UMLClass

XSDattribute

+ className: java.lang.String

+ description: java.lang.String

+ id: java.lang.String

+ packageName: java.lang.String

+ projectName: java.lang.String

+ projectVersion: java.lang.String

data::DomainModel

XSDattribute

+ projectDescription: java.lang.String

+ projectLongName: java.lang.String

+ projectShortName: java.lang.String

+ projectVersion: java.lang.String

common::UMLAttribute

XSDattribute

+ dataTypeName: java.lang.String

+ description: java.lang.String

+ name: java.lang.String

+ publicID: long

+ version: float

data::UMLAssociationEdge

XSDattribute

+ maxCardinality: int

+ minCardinality: int

+ roleName: java.lang.String

data::UMLAssociation

XSDattribute

+ bidirectional: boolean

data::

UMLClassReference

XSDattribute

+ refid: java.lang.String

data::

UMLGeneralization

common::ValueDomain

XSDattribute

+ longName: java.lang.String

+ unitOfMeasure: java.lang.String [0..1]

common::SemanticMetadata

XSDattribute

+ conceptCode: java.lang.String

+ conceptDefinition: java.lang.String

+ conceptName: java.lang.String

+ order: int [0..1]

+ orderLevel: int [0..1]

common::Enumeration

XSDattribute

+ permissibleValue: java.lang.String

+ valueMeaning: java.lang.String

data::UMLClass

XSDattribute

+ allowableAsTarget: boolean = true

+umlAttribute 1

+valueDomain 0..1

+umlClass

1

+semanticMetadataCollection 0..*

+umlAttribute 1

+semanticMetadataCollection

0..*

+umlAssociation

1

+umlClassReference 1

+domainModel

1

+exposedUMLAssociationCollection 0..*

+umlAssociation 1

+targetUMLAssociationEdge 1

+umlClass 1

+umlAttributeCollection 0..*

+umlAssociation
1

+sourceUMLAssociationEdge1

+umlGeneralization 1

+subClassReference 1

+umlGeneralization 1

+superClassReference 1

+domainModel

1

+umlGeneralizationCollection

0..*

+valueDomain

1

+semanticMetadataCollection 0..*

+valueDomain

1

+enumerationCollection

0..*

+enumeration 1

+semanticMetadataCollection

0..*

+domainModel 1

+exposedUMLClassCollection 0..*

Figure 4-2 Data Service metadata model

The ResourcePropertyHelper API, not detailed here, is the lower level API, which can be used

to directly gather information about ResourceProperties (this is how metadata is exposed in

caGrid). The MetadataUtils, described here, leverage this API, and expose some of its

exceptions. The possible exceptions generated by the metadata utility methods are detailed in

Figure 4-3.

caGrid 1.1 Programmer’s Guide

28

Figure 4-3 Metadata Exceptions

A non-discerning client may simply opt to catch ResourcePropertyRetrievalException, as it is

the base-checked exception. An additional non-checked exception, InternalRuntimeException,

can also be thrown but is solely used to represent an internal logic error in the APIs. It is not

expected clients can “recover” from such an exception. As such, clients should not attempt to

catch this runtime exception for any other reason than to mask the problem.

QueryInvalidException is thrown if an invalid XPath query is issued. Problems originating from

remote services are thrown in the subclass RemoteResourcePropertyRetrievalException.

During general use of the metadata utilities, this is the most likely exception clients may see, as

it is thrown if a service is not properly exposing the proper metadata. Clients leveraging the

lower level resource property APIs should take care to appropriately address each type of

exception if they are communicating with services. For example, even though it is a caBIG

requirement to expose the standard service metadata, clients should properly handle the case

where it is not present. Asking for specific metadata that a service does not provide would yield

an InvalidResourcePropertyException.

API Details

gov.nih.nci.cagrid.metadata.MetadataUtils

Member Function Documentation

static ServiceMetadata gov.nih.nci.cagrid.metadata.MetadataUtils.getServiceMetadata

(EndpointReferenceType serviceEPR) throws InvalidResourcePropertyException,

RemoteResourcePropertyRetrievalException, ResourcePropertyRetrievalException

[static]

Obtain the service metadata from the specified service.

Parameters:

serviceEPR

 Chapter 4 caGrid Metadata Infrastructure

 29

Returns:

Exceptions:

InvalidResourcePropertyException
RemoteResourcePropertyRetrievalException
ResourcePropertyRetrievalException

static DomainModel gov.nih.nci.cagrid.metadata.MetadataUtils.getDomainModel

(EndpointReferenceType serviceEPR) throws InvalidResourcePropertyException,

 RemoteResourcePropertyRetrievalException, ResourcePropertyRetrievalException

[static]

Obtain the data service metadata from the specified service.

Parameters:

serviceEPR

Returns:

Exceptions:

InvalidResourcePropertyException
RemoteResourcePropertyRetrievalException
ResourcePropertyRetrievalException

static void gov.nih.nci.cagrid.metadata.MetadataUtils.serializeServiceMetadata

(ServiceMetadata metadata, Writer writer) throws Exception [static]

Write the XML representation of the specified metadata to the specified writer. If either is
null, an IllegalArgumentException will be thrown.

Parameters:

metadata
writer

Exceptions:

Exception

static ServiceMetadata

gov.nih.nci.cagrid.metadata.MetadataUtils.deserializeServiceMetadata (Reader

xmlReader) throws Exception [static]

caGrid 1.1 Programmer’s Guide

30

Create an instance of the service metadata from the specified reader. The reader must point
to a stream that contains an XML representation of the metadata. If the reader is null, an
IllegalArgumentException will be thrown.

Parameters:

xmlReader

Returns:

Exceptions:

Exception

static void gov.nih.nci.cagrid.metadata.MetadataUtils.serializeDomainModel

(DomainModel domainModel, Writer writer) throws Exception [static]

Write the XML representation of the specified metadata to the specified writer. If either is
null, an IllegalArgumentException will be thrown.

Parameters:

domainModel
writer

Exceptions:

Exception

static DomainModel gov.nih.nci.cagrid.metadata.MetadataUtils.deserializeDomainModel

(Reader xmlReader) throws Exception [static]

Create an instance of the data service metadata from the specified reader. The reader must
point to a stream that contains an XML representation of the metadata. If the reader is null,
an IllegalArgumentException will be thrown.

Parameters:

xmlReader

Returns:

Exceptions:

Exception

 Chapter 4 caGrid Metadata Infrastructure

 31

API Usage Examples

This section describes typical usage of the Metadata API. The exception handling shown in the

code examples is not recommended practice, and is simplistic for demonstration purposes. The

MetadataUtils class is the primary means of accessing and manipulating service metadata. It

provides a number of static utility methods that can be directly invoked. This API provides an

abstraction layer over lower-level APIs, specializing them to deal with the standard metadata

types. Clients wishing to work with custom (or non-standard) metadata need to use the lower-

level APIs and can consult the source code of the MetadataUtils class for guidance.

Accessing Metadata from a Service

In order to access a service‟s metadata, an End Point Reference pointing to the service must be

provided. This can be obtained as a direct result of an invocation of a discovery method from

the Discovery API, or manually constructed by specifying the service‟s Address. Examples of

both can be found in the Discovery API Usage Overview starting on page 34.

As caBIG requires that standard metadata be made publicly available, client credentials are not

necessary for invocation of these methods.

The first example, shown in Figure 4-4, demonstrates accessing a service‟s standard

ServiceMetadata, which is common to all caGrid services. As described above, the first step is

to obtain an appropriate EPR (line 1). Given this EPR, the MetadataUtils‟s getServiceMetadata

method, shown on line 4 in Figure 4-4, can be used to obtain the bean representation of the

metadata. Upon successful completion of this method, the fully populated bean can be

inspected to obtain the information of interest. Several exceptions, subclassed from the base

ResourcePropertyRetrievalException, can be thrown by this operation. A non-discriminating

client may choose to simply handle this base exception. Additional details on the other

exceptions, and why they may be thrown, are described in the Metadata API Usage Overview

on page 25, as well as the javadoc of the APIs.

Figure 4-4 Accessing standard service metadata

caGrid 1.1 Programmer’s Guide

32

The process for accessing data service DomainModel metadata, shown in Figure 4-5, is the

same as accessing standard metadata. Once the metadata is obtained, in line 3, it can be

inspected, as shown in line 4 where the long name of the project being exposed by the data

service is printed to the console.

Figure 4-5 Accessing standard data service metadata

Processing Metadata as XML

In addition to accessing metadata from services, the MetadataUtils provide the capability to read

and write metadata instances as XML documents. This can be useful for not only storage and

display of metadata, but also for exposing grid service metadata as XML. These methods also

provide a way to inspect the metadata in object (bean) form.

In Figure 4-6, example code is shown that saves an instance of standard service metadata to a

file named seviceMetadata.xml. The metadata instance, defined in line 1, can be acquired

using code similar to that shown in Figure 4-6, or by some other mechanism. The

serializeServiceMetadata method can be then passed this instance, and an instance of the

java.io.Writer interface, as shown on line 11. Any Writer implementation works, but the example

below shows using a FileWriter, on line 5, to write the metadata to the specified file. After the

MetadataUtils have been used to write the metadata to XML, the Writer used should be closed,

as shown on line 18. Though not shown, a similar method, serializeDomainModel, exists for

writing data service metadata to XML; its usage pattern is the same.

 Chapter 4 caGrid Metadata Infrastructure

 33

Figure 4-6 Serializing metadata to a file

As a complement to the serialization methods described and shown above, deserialization

methods also exist which read XML representations of metadata and return appropriately

populated metadata beans. In Figure 4-7, example code is shown which populates a new

ServiceMetadata instance from an XML representation stored in a file named

serviceMetadata.xml. This code, used in conjunction with the previous example,

reconstitutes the original metadata instance. Similar to the serialization methods that use a

java.io.Writer, the deserialization methods use a java.io.Reader to read the XML representation.

In the example below, a FileReader is used on line 4. This Reader is then passed to the

deserializeServiceMetadata method on line 11, and the populated ServiceMetadata instance is

returned. As with the Writer instance in the serialization methods, the Reader instance should

be closed once it is used (as shown on line 18). Though not shown, a similar method,

deserializeDomainModel, exists for reading data service metadata from XML; its usage pattern

is the same.

caGrid 1.1 Programmer’s Guide

34

Figure 4-7 Deserializing metadata from a file

Discovery API Usage Overview
The Discovery API provides an abstraction over the standard operations used to query the

Index Service. It provides a number of operations that can be used to discover services of

interest. The basic process of use is to construct an instance of the DiscoveryClient, optionally

specifying the End Point Reference (EPR) of the Index Service to query, and then invoking the

appropriate discovery methods. Each method returns an array of EPRs of the matching

appropriate services. These returned EPRs can then be used to invoke the services, or ask

them for their metadata for further discrimination. It is worth noting that the Index Service, as an

aggregated source of distributed information, inherently operates on out of date information. It is

possible that services that are running do not yet have their metadata aggregated in the Index

Service, and it is possible that services present in the Index Service have recently been taken

down. caGrid attempts to strike a balance between performance and reliability of information in

the Index Service. The information returned by the Discovery API should be accurate within a

few minutes, but applications building upon it should be aware of this, and should not assume a

service in the Index Service will always be available when it is invoked.

The DiscoveryClient uses the lower level “metadata utils” project to communicate with the Index

Service. It exposes the exceptions generated from this lower level API, instead of wrapping

them with discovery-specific exceptions. The possible exceptions that discovery methods can

throw are detailed below in Figure 4-8. A non-discerning client may simply opt to catch

ResourcePropertyRetrievalException, as it is the base checked exception. An additional non-

checked exception, InternalRuntimeException, can also be thrown, but it is solely used to

represent an internal logic error in the APIs and so it is not expected clients can “recover” from

 Chapter 4 caGrid Metadata Infrastructure

 35

such an exception. As such, clients should not attempt to catch this runtime exception for any

other reason than to mask the problem. Generic problems caused by the DiscoveryClient itself

are thrown in the base ResourcePropertyRetrievalException. A subclass of it,

QueryInvalidException, is thrown if an invalid XPath query is issued. Unless the DiscoveryClient

is extended, it is not expected that clients should encounter this. Problems originating from

remote services are thrown in the subclass, RemoteResourcePropertyRetrievalException.

During general use of the metadata utilities, this is the most likely exception clients may see, as

it is thrown if a service is not properly exposing the proper metadata. In the context of the

DiscoveryClient, it is not expected clients should experience any exceptions unless there is an

issue with the Index Service. However, clients leveraging the lower level APIs should take more

care to appropriately address each type of exception if they are communicating with other

(community provided) services. For example, even though it is a caBIG requirement to expose

the standard service metadata, clients should properly handle the case where it is not present.

Asking for specific metadata that a service does not provide would yield an

InvalidResourcePropertyException.

Figure 4-8 Metadata exceptions

While the methods in the API are designed around the caGrid standard metadata, it is also

acceptable to have services register additional domain or application specific metadata to the

Index Service. The Discovery API is designed for easy extensibility, such that additional

application or domain specific discovery scenarios can be provided to compliment such

additional metadata. The “business logic” of the DiscoveryClient, consists almost entirely of

constructing appropriate XPath queries over the appropriate metadata, and leveraging lower-

level APIs to actually invoke the queries. These lower-level APIs are made available to

extenders of the client, such that they need only construct appropriate XPath queries to

implement additional discovery scenarios.

The DiscoveryClient uses commons-logging to log general and debugging information. If

configured to DEBUG level, the client prints out the XPaths it is sending to the Index Service,

which may facilitate the creation of new discovery operations, or help track down problems.

As with most Globus clients, a properly configured client-config.wsdd file must be accessible by

the underlying Axis engine. The simplest way to do this is to either run with your

$GLOBUS_LOCATION as the “working directory,” add $GLOBUS_LOCATION to your

caGrid 1.1 Programmer’s Guide

36

classpath, or copy $GLOBUS_LOCATION/client-config.wsdd to your working directory or

classpath. If you don‟t do this, you will most likely see an exception similar to that shown in

Figure 4-9, when you run the DiscoveryClient.

Figure 4-9 Common DiscoveryClient exception

API Details

gov.nih.nci.cagrid.discovery.client.DiscoveryClient

DiscoveryClient represents the base discovery API. The client should be constructed passing a

URL of an Index Service. Services can then be discovered by calling the discover methods and

passing in the necessary criteria. The methods all return an EndPointReferenceType[]. See the

main method for examples. This should be extended to provide specialized service-type

discovery (beyond data services).

Constructor Documentation

gov.nih.nci.cagrid.discovery.client.DiscoveryClient.DiscoveryClient () throws

MalformedURIException

Uses the Default Index Service

Exceptions:

MalformedURIException if the Default Index Service is invalid

DiscoveryClient.java.gov.nih.nci.cagrid.discovery.client.DiscoveryClient.DiscoveryClient

(EndpointReferenceType indexEPR)

Uses the specified Index Service

Parameters:

iemndexEPR the EPR to the Index Service to use

Member Function Documentation

EndpointReferenceType []

gov.nih.nci.cagrid.discovery.client.DiscoveryClient.getAllServices (boolean

gov.nih.nci.cagrid.metadata.exceptions.RemoteResourcePropertyRetrievalException:

org.xml.sax.SAXException:SimpleDeserializer encountered a child element, which is NOT

expected, in something it was trying to deserialize.

 Chapter 4 caGrid Metadata Infrastructure

 37

requireMetadataCompliance) throws RemoteResourcePropertyRetrievalException,

QueryInvalidException, ResourcePropertyRetrievalException

Query the registry for all registered services

Parameters:

requireMetadataCompliance if true, only services providing the standard metadata will be
returned. Otherwise, all services registered will be returned, regardless of whether or not any
metadata has been aggregated.

Returns:

EndpointReferenceType[] contain all registered services

Exceptions:

ResourcePropertyRetrievalException
QueryInvalidException
RemoteResourcePropertyRetrievalException

EndpointReferenceType []

gov.nih.nci.cagrid.discovery.client.DiscoveryClient.discoverServicesBySearchString

(String searchString) throws RemoteResourcePropertyRetrievalException,

QueryInvalidException, ResourcePropertyRetrievalException

Searches ALL metadata to find occurrence of the given string. The search string is case-
sensitive.

Parameters:

searchString the search string.

Returns:

EndpointReferenceType[] matching the criteria

Exceptions:

ResourcePropertyRetrievalException
QueryInvalidException
RemoteResourcePropertyRetrievalException

EndpointReferenceType []

caGrid 1.1 Programmer’s Guide

38

gov.nih.nci.cagrid.discovery.client.DiscoveryClient.discoverServicesByResearchCenter

(String centerName) throws RemoteResourcePropertyRetrievalException,

QueryInvalidException, ResourcePropertyRetrievalException

Searches research center info to find services provided by a given cancer center.

Parameters:

centerName research center name

Returns:

EndpointReferenceType[] matching the criteria

Exceptions:

ResourcePropertyRetrievalException
QueryInvalidException
RemoteResourcePropertyRetrievalException

EndpointReferenceType []

gov.nih.nci.cagrid.discovery.client.DiscoveryClient.discoverServicesByPointOfContact

(PointOfContact contact) throws RemoteResourcePropertyRetrievalException,

QueryInvalidException, ResourcePropertyRetrievalException

Searches to find services that have the given point of contact associated with them. Any
fields set on the point of contact are checked for a match. For example, you can set only the
lastName, and only it will be checked, or you can specify several fields and they all must be
equal.

Parameters:

contact point of contact

Returns:

EndpointReferenceType[] matching the criteria

Exceptions:

ResourcePropertyRetrievalException
QueryInvalidException
RemoteResourcePropertyRetrievalException

 Chapter 4 caGrid Metadata Infrastructure

 39

EndpointReferenceType []

gov.nih.nci.cagrid.discovery.client.DiscoveryClient.discoverServicesByName (String

serviceName) throws RemoteResourcePropertyRetrievalException,

QueryInvalidException, ResourcePropertyRetrievalException

Searches to find services that have a given name.

Parameters:

serviceName The service's name

Returns:

EndpointReferenceType[] matching the criteria

Exceptions:

ResourcePropertyRetrievalException
QueryInvalidException
RemoteResourcePropertyRetrievalException

EndpointReferenceType []

gov.nih.nci.cagrid.discovery.client.DiscoveryClient.discoverServicesByConceptCode

(String conceptCode) throws RemoteResourcePropertyRetrievalException,

QueryInvalidException, ResourcePropertyRetrievalException

Searches to find services based on the given concept code.

Parameters:

conceptCode A concept code the service is based upon.

Returns:

EndpointReferenceType[] matching the criteria

Exceptions:

ResourcePropertyRetrievalException
QueryInvalidException
RemoteResourcePropertyRetrievalException

caGrid 1.1 Programmer’s Guide

40

EndpointReferenceType []

gov.nih.nci.cagrid.discovery.client.DiscoveryClient.discoverServicesByOperationName

(String operationName) throws RemoteResourcePropertyRetrievalException,

QueryInvalidException, ResourcePropertyRetrievalException

Searches to find services that have a given operation.

Parameters:

operationName The operation's name

Returns:

EndpointReferenceType[] matching the criteria

Exceptions:

ResourcePropertyRetrievalException
QueryInvalidException
RemoteResourcePropertyRetrievalException

EndpointReferenceType []

gov.nih.nci.cagrid.discovery.client.DiscoveryClient.discoverServicesByOperationInput

(UMLClass clazzPrototype) throws RemoteResourcePropertyRetrievalException,

QueryInvalidException, ResourcePropertyRetrievalException

Searches to find services that have an operation defined that takes the given UMLClass as
input. Any fields set on the UMLClass are checked for a match. For example, you can set
only the packageName, and only it will be checked, or you can specify several fields and
they all must be equal.

Note: Only attributes of the UMLClass are examined (associated objects (e.g.
UMLAttributeCollection and SemanticMetadataCollection) are ignored).

Parameters:

clazzPrototype The prototype UMLClass

Returns:

EndpointReferenceType[] matching the criteria

Exceptions:

 Chapter 4 caGrid Metadata Infrastructure

 41

ResourcePropertyRetrievalException
QueryInvalidException
RemoteResourcePropertyRetrievalException

EndpointReferenceType []

gov.nih.nci.cagrid.discovery.client.DiscoveryClient.discoverServicesByOperationOutput

(UMLClass clazzPrototype) throws RemoteResourcePropertyRetrievalException,

QueryInvalidException, ResourcePropertyRetrievalException

Searches to find services that have an operation defined that produces the given UMLClass.
Any fields set on the UMLClass are checked for a match. For example, you can set only the
packageName, and only it will be checked, or you can specify several fields and they all
must be equal.

NOTE: Only attributes of the UMLClass are examined (associated objects (e.g.
UMLAttributeCollection and SemanticMetadataCollection) are ignored).

Parameters:

clazzPrototype The prototype UMLClass

Returns:

EndpointReferenceType[] matching the criteria

Exceptions:

ResourcePropertyRetrievalException
QueryInvalidException
RemoteResourcePropertyRetrievalException

EndpointReferenceType []

gov.nih.nci.cagrid.discovery.client.DiscoveryClient.discoverServicesByOperationClass

(UMLClass clazzPrototype) throws RemoteResourcePropertyRetrievalException,

QueryInvalidException, ResourcePropertyRetrievalException

Searches to find services that have an operation defined that produces the given UMLClass
or takes it as input. Any fields set on the UMLClass are checked for a match. For example,

caGrid 1.1 Programmer’s Guide

42

you can set only the packageName, and only it will be checked, or you can specify several
fields and they all must be equal.

Note: Only attributes of the UMLClass are examined (associated objects (e.g.
UMLAttributeCollection and SemanticMetadataCollection) are ignored).

Parameters:

clazzPrototype The prototype UMLClass

Returns:

EndpointReferenceType[] matching the criteria

Exceptions:

ResourcePropertyRetrievalException
QueryInvalidException
RemoteResourcePropertyRetrievalException

EndpointReferenceType []

gov.nih.nci.cagrid.discovery.client.DiscoveryClient.discoverServicesByOperationConcep

tCode (String conceptCode) throws RemoteResourcePropertyRetrievalException,

QueryInvalidException, ResourcePropertyRetrievalException

Searches to find services that have an operation based on the given concept code

Parameters:

conceptCode The concept to look for

Returns:

EndpointReferenceType[] matching the criteria

Exceptions:

ResourcePropertyRetrievalException
QueryInvalidException
RemoteResourcePropertyRetrievalException

EndpointReferenceType []

gov.nih.nci.cagrid.discovery.client.DiscoveryClient.discoverServicesByDataConceptCod

 Chapter 4 caGrid Metadata Infrastructure

 43

e (String conceptCode) throws RemoteResourcePropertyRetrievalException,

QueryInvalidException, ResourcePropertyRetrievalException

Searches to find services that have an operation defined that produces the or takes as input,
a Class with an attribute , attribute value domain , enumerated value meaning, or the class
itself based on the given concept code.

Parameters:

conceptCode The concept to look for

Returns:

EndpointReferenceType[] matching the criteria

Exceptions:

ResourcePropertyRetrievalException
QueryInvalidException
RemoteResourcePropertyRetrievalException

EndpointReferenceType []

gov.nih.nci.cagrid.discovery.client.DiscoveryClient.discoverServicesByPermissibleValue

(String value) throws RemoteResourcePropertyRetrievalException,

QueryInvalidException, ResourcePropertyRetrievalException

Searches to find services that have an operation defined that produce or take as input, a
Class with an attribute allowing the given value.

Parameters:

value The permissible value to look for

Returns:

EndpointReferenceType[] matching the criteria

Exceptions:

ResourcePropertyRetrievalException
QueryInvalidException
RemoteResourcePropertyRetrievalException

caGrid 1.1 Programmer’s Guide

44

String

gov.nih.nci.cagrid.discovery.client.DiscoveryClient.createPermissibleValuePredicatedUM

LClass (String value, boolean isDataService) [protected]

Creates a UMLClass step that is predicated to contain either an attribute, attribute value
domain, or enumerated value meaning, or the class itself based on that concept.

Parameters:

conceptCode the code to look for

Returns:

String

gov.nih.nci.cagrid.discovery.client.DiscoveryClient.createConceptPredicatedUMLClass

(String conceptCode, boolean isDataService) [protected]

Creates a UMLClass step that is predicated to contain either an attribute, attribute value
domain, enumerated value meaning, or the class itself based on that concept.

Parameters:

conceptCode the code to look for

Returns:

EndpointReferenceType []

gov.nih.nci.cagrid.discovery.client.DiscoveryClient.getAllDataServices () throws

RemoteResourcePropertyRetrievalException, QueryInvalidException,

ResourcePropertyRetrievalException

Query the registry for all registered data services

Returns:

EndpointReferenceType[] contain all registered services

Exceptions:

ResourcePropertyRetrievalException
QueryInvalidException
RemoteResourcePropertyRetrievalException

 Chapter 4 caGrid Metadata Infrastructure

 45

EndpointReferenceType []

gov.nih.nci.cagrid.discovery.client.DiscoveryClient.discoverDataServicesByDomainMode

l (String modelName) throws RemoteResourcePropertyRetrievalException,

QueryInvalidException, ResourcePropertyRetrievalException

Searches to find data services that are exposing a subset of given domain (short name or
long name).

Parameters:

modelName The model to look for

Returns:

EndpointReferenceType[] matching the criteria

Exceptions:

ResourcePropertyRetrievalException
QueryInvalidException
RemoteResourcePropertyRetrievalException

EndpointReferenceType []

gov.nih.nci.cagrid.discovery.client.DiscoveryClient.discoverDataServicesByModelConce

ptCode (String conceptCode) throws RemoteResourcePropertyRetrievalException,

QueryInvalidException, ResourcePropertyRetrievalException

Searches to find data services that expose a Class with an attribute , attribute value domain
, enumerated value meaning, or the class itself based on the given concept code.

Parameters:

conceptCode The concept to look for

Returns:

Exceptions:

RemoteResourcePropertyRetrievalException
QueryInvalidException
ResourcePropertyRetrievalException

caGrid 1.1 Programmer’s Guide

46

EndpointReferenceType []

gov.nih.nci.cagrid.discovery.client.DiscoveryClient.discoverDataServicesByExposedClas

s (gov.nih.nci.cagrid.metadata.dataservice.UMLClass clazzPrototype) throws

RemoteResourcePropertyRetrievalException, QueryInvalidException,

ResourcePropertyRetrievalException

Searches for data services that expose the given class. Any fields set on the UMLClass are
checked for a match. For example, you can set only the packageName, and only it will be
checked, or you can specify several fields and they all must be equal.

Note: Only attributes of the UMLClass are examined (associated objects (e.g.
UMLAttributeCollection and SemanticMetadataCollection) are ignored).

Parameters:

clazzPrototype The prototype UMLClass
clazzPrototype

Returns:

Exceptions:

RemoteResourcePropertyRetrievalException
QueryInvalidException
ResourcePropertyRetrievalException

EndpointReferenceType []

gov.nih.nci.cagrid.discovery.client.DiscoveryClient.discoverDataServicesByPermissibleV

alue (String permissibleValue) throws RemoteResourcePropertyRetrievalException,

QueryInvalidException, ResourcePropertyRetrievalException

Searches for data services that expose a class with an attribute allowing the given value.

Parameters:

value The permissible value to look for

Returns:

 Chapter 4 caGrid Metadata Infrastructure

 47

Exceptions:

RemoteResourcePropertyRetrievalException
QueryInvalidException
ResourcePropertyRetrievalException

EndpointReferenceType []

gov.nih.nci.cagrid.discovery.client.DiscoveryClient.discoverDataServicesByAssociations

WithClass (gov.nih.nci.cagrid.metadata.dataservice.UMLClass clazzPrototype) throws

RemoteResourcePropertyRetrievalException, QueryInvalidException,

ResourcePropertyRetrievalException

Searches for data services that expose an association to or from the given class. Any fields
set on the UMLClass are checked for a match. For example, you can set only the
packageName, and only it will be checked, or you can specify several fields and they all
must be equal.

Note: Only attributes of the UMLClass are examined (associated objects (e.g.
UMLAttributeCollection and SemanticMetadataCollection) are ignored).

Parameters:

clazzPrototype

Returns:

Exceptions:

RemoteResourcePropertyRetrievalException
QueryInvalidException
ResourcePropertyRetrievalException

caGrid 1.1 Programmer’s Guide

48

static String gov.nih.nci.cagrid.discovery.client.DiscoveryClient.buildPOCPredicate

(PointOfContact contact) [static, protected]

Builds up a predicate for a PointOfContact, based on the prototype passed in.

Parameters:

contact the prototype POC

Returns:

"*" if the prototype has no non-null or non-whitespace values, or the predicate necessary to match
all values.

static String gov.nih.nci.cagrid.discovery.client.DiscoveryClient.buildUMLClassPredicate

(UMLClass clazz) [static, protected]

Builds up a predicate for a UMLClass, based on the prototype passed in.

Note: Only attributes of the UMLClass are examined (associated objects (e.g.
UMLAttributeCollection and SemanticMetadataCollection) are ignored).

Parameters:

clazz the prototype UMLClass

Returns:

"*" if the prototype has no non-null or non-whitespace values, or the predicate necessary to match
all values.

static String

gov.nih.nci.cagrid.discovery.client.DiscoveryClient.buildDataUMLClassPredicate

(gov.nih.nci.cagrid.metadata.dataservice.UMLClass clazz) [static, protected]

 Chapter 4 caGrid Metadata Infrastructure

 49

static String gov.nih.nci.cagrid.discovery.client.DiscoveryClient.addNonNullPredicate

(String name, String value, boolean isAttribute) [static, protected]

Parameters:

name the element or attribute name to check
value the value to add the predicate filter against if this is null or whitespace only, no predicated is
added.
isAttribute whether or not name represents an attribute or element

Returns:

"" or the specified predicate (prefixed with " and ")

EndpointReferenceType []

gov.nih.nci.cagrid.discovery.client.DiscoveryClient.discoverByFilter (String

xpathPredicate) throws RemoteResourcePropertyRetrievalException,

QueryInvalidException, ResourcePropertyRetrievalException [protected]

Applies the specified predicate to the common path in the Index Service's Resource
Properties to return registered services' EPRs that match the predicate.

Parameters:

xpathPredicate predicate to apply to the "Entry" in Index Service

Returns:

EndpointReferenceType[] of matching services @

Exceptions:

ResourcePropertyRetrievalException
QueryInvalidException
RemoteResourcePropertyRetrievalException

String gov.nih.nci.cagrid.discovery.client.DiscoveryClient.translateXPath (String

xpathPredicate) [protected]

Adds the common Index RP Entry filter, and translates the xpath to IndexService friendly
XPath.

caGrid 1.1 Programmer’s Guide

50

Parameters:

xpathPredicate

Returns:

the modified xpath

EndpointReferenceType gov.nih.nci.cagrid.discovery.client.DiscoveryClient.getIndexEPR

()

Gets the EPR of the Index Service being used.

void gov.nih.nci.cagrid.discovery.client.DiscoveryClient.setIndexEPR

(EndpointReferenceType indexEPR)

Sets the EPR of the Index Service to use.

Parameters:

indexEPR the EPR of the Index Service to use.

static void gov.nih.nci.cagrid.discovery.client.DiscoveryClient.main (String[] args)

[static]

testing stub

Parameters:

args optional URL to Index Service to query.

gov.nih.nci.cagrid.discovery.XPathUtils

Member Function Documentation

static String gov.nih.nci.cagrid.discovery.XPathUtils.translateXPath (String

prefixedXpath, Map namespaces) [static]

This utility takes an XPath that uses namespace prefixes (such as /a:B/a:C) and converts it
to one without prefixes, by using the appropriate operators instead (such as /*[namespace-
uri()='http://DOMAIN.COM/SCHEMA' and local-name()='B']/*[namespace-

 Chapter 4 caGrid Metadata Infrastructure

 51

uri()='http://DOMAIN.COM/SCHEMA' and local-name()='C']). The only conceivable use for
this function is to write sane XPath and convert it to the insane XPath Globus index service
supports.

Note: This is not perfect. The known limitations are: 1) its overly aggressive, and will replace
QName-looking string literals, 2) it will not work if you have namespaces attributes 3) it will
silently not replace any QNames that you haven't supplied a prefix mapping for

Parameters:

prefixedXpath An xpath [optionally] using namespace prefixes in nodetests
namespaces A Map<String,String> keyed on namespace prefixes to resolve in the xpath, where
the value is the actual namespace that should be used.

Returns:

a converted, conformant, xpath

API Usage Examples

This section describes typical usage of the Discovery API. The exception handling shown in the

code examples is not recommended practice and is simplistic for demonstration purposes.

Additional examples can be found in the source code of the discovery project, in the main of the

DiscoveryClient itself, as well as in the test source directory.

The main method of the DiscoveryClient can be run from the project‟s source folder by entering

ant runClient. The discovery unit tests can also be run by entering ant test. The unit tests do not

actually communicate with the Index Service; rather they simulate it with a Mock object.

Configuring an Index Service

The first step in using the Discovery API is constructing an instance of the DiscoveryClient.

There are three constructors that can be used. The first, shown in line 7 of Figure 4-10, takes no

arguments, and indicates that the “default” Index Service should be used for discovery queries.

A second constructor, shown in line 5 of Figure 4-10, takes a String as an argument, and the

String is expected to represent the service URL of the Index Service to query. The final

constructor, not shown, takes an EndPointReferenceType, which can be used to directly

indicate the Index Service Resource to query. The standard caGrid Index Service installation is

stateless, and so a resource unqualified EPR can be used, but most clients can just use the

shortcut String constructor.

caGrid 1.1 Programmer’s Guide

52

Figure 4-10 DiscoveryClient constructor example

The Index Service to use can also be reconfigured at runtime, by invoking the setIndexEPR

method, shown in line 11 of Figure 4-11. Just as specifying the Index Service in the constructor

generates an exception if the Address is not valid, so will the setter method.

Figure 4-11 Configuring Index Service code

Discovering Services

Once a DiscoveryClient is configured, it can be continually used to discover services of interest.

While the client is technically thread safe as long as the Index Service is not reconfigured during

use, it is recommended a new DiscoveryClient instance is used in each thread context where

discovery operations are performed, as it is an extremely light weight object.

The simplest discovery scenario, shown in Figure 4-12, is to query the Index Service for all

registered services. The boolean value specified in line 3, indicates whether services should be

ignored if they do not expose the caGrid standard metadata. In most application scenarios, a

value of “true” is used, but specifying “false” is useful for identifying all services that are

attempting to register. It is common for a service running behind a firewall to maintain

registration status with the Index Service, but not have caGrid metadata aggregated, as the

Index Service is not able to communicate with the inaccessible service

Figure 4-12 Discovering all services

 Chapter 4 caGrid Metadata Infrastructure

 53

There are numerous discovery operations which take some form of text input, and all are case

sensitive. The simplest discovery operation that takes some form of input is the basic string

search operation, discoverServicesBySearchString, which is shown in Figure 4-13. This is a full

text search that examines all registered metadata values for the specified input. It is not likely

this operation will be useful for programmatic discovery (as it is a completely unstructured

query), but it is useful for applications that take direct input from the user (such as a web form),

and makes a good starting point for applications that provide capability to “drill down” and

examine the full metadata of the satisfying services.

Figure 4-13 Discovering by Search String

Beyond the full text search operation, there are many discovery operations that take a search

string as input, but perform a more structured search and are more useful for programmatic

discovery. For example, services providing a named operation can be discovered using the

method discoverServicesByOperationName, or Data Services exposing a given model can be

discovered, as shown below in Figure 4-14, using the discoverDataServicesByDomainModel

method. This operation, and all methods named like discoverDataServices* only return services

that implement the standard Data Service operations.

Figure 4-14 Discovering Data Services by Model Name

Another potentially useful method for discovering services or displaying information about

available services on the grid is the discoverServicesByResearchCenter method, shown below

in Figure 4-15.

Figure 4-15 Discovering by Research Center

There are several discovery methods that support semantic discovery by allowing search on

concept code. The simplest of these methods, discoverServicesByConceptCode, shown below

in Figure 4-16, searches for services based on concepts applied to the services itself. There is a

concept representing “Grid Service” in the ontology and derived concepts such as “Analytical

Grid Service” and “Data Grid Service.” By determining these concept codes, or any other

caGrid 1.1 Programmer’s Guide

54

specialized concepts, this operation provides a simple way to discover services of a certain

“type.” Similarly, there is a method to discover services by the semantics of the operations they

provide using the discoverServicesByOperationConceptCode method. At the time of this writing,

services operations are not yet semantically annotated, but are expected to be soon. Finally,

two methods: discoverDataServicesByModelConceptCode and

discoverServicesByDataConceptCode provide the capability to discover services based on the

information about the data types they operate over. Both examine the semantic information of

the UML Classes used by the services. The first, discoverDataServicesByModelConceptCode,

locates Data Services that are exposing access to data based on the concept. The second,

discoverServicesByDataConceptCode, locates services that directly produce or consume data

based on the concept. In both cases, the concept is considered a match if the Class is based on

the concept or one of its attributes, attribute value domains, or enumerated value meanings.

These methods are all based on direct concept matching; not only ontological operations.

However, these methods coupled with the EVS grid service, provide a powerful ability to

traverse the caBIG ontology for information of interest, and discover services providing this

information, or the ability to manipulate it.

Figure 4-16 Discovering Services by Concept Code

Beyond the simple String based discovery methods, some discovery methods take complex

objects as input, such as a PointOfContact or UMLClass. In these cases, the objects act as a

prototype (or “query by example” as in the caCORE APIs), and can be as partially populated as

desired. For example, the method show below in Figure 4-17,

discoverServicesByPointOfContact, searches for services which are associated with a person

with the information described by the supplied PointOfContact instance; in this case services

associated with “Scott Oster” are located. There are many other fields in PointOfContact that

are not populated in this example, and are ignored.

Figure 4-17 Discover Services by Point of Contact

There are many discovery methods that take a UMLClass prototype to discover services based

on data types; an example is shown below in Figure 4-18. This method,

discoverServiceByOperationInput, locates services that provide an operation that takes, as

input, an instance of the specified data type. In the example below, services provide operations

 Chapter 4 caGrid Metadata Infrastructure

 55

taking caBIO‟s Gene instances as input. Again, this object can be as partially populated as

desired (such as only specifying the package name, or being more explicit in specifying the

exact project name and version).

Figure 4-18 Discover Services by Input

caDSR Grid Service Usage Overview
The following link provides a reference to the technical architecture and design document(s) for

the caDSR Grid Service:

http://gforge.nci.nih.gov/plugins/scmcvs/cvsweb.php/~checkout~/cagrid-1-

0/Documentation/docs/cadsr/caGrid-cadsr-design.doc?rev=1.7;content-

type=application%2Foctet-stream;cvsroot=cagrid-1-0

The caGrid caDSR Grid Service provides access to information in the caDSR that is relevant to

caGrid, and has capabilities to generate caGrid standard metadata instances. Specifically, the

service provides operations to access UML-like information stored in the caDSR. It also has

operations to generate Data Service metadata for a described subset of a given project

registered in caDSR. Finally, it has an operation that augments a description of an Analytical

Service, via a partially populated service metadata instance, with the necessary UML-like and

semantic information, extracted from caDSR, to describe the service and its operations.

The caDSR Grid Service is a simple, stateless service, created with Introduce. The service

exposes three main categories of operations. The first are operations that expose access to the

UML-like view of caDSR registered items like findProjects, findPackagesInProject,

findClassesInPackage, findAttributesInClass, etc. These provide basic discovery and access to

the UML information in the caDSR. While these operations are stateless, they take sufficient

context during each invocation to enable traversal of all registered projects. Aside from the

operations to locate Projects, each operation takes a description of the caDSR Project of

interest. Each operation in turn throws an InvalidProjectException if the Project specified is not

valid.

The second set of operations enables clients to generate caGrid standard Data Service

metadata. There are four operations that take variations of information specifying what data is to

be exposed by the Data Service for which the metadata is being created. Each operation throws

an InvalidProjectException if the Project specified is not valid or if it ambiguously identifies more

than one Project (for example, if a version is not specified, yet there are multiple versions of a

given Project registered in caDSR). The first operation, generateDomainModelForProject, takes

only the project description and generates a model that describes the entire domain model

http://gforge.nci.nih.gov/plugins/scmcvs/cvsweb.php/~checkout~/cagrid-1-0/Documentation/docs/cadsr/caGrid-cadsr-design.doc?rev=1.7;content-type=application%2Foctet-stream;cvsroot=cagrid-1-0
http://gforge.nci.nih.gov/plugins/scmcvs/cvsweb.php/~checkout~/cagrid-1-0/Documentation/docs/cadsr/caGrid-cadsr-design.doc?rev=1.7;content-type=application%2Foctet-stream;cvsroot=cagrid-1-0
http://gforge.nci.nih.gov/plugins/scmcvs/cvsweb.php/~checkout~/cagrid-1-0/Documentation/docs/cadsr/caGrid-cadsr-design.doc?rev=1.7;content-type=application%2Foctet-stream;cvsroot=cagrid-1-0

caGrid 1.1 Programmer’s Guide

56

being exposed for the project. The second, generateDomainModelForPackage, additionally

takes an array of Strings that represent UML package names in the Project to expose. The

method generates a model that describes exposing all UML Classes in UML Packages with a

name specified in the array. Any associations to UML Classes outside of the specified packages

are not exposed. The third method, generateDomainModelForClasses, also takes an array of

Strings that represent the fully qualified UML Class names to be exposed in the model. Any

association between classes not specified is omitted. The final method,

generateDomainModelForClassesWithExcludes, also takes an additional array of Strings that

represent the fully qualified UML Class names to be exposed in the model, but also takes an

array of UMLAssociationExcludes to be used to exclude specific associations from the model (in

addition to the already excluded associations that reference classes not specified in the array of

class names). The UMLAssociationExclude Class allows the client to specify a

sourceRoleName, sourceClassName, targetRoleName, and targetClassName. Any UML

Association that would otherwise be included in the computed subset of the DomainModel is

omitted if it meets the criteria described by any of the UMLAssociationExcludes. The value of

any attribute of the UMLAssociationExclude can be the wildcard “*”, which indicates it should

match anything. As such, specifying an exclude with “*” as the value for all attributes effectively

omits all associations from the DomainModel. By using no wildcards, a single association can

be omitted, and by using a combination of some values and some wildcards, groups of

associations can be omitted. For example, specifying an exclude instance with a

sourceClassName value of “gov.nih.nci.cabio.domain.Gene” and wildcards for all other

attributes would effectively omit any associations from the DomainModel where

gov.nih.nci.cabio.domain.Gene was the source of the association. Using these methods, in

combination with the operations for finding all Projects, Packages, Classes, and Associations,

Data Service metadata exposing any subset of Classes and Associations can be created.

The final type of operation is the operation, annotateServiceMetadata, which provides clients

the ability to augment a ServiceMetadata (standard caGrid service metadata) skeleton instance

with the information extracted from caDSR. The caGrid common service metadata specifies

information about a grid service and its operations. For more information on the model, consult

the caGrid metadata design document. The annotateServiceMetadata operation takes this

model and populates the UML and semantically oriented components by querying the caDSR

appropriately. Specifically, it populates the semantically annotated UML Class information

(similar to the type used in Data Service Domain Model metadata) for each input and output

type of every operation the service provides. It does this by examining the XML Qualified Name

(QName) of each type used in the signature of the operation and locating its UML equivalent in

caDSR. In caGrid every grid service operation is required to use data types which are XML

representations of UML Classes registered in the caDSR. There is a one to one mapping of

UML Class to XML QNames (XML elements). The caGrid Metadata Design Document and

caDSR Grid Service Design Document can be consulted for more information on how this

binding (XML QName to caDSR type) occurs, and what restrictions it places on the models.

The primary data types used by the caDSR grid service are those that are defined in caCORE

3.1 in the gov.nih.nci.cadsr.domain model, which represents the caDSR information and the

gov.nih.nci.cadsr.umlproject.domain, which represents a UML-like view of information in the

caDSR. The umlproject model, shown below in Figure 4-19, is the main model but it associates

with and extends a few classes from the caDSR base model, so it is used as well. As is evident

 Chapter 4 caGrid Metadata Infrastructure

 57

from the figure below, the model provides a UML-like view of the caDSR registered projects.

One class of note is the SemanticMetadata class which is associated to many UML-like classes,

and provides a link to the semantic content of those items. Specifically, it exposes information

about the EVS-maintained concepts.

Figure 4-19 UML project model

In addition to the existing caCORE-defined types, the caDSR grid service defines two new data

types for exclusive use by its exposed operations. The first is the UMLAssociationExclude,

described above as the type used to specify UML Associations which should be excluded from

a generated DomainModel. The second is an alternative representation of a UML Association,

namely the UMLAssocation class. This has the same semantics as the

UMLAssociationMetadata class in the umlproject model, but uses an alternate syntactic

representation which is more suitable to transport over the grid.

caGrid 1.1 Programmer’s Guide

58

Figure 4-20 caDSR Grid Service Types

Finally the service also makes use of the ServiceMetadata and DomainModel caGrid metadata

models, as it provides operations to manipulate them. For more information on these models,

consult the caGrid Metadata Design Document.

Security Considerations

The caDSR grid service requires no grid credentials for any operations. Its typical deployment is

in a service container using an open communication channel. However, even if it is deployed to

a container making use of transport level security (https), it will not require credentials from the

user and can be communicated with anonymously.

API Details

The caDSRServiceClient is the main client interface to the caDSR grid service (Figure 4-21).

https://gforge.nci.nih.gov/plugins/scmcvs/cvsweb.php/cagrid-1-0/Documentation/docs/metadata/caGrid-metadata-infrastructure-design.doc?cvsroot=cagrid-1-0

 Chapter 4 caGrid Metadata Infrastructure

 59

Figure 4-21 CaDSRServiceClient Inheritance Graph

gov.nih.nci.cagrid.cadsr.client.CaDSRServiceClient

Constructor Documentation

CaDSRServiceClient (String url) - throws MalformedURIException, RemoteException

CaDSRServiceClient (String url, GlobusCredential proxy) - throws MalformedURIException,

RemoteException

CaDSRServiceClient (EndpointReferenceType epr) - throws MalformedURIException,

RemoteException

CaDSRServiceClient (EndpointReferenceType epr, GlobusCredential proxy) - throws

MalformedURIException, RemoteException

Member Function Documentation

Access to caGrid Service Security Metadata:

 gov.nih.nci.cagrid.metadata.security.ServiceSecurityMetadata
getServiceSecurityMetadata ()

o throws RemoteException
o Description: Returns the caGrid service security metadata

Navigation and discovery of UML-like information:

 gov.nih.nci.cadsr.umlproject.domain.Project[] findAllProjects ()
o throws RemoteException

caGrid 1.1 Programmer’s Guide

60

o Description: Returns all Projects registered in the caDSR

 gov.nih.nci.cadsr.umlproject.domain.Project[] findProjects (java.lang.String context)
o throws RemoteException
o Description: Returns all Projects registered in the caDSR under the given

context

 gov.nih.nci.cadsr.umlproject.domain.UMLPackageMetadata[] findPackagesInProject
(gov.nih.nci.cadsr.umlproject.domain.Project project)
o throws RemoteException,

gov.nih.nci.cagrid.cadsr.stubs.types.InvalidProjectException
o Description: Returns all Packages in the given Project

 gov.nih.nci.cadsr.umlproject.domain.UMLClassMetadata[] findClassesInProject
(gov.nih.nci.cadsr.umlproject.domain.Project project)
o throws RemoteException,

gov.nih.nci.cagrid.cadsr.stubs.types.InvalidProjectException
o Description: Returns all Classes in the given Project

 gov.nih.nci.cadsr.umlproject.domain.UMLClassMetadata[] findClassesInPackage
(gov.nih.nci.cadsr.umlproject.domain.Project project, java.lang.String packageName)
o throws RemoteException,

gov.nih.nci.cagrid.cadsr.stubs.types.InvalidProjectException
o Description: Returns all Classes in the given Package

 gov.nih.nci.cadsr.umlproject.domain.UMLAttributeMetadata[] findAttributesInClass
(gov.nih.nci.cadsr.umlproject.domain.Project project,
gov.nih.nci.cadsr.umlproject.domain.UMLClassMetadata clazz)
o throws RemoteException,

gov.nih.nci.cagrid.cadsr.stubs.types.InvalidProjectException
o Description: Returns all Attributes of the given Class

 gov.nih.nci.cadsr.umlproject.domain.SemanticMetadata[]
findSemanticMetadataForClass (gov.nih.nci.cadsr.umlproject.domain.Project project,
gov.nih.nci.cadsr.umlproject.domain.UMLClassMetadata clazz)
o throws RemoteException,

gov.nih.nci.cagrid.cadsr.stubs.types.InvalidProjectException
o Description: Returns the semantic information about the given Class

 gov.nih.nci.cadsr.domain.ValueDomain findValueDomainForAttribute
(gov.nih.nci.cadsr.umlproject.domain.Project project,
gov.nih.nci.cadsr.umlproject.domain.UMLAttributeMetadata attribute)
o throws RemoteException,

gov.nih.nci.cagrid.cadsr.stubs.types.InvalidProjectException
o Description: Returns the Value Domain information for the given Attribute

 gov.nih.nci.cagrid.cadsrservice.UMLAssociation[] findAssociationsForClass
(gov.nih.nci.cadsr.umlproject.domain.Project project,
gov.nih.nci.cadsr.umlproject.domain.UMLClassMetadata clazz)
o throws RemoteException,

gov.nih.nci.cagrid.cadsr.stubs.types.InvalidProjectException
o Description: Returns all Associations of the given Class

 gov.nih.nci.cagrid.cadsrservice.UMLAssociation[] findAssociationsInPackage
(gov.nih.nci.cadsr.umlproject.domain.Project project, java.lang.String packageName)
o throws RemoteException,

gov.nih.nci.cagrid.cadsr.stubs.types.InvalidProjectException
o Description: Returns all Associations in the given Package

 Chapter 4 caGrid Metadata Infrastructure

 61

 gov.nih.nci.cagrid.cadsrservice.UMLAssociation[] findAssociationsInProject
(gov.nih.nci.cadsr.umlproject.domain.Project project)
o throws RemoteException,

gov.nih.nci.cagrid.cadsr.stubs.types.InvalidProjectException
o Description: Returns all Associations in the given Project

 gov.nih.nci.cadsr.domain.Context findContextForProject
(gov.nih.nci.cadsr.umlproject.domain.Project project)
o throws RemoteException,

gov.nih.nci.cagrid.cadsr.stubs.types.InvalidProjectException
o Description: Returns the Context of the given Project

caGrid standard metadata generation and manipulation:

 gov.nih.nci.cagrid.metadata.dataservice.DomainModel
generateDomainModelForProject (gov.nih.nci.cadsr.umlproject.domain.Project
project)
o throws RemoteException,

gov.nih.nci.cagrid.cadsr.stubs.types.InvalidProjectException
o Description: Generates standard Data Service metadata for the given Project

 gov.nih.nci.cagrid.metadata.dataservice.DomainModel
generateDomainModelForPackages (gov.nih.nci.cadsr.umlproject.domain.Project
project, java.lang.String[] packageNames)
o throws RemoteException,

gov.nih.nci.cagrid.cadsr.stubs.types.InvalidProjectException
o Description: Generates standard Data Service metadata for the given Packages

 gov.nih.nci.cagrid.metadata.dataservice.DomainModel
generateDomainModelForClasses (gov.nih.nci.cadsr.umlproject.domain.Project
project, java.lang.String[] fullClassNames)
o throws RemoteException,

gov.nih.nci.cagrid.cadsr.stubs.types.InvalidProjectException
o Description: Generates standard Data Service metadata for the given Classes

 gov.nih.nci.cagrid.metadata.dataservice.DomainModel
generateDomainModelForClassesWithExcludes
(gov.nih.nci.cadsr.umlproject.domain.Project project, java.lang.String[]
fullClassNames, gov.nih.nci.cagrid.cadsrservice.UMLAssociationExclude[]
associationExcludes)
o throws RemoteException,

gov.nih.nci.cagrid.cadsr.stubs.types.InvalidProjectException
o Description: Generates standard Data Service metadata for the given Classes,

excluding the specified (if any) Associations

 gov.nih.nci.cagrid.metadata.ServiceMetadata annotateServiceMetadata
(gov.nih.nci.cagrid.metadata.ServiceMetadata serviceMetadata)
o throws RemoteException
o Description: Annotates the given standard service metadata instance with

semantically annotated UML class information for all operations inputs and
outputs

API Usage Examples

This section describes typical usage of the caDSR Grid Service Client API. The exception

caGrid 1.1 Programmer’s Guide

62

handling shown in the code examples is not recommended practice, and is simplistic for

demonstration purposes.

Examining a Project’s Information Model

The example shown below in Figure 4-22, shows simple logic that can be used to list out the

Projects, Packages, Classes, and Attributes registered in the caDSR. It is a simplified extract of

the main method of the CaDSRServiceClient, and can run in full from the project by typing “ant

runClient.” The first step in communicating with the service, as with all caGrid services, is to

construct an instance of the client, passing the URL of the service. This can be seen in line 1 of

the example. Next in line 4, the example asks the caDSR for all of the registered Projects, and

then loops over them in line 6. For each returned Project, the caDSR is then asked for the

Packages registered in that Project, shown in line 9. This demonstrates the basic process which

is used to navigate the UML-like information in the caDSR, wherein context of the previous

operation (in this case a Project), is passed to a successive operation which provides more

detailed information. This can be seen again in line 15, line 22, and line 31, where respectively

the Classes in a Package, Attributes in a Class, and Associations in a Class are accessed. The

result of running this example is a printout out of a “tree like” view of all caDSR registered

Projects. While generally one does not want to navigate all information in the caDSR, this basic

model can be followed to find whatever information is desired (first locating the Project of

interest, then passing it to operations which provide more detail).

 Chapter 4 caGrid Metadata Infrastructure

 63

Figure 4-22 Navigating projects registered in the caDSR

Generating Data Service Metadata

As described above, there are four operations which provide the ability to generate instances of

caGrid standard Data Service metadata. Three examples of using this capability are shown

below, wherein the resulting DomainModel is written to a local file, and some basic information

about the model is printed to the screen. It should be noted that most users will not need to

make use of these APIs, as the Introduce toolkit automatically does this for them when creating

a Data Service, using the appropriate information based on the configuration of the service.

The first example, shown in Figure 4-23, demonstrates how to create metadata which describes

an entire Project being exposed; in this case the 3.1 version of caCORE. Lines 4-6 demonstrate

caGrid 1.1 Programmer’s Guide

64

the construction of a “prototype” Project instance, which describes the Project being exposed.

Then, in line 8, this is passed to the generateDomainModelForProject operation of the caDSR

grid service, and the resulting metadata instance is returned. This is the simplest of the Data

Service metadata generation operations, and does not allow for configuration or restriction of

the model. However, the resulting object could then be manipulated by the client appropriately.

The following lines (10-19) are common to all the following examples and show how the

DomainModel can be written to a local file (lines 10-13), and how the model can be inspected as

a Java Bean. Line 17 shows how the descriptions of the Associations of the model are

accessed, and line 19 shows how the descriptions of the exposed Classes can be accessed.

Figure 4-23 Generating a Domain Model for a Whole Project

The next example, shown in Figure 4-24, demonstrates how a metadata instance that describes

exposing a subset of a Project can be created. In this case, on line 9, an array of package

names, containing only caBIO, is constructed and passes to the

generateDomanModelForPackages operation. This operation restricts the returned model to

only contain Classes that are in the specified package(s), and Associations between those

Classes.

 Chapter 4 caGrid Metadata Infrastructure

 65

Figure 4-24 Generating a domain model for a package

The final example, shown in Figure 4-25, demonstrates the most powerful domain model

generation operation, which allows the explicit specification of the Classes which are being

exposed and the restriction of Associations between those Classes. Shown in lines 8 and 9, an

array of Class names is constructed, in this case the generated model will specify the Data

Service is only exposing 4 classes: Gene, Chromosome, Taxon, and Tissue. If we generated a

model using these Classes, all Associations between them would be included. However, in the

example some of these Associations are specified to be excluded from the model, signifying

clients may not query over these associations. Lines 10 and 11, first show the construction of an

AssociationExclude that explicitly specifies to exclude the Association from Gene to

Chromosome where Gene is the source, with the role “geneCollection” and Chromosome is the

target with “chromosome” as the role. This only matches a single association in the model. Next,

in lines 12-13, a broader exclude is constructed which specifies that an Association with Tissue

as the target should be excluded. Both these restrictions are then added to an array, in lines 14

and 15, and passed to the service with the Project and Class names on line 16.

caGrid 1.1 Programmer’s Guide

66

Figure 4-25 Generating a restricted domain model

EVS API Usage Overview
The following link provides a reference to the technical architecture and design document(s) for

the EVS API:

http://gforge.nci.nih.gov/plugins/scmcvs/cvsweb.php/~checkout~/cagrid-1-

0/Documentation/docs/evs/EVS%20Grid%20Service%20Design%20and%20Implementation.do

c?rev=1.4;content-type=application%2Foctet-stream;cvsroot=cagrid-1-0

getMetaSources

This API provides a list of vocabularies presented by the NCI Metathesaurus. The NCI

Metathesaurus maps terms from one standard vocabulary to another, facilitating collaboration,

data sharing and data pooling for clinical trials and scientific data services. The Metathesaurus

is based on the National Library of Medicine‟s (NLM) Unified Medical Language System (UMLS)

and is composed of over 70 biomedical vocabularies.

Input:

None

Output:

gov.nih.nci.evs.domain.Source[]

Exception:

http://gforge.nci.nih.gov/plugins/scmcvs/cvsweb.php/~checkout~/cagrid-1-0/Documentation/docs/evs/EVS%20Grid%20Service%20Design%20and%20Implementation.doc?rev=1.4;content-type=application%2Foctet-stream;cvsroot=cagrid-1-0
http://gforge.nci.nih.gov/plugins/scmcvs/cvsweb.php/~checkout~/cagrid-1-0/Documentation/docs/evs/EVS%20Grid%20Service%20Design%20and%20Implementation.doc?rev=1.4;content-type=application%2Foctet-stream;cvsroot=cagrid-1-0
http://gforge.nci.nih.gov/plugins/scmcvs/cvsweb.php/~checkout~/cagrid-1-0/Documentation/docs/evs/EVS%20Grid%20Service%20Design%20and%20Implementation.doc?rev=1.4;content-type=application%2Foctet-stream;cvsroot=cagrid-1-0

 Chapter 4 caGrid Metadata Infrastructure

 67

RemoteException

Examples of Use

The following is an example of the java client code invoking the API:

 EVSGridServiceClient client = new EVSGridServiceClient(endpoint);

 gov.nih.nci.evs.domain.Source[] sources = client.getMetaSources();

where endpoint provides an Endpoint Reference (EPR) to the EVS core grid service deployed

on caGrid.

getVocabularyNames

This API provides a list of vocabularies whose concepts are programmatically accessible to the

users via the Description Logic representation. All the vocabularies that are accessible via the

caCORE 3.1 EVS API are supported by this API.

Input:

None

Output:

gov.nih.nci.cagrid.evs.service.DescLogicConceptVocabularyName []

Exception:

RemoteException

Examples of Use

The following is an example of the java client code invoking the API:

 EVSGridServiceClient client = new EVSGridServiceClient(endpoint);

gov.nih.nci.cagrid.evs.service.DescLogicConceptVocabularyName[] dlcNames =

client.getVocabularyNames();

where endpoint provides an Endpoint Reference (EPR) to the EVS core grid service deployed

on caGrid.

searchDescLogicConcept

This API provides access to concepts and terms that are published by the vocabularies using
the Description Logic representation and exposed via the caCORE 3.1 EVS API.

The input to the API (EVSDescLogicConceptSearchParams) consists of appropriate vocabulary
to query for concepts (vocabularyName), the concept name or code to search (searchTerm) and
a tuning parameter (limit) to restrict the amount of objects returned by the API.

The API returns an array of Description Logic concepts with most of the attributes populated.
The user can navigate associated data based on the caCORE 3.1 EVS domain model.

Input:

caGrid 1.1 Programmer’s Guide

68

gov.nih.nci.cagrid.evs.service.EVSDescLogicConceptSearchParams

Output:

gov.nih.nci.evs.domain.DescLogicConcept[]

Exception:

RemoteException

InvalidInputExceptionType

Examples of Use

The following is an example of the java client code invoking the API:

EVSDescLogicConceptSearchParams evsSearchParams = new

EVSDescLogicConceptSearchParams();

 evsSearchParams.setVocabularyName("NCI_Thesaurus");

 evsSearchParams.setSearchTerm(searchTerms[count]);

 evsSearchParams.setLimit(100);

EVSGridServiceClient client = new EVSGridServiceClient(endpoint);

DescLogicConcept[] dlc= client.searchDescLogicConcept(evsSearchParams);

where endpoint provides an Endpoint Reference (EPR) to the EVS core grid service deployed
on caGrid.

API-Specific Considerations

The API has the following restrictions:

1. Instances of gov.nih.nci.evs.domain.EdgeProperties are not populated currently by the
API. These objects are used to specify a relationship between a concept and its
immediate parent when a DefaultMutableTree is generated. The caGrid EVS 1.0 service
is not required to support the generation of a Tree.

2. Instances of gov.nih.nci.evs.domain.Qualifier are not populated by the caGrid EVS 1.0
service.

3. Instances of gov.nih.nci.evs.domain.TreeNode are not populated by the caGrid EVS 1.0
service.

Exception Handling

The API validates inputs and throws InvalidInputExceptionType if any of the following invalid

values are present in the input to the API:

1. If the input instance EVSDescLogicConceptSearchParams is null.

2. If the value of the tuning parameter(limit) is less than or equal to zero.

3. If vocabulary name (vocabularyName) is not set (null or empty string) or the vocabulary

name is not present in the list of available vocabularies supported by caCORE 3.1 EVS

API for concepts based on Description Logic representation.

 Chapter 4 caGrid Metadata Infrastructure

 69

getHistoryRecords

This API provides a complete History for concepts and traces the evolution of concepts as they

are created, merged, modified, split, or retired. This history mechanism is provided completely

for the NCI Thesaurus and is published by the NCI EVS team. For all other vocabularies that

provide concepts based on Description Logic representation, a dummy value for History is

provided.

The input to the API (EVSHistoryRecordsSearchParams) consists of appropriate vocabulary to

query for concepts (vocabularyName) and a valid concept code to search (conceptCode).

The API returns an array of History records for the specified Description Logic Concept with

attributes populated. The user can navigate associated data based on the caCORE 3.1 EVS

domain model.

Input:

gov.nih.nci.cagrid.evs.service.EVSHistoryRecordsSearchParams

Output:

gov.nih.nci.evs.domain.HistoryRecord[]

Exception:

RemoteException

InvalidInputExceptionType

Examples of Use

The Following is an example of the java client code invoking the API:

 EVSHistoryRecordsSearchParams evsHistoryParams = new

EVSHistoryRecordsSearchParams();

 evsHistoryParams.setVocabularyName("NCI_Thesaurus");

 evsHistoryParams.setConceptCode("C16612");

 EVSGridServiceClient client = new EVSGridServiceClient(endpoint);

 HistoryRecord[] historys =

client.getHistoryRecords(evsHistoryParams);

where endpoint provides an Endpoint Reference (EPR) to the EVS core grid service deployed

on caGrid.

API-Specific Considerations

None

caGrid 1.1 Programmer’s Guide

70

Exception Handling

The API validates inputs and throws InvalidInputExceptionType if any of the following invalid

values are present in the input to the API:

1. If the input instance EVSHistoryRecordsSearchParams is null.

2. If the concept code (conceptCode) is not set (null or empty string) or an invalid concept code

is passed to the API. All concept codes are expected to start with the letter “C”.

3. If the vocabulary name (vocabularyName) is not set (null or empty string) or the vocabulary

name is not present in the list of available vocabularies supported by caCORE 3.1 EVS API

for concepts based on Description Logic representation.

searchMetaThesaurus

This API provides access to concepts that are supported by the NCI Metathesaurus. The input

to the API (EVSMetaThesaurusSearchParams) consists of a search term or a concept unique

identifier (CUI) (searchTerm), a valid Metathesaurus source (source), and tuning parameters to

control the amount of results (limit, shortResponse and score). The API returns an array of

concepts from the Metathesaurus with all the attributes populated and the user can navigate

associated data based on the caCORE 3.1 EVS domain model.

Input:

gov.nih.nci.cagrid.evs.service.EVSMetaThesaurusSearchParams

Output:

gov.nih.nci.evs.domain.MetaThesaurusConcept[]

Exception:

RemoteException

InvalidInputExceptionType

Examples of Use

The following is an example of the java client code invoking the API:

EVSMetaThesaurusSearchParams evsMetaThesaurusSearchParam = new

EVSMetaThesaurusSearchParams();

 evsMetaThesaurusSearchParam.setLimit(100);

 evsMetaThesaurusSearchParam.setSource("*");

 evsMetaThesaurusSearchParam.setCui(false);

 evsMetaThesaurusSearchParam.setShortResponse(false);

 evsMetaThesaurusSearchParam.setScore(false);

 EVSGridServiceClient client = new EVSGridServiceClient(endpoint);

 Chapter 4 caGrid Metadata Infrastructure

 71

 MetaThesaurusConcept[] metaConcept =

client.searchMetaThesaurus(metaParams);

where endpoint provides an Endpoint Reference (EPR) to the EVS core grid service deployed

on caGrid.

API-Specific Considerations

The API has the following constraints:

 The source input to the API has to be a valid metathesaurus source abbreviation
(present in the list from the API getMetaSources. A value of “*” indicates that the search
term will be queried against ALL available sources.

 Search term refers to the concept “name” to be searched in the appropriate source or all
sources as indicated above.

 The appropriate settings of the tuning parameters to indicate whether the search term is
a Concept Unique Identifier (CUI) or a regular search term. If the search term is a CUI,
then, the search term is validated to adhere to the following restrictions:

o The CUI begins with the letter “C”
o The CUI has a maximum length of 8 characters

Exception Handling

The API validates inputs and throws InvalidInputExceptionType if any of the following invalid

values are present in the input to the API:

1. If the input instance EVSMetaThesaurusSearchParams is null.

2. If the search term (searchTerm) is not set (null or empty).

3. If the search term is a CUI, then if an invalid CUI is passed to the API. All CUIs are expected

to start with the letter “C” and are 8 characters long.

4. If the value of the tuning parameter (limit) is less than or equal to zero.

5. If the Metathesaurus source abbreviation (source) is not set (null or empty string) or the

source is not present in the list of available vocabularies supported by caCORE 3.1 EVS API

(“*” is valid source abbreviation indicating ALL sources)

searchSourceByCode

This API provides access to concepts that are supported by the NCI Metathesaurus. The input

to the API (EVSSourceSearchParams) consists of a concept unique identifier (CUI) (code) and

a valid Metathesaurus source (source). The API returns an array of concepts from the

Metathesaurus with all the attributes populated and the user can navigate associated data

based on the caCORE 3.1 EVS domain model.

Input:

gov.nih.nci.cagrid.evs.service.EVSSourceSearchParams

Output:

gov.nih.nci.evs.domain.MetaThesaurusConcept[]

caGrid 1.1 Programmer’s Guide

72

Exception:

RemoteException

InvalidInputExceptionType

Examples of Use

The following is an example of the java client code invoking the API:

 EVSSourceSearchParams evsSourceParam = new EVSSourceSearchParams();

 evsSourceParam.setCode("0000001800");

 evsSourceParam.setSourceAbbreviation("AOD2000");

 EVSGridServiceClient client = new EVSGridServiceClient(endpoint);

 MetaThesaurusConcept[] mC = client.searchSourceByCode(evsSourceParam);

where endpoint provides an Endpoint Reference (EPR) to the EVS core grid service deployed

on caGrid.

API-Specific Considerations

The API will take following input:

 A valid MetaThesaurus source abbreviation (present in the list from the API
getMetaSources). The ALL sources value of “*” is not permitted for this API.

 A valid value for “code”. Some of the concepts in the MetaThesaurus do not have code
associated with them and are displayed in the NCI Meta Thesaurus Browser with the
value of “NOCODE”. The “NOCODE” value is not valid input for the API.

Exception Handling

The API validates inputs and throws InvalidInputExceptionType if any of the following invalid

values are present in the input to the API:

1. If the input instance EVSSourceSearchParams is null.

2. If the concept code (code) is not set (null or empty) or has the value “NOCODE”.

3. If the Metathesaurus source abbreviation (source) is not set (null or empty string) or the

source is not present in the list of available vocabularies supported by caCORE 3.1 EVS

API.

 Chapter 5 caGrid Security

 73

Chapter 5 caGrid Security

This chapter describes using Dorian and Grid Grouper as part of caGrid security.

Topics in this chapter include:

 Dorian Overview on this page

 Grid Grouper Overview on page 77

Dorian Overview
Managing users and provisioning accounts in the grid is complex. The Globus Toolkit

implements support for security via its Grid Security Infrastructure (GSI). The GSI utilizes X509

Identity Certificates for identifying a user. An X509 Certificate with its corresponding private key

forms a unique credential or so-called “grid credential” within the Grid. Since Grid credentials

are long term credentials and are not directly used in authenticating users to the grid, a short

term credential called a grid proxy is used instead. Grid proxies consist of a private key and a

corresponding long term certificate signed by the long term grid credential private key. A grid

proxy is an extension to traditional X509 certificates providing the ability to delegate your

credentials to other services, as in the case of a workflow for example. Although this approach

is effective and secure, it is difficult to manage in a multi-institutional environment., The

provisioning of grid credentials is a manual process using the base Globus Toolkit, which is far

too complicated for users. The overall process is further complicated if a user wishes to

authenticate from multiple locations, as a copy of their private key and certificate has to be

present at every location. Not only is this process complicated, securely distributing private keys

is error prone and poses a security risk. There are also many complexities in terms of

provisioning user accounts in an environment consisting of tens of thousands of users from

hundreds of institutions, each of which most likely has a user account at their home institution. A

practical solution to this problem for both users and their institutions is to allow users to

authenticate with the grid through the same mechanism in which they authenticate with their

institution. Dorian is a grid user management service that (1) hides the complexities of creating

and managing grid credentials from the users and (2) provides a mechanism for users to

authenticate using their institution‟s authentication mechanism, assuming a trust agreement is in

place between Dorian and the institution.

Dorian provides a complete Grid-enabled solution, based on public key certificates and SAML,

for managing and federating user identities in a Grid environment. Grid technologies have

adopted the use of X509 identity certificates to support user authentication. The Security

Assertion Markup Language (SAML) has been developed as a standard for exchanging

authentication and authorization statements between security domains. Note that Grid

certificates and SAML assertions serve different purposes. SAML is mainly used between

institutions for securely exchanging authentication information coming from trusted identity

providers. The primary use of the certificates is to uniquely identify Grid users, facilitate

authentication and authorization across multiple resource providers, and enable secure

delegation of credentials such that a service or a client program can access resources on behalf

of the user. A salient feature of Dorian is that it provides a mechanism for the combined use of

caGrid 1.1 Programmer’s Guide

74

both SAML and Grid certificates to authenticate users to the Grid environment through their

institution‟s authentication mechanism.

One of the challenges in building an identity management and federation infrastructure is to

create an architecture that incorporates multiple differing authentication mechanisms used by

various institutions. In addressing this challenge we identify two possible approaches. The first

is to build an infrastructure that would allow pluggable authentication modules, wherein a

module would be developed for each authentication mechanism. In this architecture, a user‟s

authentication information would be routed to the appropriate module that contains the logic for

authenticating the user with its institution. Although this approach solves the problem, it requires

at least one module be developed for each authentication mechanism. This would require the

Grid infrastructure administrators to become intimately familiar with each institution‟s

authentication mechanisms, and would increase the system‟s complexity with each new module

added.

Another approach is for the infrastructure to accept an institutionally-supplied, standard “token”

as a method of authentication. In this approach users would first authenticate with their

institution‟s identity management system. Upon successful authentication, the institution‟s

identity management system issues a token which can then be given to the federated grid

identity management system in exchange for grid credentials. The benefit of this approach over

the first is that it does not require writing a plug-in every time a new institutional authentication

mechanism comes online. It does, however, require every institutional authentication system to

agree upon and be able to provide a common token. As SAML has been adopted by many

institutions, we have chosen that token format as the basis of the second approach for Dorian.

The Security Assertion Markup Language (SAML) is an XML standard for exchanging

authentication and authorization data between security domains. Generally the exchange of

authentication and authorization data is made between an Identity Provider (IdP) and another

party. An institution‟s authentication system or identity management system is an example of an

IdP. Dorian uses SAML authentication assertions as the enabling mechanism for federating

users from local institutions to the grid.

Figure 5-1 illustrates an example usage scenario for Dorian. To obtain grid credentials or a

proxy certificate, users authenticate with their institution using the institution‟s conventional

mechanism. Upon successfully authenticating the user, the local institution issues a digitally

signed SAML assertion, vouching that the user has authenticated. The user then sends this

SAML assertion to Dorian in exchange for grid credentials. Dorian will only issue grid credentials

to users that supply a SAML assertion from a Trusted Identity Provider. Dorian‟s grid service

interface provides mechanisms for managing trusted identity providers; this will be discussed in

greater detail later in this document. For example, in Figure 5-1, when a Georgetown user

wishes to invoke a grid service that requires grid credentials, they first supply the application

with their username and password to the Georgetown Authentication Service as they would

normally do. The application client authenticates the Georgetown user with the Georgetown

Authentication Service, receives a signed SAML assertion which it subsequently passes to

Dorian in exchange for grid credentials. These credentials can then be used to invoke the grid

services. This illustrates how Dorian can leverage an institution‟s existing authentication

mechanism and bring its users to the grid.

 Chapter 5 caGrid Security

 75

Figure 5-1 Dorian

To facilitate smaller groups or institutions without an existing IdP, Dorian also has its own

internal IdP. This allows users to authenticate to Dorian directly, thereby enabling them to

access the grid. It provides administrators with facilities for approving and managing users. All

of Dorian IdP‟s functionality is made available through a grid service interface. Details of the

Dorian IdP are provided later in this document. Figure 5-1 illustrates a scenario of a client using

the Dorian IdP to authenticate to the Grid. In this scenario, the unaffiliated User wishes to invoke

a grid service. Given that this unaffiliated user has registered and been approved for an

account, she is able to authenticate with the Dorian IdP by supplying their username and

password. Upon successfully authenticating the user, the Dorian IdP issues a SAML Assertion

just like institutional IdPs, which can be presented to Dorian in exchange for grid credentials.

The credentials can be used to invoke the grid service.

Creating a Grid Proxy Programmatically

Figure 5-2 provides an example of how to create a grid proxy programmatically with Dorian. In

order to create a grid proxy using Dorian you must first obtain a signed SAML Assertion from an

Identity Provider Trusted by Dorian. caGrid‟s Authentication Service provides a common

interface and client tooling for exposing a local Identity Provider, such that a user may

authenticate using their local credentials and obtain a SAML assertion using a common client or

AuthenticationClient. Although it is not required to obtain the SAML Assertion from a caGrid

Authentication Service, it is the recommended approach and the approach used in Figure 5-2.

caGrid 1.1 Programmer’s Guide

76

Besides obtaining a SAML assertion, Dorian also requires the specification of a proxy lifetime

and a delegation path length in order to create a grid proxy. The proxy lifetime specifies the

amount of time for which the proxy is valid. A proxy lifetime is specified in terms of hours,

minutes, and seconds. The delegation path length specifies how many times a proxy can be

delegated to other services. Once you have obtained a SAML Assertion and specified a proxy

lifetime and delegation path length, you can use Dorian‟s IFSUserClient to create a proxy with

Dorian.

Figure 5-2 Programmatically creating a grid proxy with Dorian

try{

 String authURI = "http://some.service.uri";

 String dorianURI = "http://some.dorian.uri";

 //Create an instance of my institution provided credentials

 Credential localCredential = new Credential();

 BasicAuthenticationCredential userPass = new BasicAuthenticationCredential();

 userPass.setUserId("MyUserId");

 userPass.setPassword("MyPassword");

 localCredential.setBasicAuthenticationCredential(userPass);

 //User the caGrid common authentication client to authenticate with the local

 //IdP and obtain a SAML Assertion

 AuthenticationClient auth = new AuthenticationClient(authURI,

localCredential);

 SAMLAssertion saml = auth.authenticate();

 //Specify the lifetime of the desired proxy

 ProxyLifetime lifetime = new ProxyLifetime();

 lifetime.setHours(12);

 lifetime.setMinutes(0);

 lifetime.setSeconds(0);

 //Specify the delegation path length of the desired proxy

 int delegationPathLength = 0;

 //Now Create a proxy using the Dorian IFS User Client

 IFSUserClient client = new IFSUserClient(dorianURI);

 GlobusCredential proxy = client.createProxy(saml, lifetime,

delegationPathLength);

 Chapter 5 caGrid Security

 77

Grid Grouper Overview
Grid Grouper provides a group-based authorization solution for caGrid, where grid services and

applications enforce authorization policy based on membership to groups defined and managed

at the grid level. Grid Grouper is built on top of Grouper, an internet2 initiative focused on

providing tools for group management. Grouper is a java object model which currently supports:

basic group management by distributed authorities; subgroups; composite groups (whose

membership is determined by the union, intersection, or relative complement of two other

groups); custom group types and custom attributes; trace back of indirect membership; and

delegation. Applications interact with Grouper by embedding the Grouper‟s java object model

within applications. Grouper does not provide a service interface for accessing groups. Grid

Grouper (Figure 5-3) is a grid-enabled version of Grouper, providing a web service interface to

the Grouper object model. Grid Grouper make groups managed by Grouper available and

manageable to applications and other services in the grid. Grid Grouper provides an almost

identical object model to the Grouper object model on the grid client side. Applications and

services can use the Grid Grouper object model much like they would use the Grouper object

model to access and manage groups as well as enforce authorization policy based on

membership to groups. Grid Grouper provides a fully functional administrative UI for accessing

and administrating groups in Grid Grouper.

Figure 5-3 Grid Grouper

In Grouper/Grid Grouper groups are organized into namespaces or stems. Each stem can have

a set of child stems and a set of child groups with exception to the root stem which cannot have

any child groups. The Stem hierarchy in Grid Grouper is publicly visible to anyone accessing the

caGrid 1.1 Programmer’s Guide

78

service; however the ability to view a group within a stem publicly depends on the privileges for

the group. A Stem can have two types of privileges associated with it; the “Stem Privilege” and

the “Create Privilege”. Users with the “Stem Privilege” can create, modify, and remove child

stems. Users with the “Create Privilege” can create, modify, and remove child groups.

In Grouper/Grid Grouper groups are comprised of a set of metadata describing the group, a set

of members in the groups, and a set of privileges assigned to users for protecting access to the

group. Grid Grouper provides three mechanisms for adding members to a group: 1) directly

adding a member 2) adding a subgroup to a group 3) making a group a composite of other

groups. Directly adding a user as a member to a group is straight forward and these members

are referred to as “Immediate Members”. Adding a subgroup to a group makes all the members

of the subgroup members of the group in which the subgroup was added. Members in a group

whose membership is granted by membership in a subgroup are referred to as “Effective

Members”. A group can also be set up as a Composite group, which consists of a set operation

(union, intersection, or complement) on two other groups. For example a composite group

consisting of the intersection of Group X and Group Y would contain all the members that are

both members of Group X and Group Y. Members whose membership is granted through a

composite group are referred to as “Composite Members”.

To protect access to groups in Grid Grouper, users can be assigned the following privileges on

a group: View, Read, Update, Admin, Optin, and Optout. Users with the View privilege can see

that the group exists. Users with the Read privilege can read basic information about the group.

Users with the Update Privilege can manage memberships to the group as well as administer

View, Read, and Update privileges. Users with the Admin privilege can modify/administer

anything on the group: metadata, privileges, and memberships. Users with the Optin privilege

can add themselves as a member to a group; similarly users with the Opout privilege can

remove themselves from a group. By default Grid Grouper grants Read and View privileges to

all users on each group.

Initially Grid Grouper has a root stem with one child stem named “Grouper Administration”

(grouperadministration). The Grouper Administrative stem contains one group named “Grid

Grouper Administrators” (grouperadministration:gridgrouperadministrators). The “Grid Grouper

Administrators” is the super user group for Grid Grouper, all members of this group will have

admin privileges on all the stems and groups within Grid Grouper. This group is initially empty,

but at least one administrative user must be added during Grid Grouper installation. This can be

done using the GridGrouperBootstrapper command line tool.

Grid Grouper Object Model

The Grid Grouper object model provides an API for applications and services to access groups

managed by Grid Grouper. The object model can be used to enforce access control policies in

applications. For example, the object model can be used for determining membership to a group

in an application that allows access to a specific area of the application if the user is a member

of a specified group. The Grouper object model can also be used to administrate Grid Grouper.

As a testament to this, the Grid Grouper Admin UI application was built on top of the Grid

Grouper object model. The Grid Grouper object model consists of several objects: GridGrouper,

Stem, Group, Member, Membership, NamingPrivilege, and AccessPrivilege. The GridGrouper

object corresponds to an instance of a Grid Grouper service; it provides high level operations

 Chapter 5 caGrid Security

 79

such as finding stems and groups or determining whether or not a user is a member of a group,

etc. The Stem object represents an instance of a stem within Grid Grouper. The Stem object

provides operations for managing the stem: viewing metadata, managing child stems, managing

child groups, managing stem privileges, etc. The Group object models a group instance within

Grid Grouper, providing operations for managing metadata, managing privileges, and managing

members. The remainder of this section will provide several code examples of performing

common tasks with the Grid Grouper object model.

Determining if a Subject is a Member of a Group

try {

 String uri ="https://localhost:8443/wsrf/services/cagrid/GridGrouper";

 String user = "/O=OSU/OU=BMI/OU=caGrid/OU=Dorian/OU=cagrid05/CN=jdoe";

 String group = "MyStem:MyGroup";

 //Create a Grid Grouper Instance

 GrouperI grouper = new GridGrouper(uri);

 //Determiner if the user is a member of the group.

 boolean isMember = grouper.isMemberOf(user, group);

 if(isMember){

 System.out.println("The user "+user+" is a member of "+group);

 }else{

 System.out.println("The user "+user+" is NOT a member of "+group);

 }

} catch (Exception e) {

 e.printStackTrace();

}

caGrid 1.1 Programmer’s Guide

80

Listing All Members of a Group

try {

 String uri = "https://localhost:8443/wsrf/services/cagrid/GridGrouper";

 String group = "MyStem:MyGroup";

 // Create a Grid Grouper Instance

 GrouperI grouper = new GridGrouper(uri);

 // Obtain a handle to the group object.

 GroupI mygroup = grouper.findGroup(group);

 Set s = mygroup.getMembers();

 Iterator itr = s.iterator();

 //Iterate over and print out the members of the group

 while (itr.hasNext()) {

 Member m = (Member) itr.next();

 System.out.println("The user " + m.getSubjectId()

 + " is a member of " + mygroup.getDisplayExtension());

 }

 } catch (Exception e) {

 e.printStackTrace();

 }

 Chapter 5 caGrid Security

 81

Adding a Member to a Group

try {

 //Group Administrators Grid Credentials

 GlobusCredential adminProxy = ProxyUtil.getDefaultProxy();

 String uri = "https://localhost:8443/wsrf/services/cagrid/GridGrouper";

 String newMember = "/O=OSU/OU=BMI/OU=caGrid/OU=Dorian/OU=cagrid05/CN=jdoe";

 String group = "MyStem:MyGroup";

 // Create a Grid Grouper Instance

 GrouperI grouper = new GridGrouper(uri,adminProxy);

 // Obtain a handle to the group object

 GroupI mygroup = grouper.findGroup(group);

 //Add the member to the group

 mygroup.addMember(SubjectUtils.getSubject(newMember));

 System.out.println("Successfully added the user " + newMember + " as a member of the

group " + group);

} catch (Exception e) {

 e.printStackTrace();

}

caGrid 1.1 Programmer’s Guide

82

Removing a Member from a Group

try {

 //Group Administrators Grid Credentials

 GlobusCredential adminProxy = ProxyUtil.getDefaultProxy();

 String uri = "https://localhost:8443/wsrf/services/cagrid/GridGrouper";

 String member = "/O=OSU/OU=BMI/OU=caGrid/OU=Dorian/OU=cagrid05/CN=jdoe";

 String group = "MyStem:MyGroup";

 // Create a Grid Grouper Instance

 GrouperI grouper = new GridGrouper(uri,adminProxy);

 // Obtain a handle to the group object

 GroupI mygroup = grouper.findGroup(group);

 //Remove the member to the group

 mygroup.deleteMember(SubjectUtils.getSubject(member));

 System.out.println("Successfully removed the user " + member + "from the group " +

group);

} catch (Exception e) {

 e.printStackTrace();

}

 Chapter 6 caGrid Data Services

 83

Chapter 6 caGrid Data Services

This chapter describes the caGrid Data Services infrastructure.

Topics in this chapter include:

 Overview on this page

 Utility Classes on page 89

 Validation Tools on page 91

 CQL Query Processors on page 93

 Service Styles Architecture on page 95

 Federated Query Processor Usage Overview on page 96

 API Details on page 101

Overview
caGrid Data Services provide an object view of a data resource across the grid. The data
resource is exposed through a well defined query method, which also relies on well defined
query language objects to perform queries and return results as a strongly typed set. caGrid
Data Services are designed to expose objects whose XML schemas are registered in the GME,
and also expose metadata about those data objects derived from the caDSR.

Data Services also provide support for integration with alternate results delivery mechanisms
such as WS-Enumeration and caGrid‟s Bulk Data Transport framework. Enabling these features
adds new query methods to the Grid-facing API.

CQL
CQL (Common/caGrid Query Language) is the caGrid query language used for all data

services, and is defined in an XML document conforming to a well defined schema with the URI

http://CQL.caBIG/1/gov.nih.nci.cagrid.CQLQuery.

The CQL Schema consists of the following main components (Figure 6-1):

 CQL Query

o A simple wrapper element at the head of every CQL query document. It contains
the target element.

 Target

o The Target element is of the type Object, and describes the data type which the
query will return.

 QueryModifier

http://cql.cabig/1/gov.nih.nci.cagrid.CQLQuery

caGrid 1.1 Programmer’s Guide

84

o An optional element modifying the returned result set. This modifier has a
required attribute „countOnly‟ which can tell the data service to return the number
of results the query would return. The modifier optionally allows for a choice of a
list of Attribute Names or a single Distinct Attribute to return. When the list of
attribute names is specified, sets of tuples are returned containing the attribute
names and corresponding values for each object instance returned by the query.
When a distinct attribute is used, only unique attribute values are placed in the
returned attribute sets.

 Object

o The Object element contains the required attribute „name.‟ This attribute‟s value
defines the caDSR class of the object. When the Object is the top level target of
a CQL query, it identifies the data type that will be returned by the caGrid Data
Service. The Object allows for a choice between three child elements. The
possible child elements are Attribute, Association, and Group. Objects may have
at most one of these child elements.

 Attribute

o An Attribute type in CQL describes a restriction for an attribute of an Object. The
Attribute contains three XML attributes, which define the restriction. The attribute
„name‟ defines the name of the attribute to be restricted. The attribute „value‟
defines the restriction on the attribute. The attribute „predicate‟ describes what
type of restriction the Attribute defines. Allowable predicates are defined by the
schema‟s simple type „Predicate‟, which defines an enumeration of allowable
values. The predicate values are generally self-descriptive: “EQUAL_TO",
“NOT_EQUAL_TO", “LIKE", "LESS_THAN", "LESS_THAN_EQUAL_TO",
“GREATER_THAN", and “GREATER_THAN_EQUAL_TO." Two additional
predicates, "IS_NOT_NULL", and “IS_NULL" check only for the presence or
absence, respectively, of an attribute, and do not restrict its value at all.
Therefore, any „value‟ attribute will be ignored when using these predicates.

 Association

o An association describes a related Object, which defines the associated Object‟s
restrictions for the query, as well as the relationship from one object to another.
Specifically, it defines the relationship down the object model tree. The
Association complex type is an extension of Object. The Association has a
single, optional attribute named „roleName.‟ This attribute identifies which
associated object field the Association is defining. For example, a person may
have more than one address, perhaps business and home. To perform a
restriction against the home address, a query must specify the home address
role name for the associated object. If the query omits the role name, such a
query becomes ambiguous, as there is more than one field of Person which has
a type of Address. In this case, the data service will throw a
MalformedQueryException explaining that the requested association is
ambiguous. In the case of an object where there is only one field of a given type,
the roleName attribute may be omitted, and the data service will resolve the
correct name as the query is processed.

 Group

 Chapter 6 caGrid Data Services

 85

o Groups define logical joints of two or more conditions, and operate against the
Object to which they are attached. Groups must have two or more children,
which may be a mixture of type Attribute, Association, or Group. Groups also
have an attribute named „logicOperator,‟ whose type is defined in the schema‟s
simple type LogicalOperator. This type is an enumeration of the values “AND”
and “OR.” The operator is applied to all children in the group. The “AND” operator
requires that all conditions in the group be true for the group to evaluate as true.
The “OR” operator requires that any condition in the group evaluate as true.

Figure 6-1 CQL Schema

Several example CQL queries can be found on the caGrid wiki at:
http://www.cagrid.org/mwiki/index.php?title=Data_Services:CQL

Generic Data Service Clients

The caGrid Data Services infrastructure supplies three basic client classes which can be used

to invoke any arbitrary caGrid Data Service. This capability is due to the query methods of all

data services being defined in a common, well known WSDL which each unique service

instance imports.

The basic data service client, which is capable of invoking any caGrid Data Service, is the class

gov.nih.nci.cagrid.data.client.DataServiceClient. The class defines the query() method, which

takes a CQL Query as its single parameter and returns a CQL Query Results instance. A

http://www.cagrid.org/mwiki/index.php?title=Data_Services:CQL

caGrid 1.1 Programmer’s Guide

86

sample usage of this class is provided below:

import gov.nih.nci.cagrid.common.Utils;

import gov.nih.nci.cagrid.cqlquery.CQLQuery;

import gov.nih.nci.cagrid.cqlquery.Object;

import gov.nih.nci.cagrid.cqlresultset.CQLQueryResults;

import gov.nih.nci.cagrid.data.DataServiceConstants;

public class SampleDataServiceInvocation {

 public static void main(String[] args) {

 try {

 DataServiceClient client = new DataServiceClient(args[0]);

 CQLQuery query = new CQLQuery();

 Object target = new Object();

 target.setName("some.class.name");

 query.setTarget(target);

 CQLQueryResults results = client.query(query);

 Utils.serializeDocument("myResults.xml", results,

 DataServiceConstants.CQL_RESULT_COLLECTION_QNAME);

 } catch (Exception ex) {

 ex.printStackTrace();

 System.exit(1);

 }

 }

}

This small sample will create a new data service client using a URL specified on the command

line and submit a query to it for all objects of the type “some.class.name”. The results will be

stored on disk in an XML document named “myResults.xml”. The DataServiceConstants

class used in this example provides static Strings and QNames used throughout the data

service infrastructure. The constant CQL_RESULT_COLLECTION_QNAME is the QName which

defines the XML type for result sets returned from the data service‟s query method.

Additionally, the caGrid Data Services infrastructure provides clients that can connect to data

services which support WS-Enumeration and the caGrid Bulk Data Transfer infrastructure.

Respectively, these clients are

gov.nih.nci.cagrid.data.enumeration.client.EnumerationDataServiceClient and

gov.nih.nci.cagrid.data.bdt.client.BDTDataServiceClient. These clients provide public APIs

which return an EnumerationContext instance or a BulkDataHandlerReference respectively.

These return types may be used to start up an instance of the Globus provided ClientEnumIter

class, or make use of the caGrid Bulk Data Transfer Client directly.

The client classes provided with the data service infrastructure, as well as any other clients

generated by the Introduce toolkit, should not be assumed to be thread safe. Each thread

communicating with a data service should have its own instance of the client class. Since client

instances are unique, multiple data service clients may be used within the same thread or JVM

to communicate with multiple data services simultaneously.

Client Side Utilities

The caGrid Data Services infrastructure provides a number of utility classes to make invocation

of remote data services a simpler process for the application developer. The package

 Chapter 6 caGrid Data Services

 87

gov.nih.nci.cagrid.data.utilities contains utilities can invoke standard, enumeration, and BDT

data services, as well as tools for handling domain models and working with wsdd and castor

mapping files.

The interface DataServiceIterator specifies a single query() method, which takes a CQL Query

and returns an instance of java.util.Iterator. The iterator can be used to walk through the results

of a query issued to a data service. Three concrete implementations of the DataServiceIterator

interface are provided, each for communicating with a different type of data service. The

DataServiceHandle class can be used to invoke a standard caGrid Data Service, while the

EnumerationDataServiceHandle and BdtDataServiceHandle classes are designed for WS-

Enumeration and Bulk Data Transfer supporting data services, respectively.

Additionally, this package contains an Iterator utility for handling CQLQueryResults instances.

The class CQLQueryResultsIterator implements java.util.Iterator, and has three constructors.

The choice of constructor affects the behavior of calling the next() method.

 CQLQueryResultsIterator(CQLQueryResults)

o Creates an Iterator over the results which will return materialized objects

deserialized using the default type mappings.

 CQLQueryResultsIterator(CQLQueryResults, Boolean)

o Creates an Iterator over the results, and the value of the Boolean parameter

indicates if XML strings should be returned from the next() method. If the

Boolean value is true, XML text of each item is returned, otherwise the results will

be deserialized using the default type mappings.

 CQLQueryResultsIterator(CQLQueryResults, InputStream)

o Creates an Iterator over the results, and expects the InputStream will point to a

client or server side wsdd. The contents of this wsdd file will be used to configure

deserialization of the objects contained in the results.

Creating a Query

Data services in caGrid use CQL to compose queries. A query can be produced

programmatically, building up parts of the query using the supplied object model:

 gov.nih.nci.cagrid.cqlquery.CQLQuery query =

 new gov.nih.nci.cagrid.cqlquery.CQLQuery();

 gov.nih.nci.cagrid.cqlquery.Object target =

 new gov.nih.nci.cagrid.cqlquery.Object();

 target.setName(gov.nih.nci.cabio.domain.Gene.class.getName());

 gov.nih.nci.cagrid.cqlquery.Attribute symbolAttribute =

 new gov.nih.nci.cagrid.cqlquery.Attribute(

 "symbol",

 gov.nih.nci.cagrid.cqlquery.Predicate.LIKE,

 "IL%");

 target.setAttribute(symbolAttribute);

 query.setTarget(target);

Alternatively, a CQL query can be loaded from a string of XML text or an XML file on disk and

deserialized into the object model:

 // from a string

http://www.cagrid.org/mwiki/index.php?title=Data_Services:CQL

caGrid 1.1 Programmer’s Guide

88

 CQLQuery query2 = (CQLQuery)

gov.nih.nci.cagrid.common.Utils.deserializeObject(

 new StringReader("<CQLQuery ... />"), CQLQuery.class);

 // from a file

 CQLQuery query3 = (CQLQuery)

gov.nih.nci.cagrid.common.Utils.deserializeObject(

 new FileReader(cqlFile), CQLQuery.class);

Query Result Iteration

When a query is performed using the standard caGrid Data Service client‟s query method, a

CQLQueryResults object is returned. This object is a container for both the results themselves

and some information pertaining to their type. This container can contain object results, attribute

name/value pairs, caBIG identifiers (not yet implemented), or a count of the total number of

items in the result set. The difficulty of manipulating a container which may have such a wide

variety of result types stored in it is handled by an iterator class provided with the data service

infrastructure.

The class gov.nih.nci.cagrid.data.utilities.CQLQueryResultsIterator implements the

java.util.Iterator interface, and so can be used in a while() loop like any other iterator over a

Java collection. Depending on what the query to the data service asked for, calls to the next()

method of this iterator will return different types of objects.

 If the query was for object results, then:

o The iterator returns objects of the type specified as the target for the query.

o Objects which require custom serialization and/or deserialization require that the

iterator be configured with an InputStream to the client-config.wsdd file containing the

type mappings for the objects.

o Alternatively, the iterator can be configured to return only the XML representation of

those objects.

 If the query was for attribute results, including distinct attributes, then:

o Each successive call to next() returns an array of TargetAttribute types. These types
contain the name of an attribute and its value. The value is null if the value was null on
the object satisfying the query. Each array of TargetAttributes corresponds to one
object instance which satisfied the CQL query criteria.

 If the query was for a count of object instances, then:

o The iterator returns a single java.lang.Long value.

An example usage of this iterator is below:

import gov.nih.nci.cagrid.cqlquery.CQLQuery;

import gov.nih.nci.cagrid.cqlresultset.CQLQueryResults;

import gov.nih.nci.cagrid.data.utilities.CQLQueryResultsIterator;

import java.util.Iterator;

public class SampleDataServiceInvocation {

 public static void main(String[] args) {

 try {

 Chapter 6 caGrid Data Services

 89

 DataServiceClient client = new DataServiceClient(args[0]);

 CQLQuery query = new CQLQuery();

 // build up the query

 CQLQueryResults results = client.query(query);

 Iterator iter = new CQLQueryResultsIterator(results,

 SampleDataServiceInvocation.class.getResourceAsStream(

"client-config.wsdd"));

 while (iter.hasNext()) {

 java.lang.Object result = iter.next();

 // do something with the result object

 }

 } catch (Exception ex) {

 ex.printStackTrace();

 System.exit(1);

 }

 }

}

Most Current Information and Examples

The most current information regarding the caGrid Data Services client side APIs and utilities

may be found on the caGrid.org wiki page:

(http://www.cagrid.org/mwiki/index.php?title=Data_Services:Client_API)

Utility Classes

Utilities

The caGrid data services infrastructure includes several utility classes which can be used to

ease development and use of data services. These classes are found in the

gov.nih.nci.cagrid.data.utilities package distributed with the data service infrastructure.

CQLResultsCreationUtil

This class provides convenience methods for creating CQLQueryResults objects for object

results, attribute results, and a counting result. A convenience method for identifier results may

be added in the future. The class provides three public static methods, one for each type of

results currently supported.

public static CQLQueryResults createObjectResults(List objects, String targetName,
Mappings classToQname)

 objects – a list of Java objects to be placed in a new CQLQueryResults object.

 targetName - the name of the class targeted by the query which produced these
object results. All items in the objects list should be of this type.

 classToQname – a mapping from class name to QName. This is a generated Java

bean from the XML schema for the data service infrastructure and contains an array of
name/value pairs that map class names to QNames.

public static CQLQueryResults createAttributeResults(List attribArrays, String
targetClassname, String[] attribNames)

http://www.cagrid.org/mwiki/index.php?title=Data_Services:Client_API

caGrid 1.1 Programmer’s Guide

90

 attribArrays - a List of Object arrays. Each array should have one value for one

attribute of an object. These values may be null. The values must be in an order
corresponding the ordering of attribute names

 targetClassname - the name of the class targeted by the query which produced

these attribute results. All attribute arrays should have some from this type.

 attribNames - the names of the attributes returned by the query. These should be in

the same ordering used by the attribute arrays.

public static CQLQueryResults createCountResults(long count, String targetClassname)

 count - the number of resulting items (objects, attribute sets) from a query

 targetClassname - the name of the class which was the target of the query

DataServiceIterator

The data service iterator is an interface which provides for a query to be submitted to a data

service and an Iterator over the result set to be returned. There are two implementations of this

interface; one for the standard data service and one for data services with enumeration enabled.

DataServiceHandle

The data service handle is the implementation of the data service iterator class for a base

caGrid Data Service. It has three constructors, all of which take a DataServiceClient instance.

The default constructor needs only this parameter. The other two constructors should be used

when custom serialization and deserialization of types has been specified for the service. The

extra parameter can be either the filename of a wsdd file containing this mapping information, or

an InputStream to the same information.

EnumDataServiceHandle

The enum data service handle is the implementation of the data service iterator interface for a

WS-Enumeration enabled caGrid Data Service. It has two constructors, both of which take an

enumeration data service client instance. The default constructor needs only this parameter.

The second constructor takes an IterationConstraints instance, which contains information

about how data should be requested from the enumeration data service.

BdtDataServiceHandle

The BDT data service handle is an implementation of the data service iterator interface to be

used with a BDT-enabled caGrid Data Service. Its behavior is the same as that of the enum

data service handle, except that it handles the additional invocation of the BDT context to

support enumeration internally.

DomainModelUtils

The domain model utils provide a means to extract useful information from a domain model.

 Chapter 6 caGrid Data Services

 91

public static UMLClass getReferencedUMLClass(DomainModel model,
UMLClassReference reference)

To save on document size, domain models do not duplicate class information when an

association is defined, but rather use class references based on ID values. These reference

values can be traced back to their original UML Class instance with this function.

public static UMLClass[] getAllSuperclasses(DomainModel model, String className)

Superclasses of a UML Class can be determined by traversing UML class references and

generalization information. There are two methods which perform this task in the Domain Model

Utils class. One uses a class name and the other extracts the name from an UMLClass

instance and passes it to the other.

WsddUtil

The wsdd utility class contains functions to set parameters on a wsdd file. This class is used

internally to the Introduce data service extension to edit the wsdd files and change the castor

mapping file name.

public static void setGlobalClientParameter(String clientWsddFile, String key, String value)

 clientWsddFile - the name of the client side wsdd file to edit. When edits are complete,
the changed file is saved to the same location.

 key - the key of the parameter. This is the name by which the parameter can be
accessed.

 value - the value stored in the parameter

public static void setServiceParameter(String serverWsddFile, String serviceName, String
key, String value)

 serverWsddFile - the name of the server side wsdd file to edit. When edits are complete,
the changed file will be saved to the same location

 key - the key of the parameter. This is the name by which the parameter can be
accessed

 value - the value stored in the parameter

Validation Tools
The caGrid Data Services infrastructure provides for validation of queries with respect to the

domain model exposed by a service and the CQL schema, as well as query results for validity

with respect to the exposed data types.

CQL Query Syntax

The caGrid Data Service infrastructure provides mechanisms to validate CQL queries for

syntactic correctness. While the Axis engine prevents malformed XML from ever being turned

into CQL objects, it does not handle XML that does not conform to certain schema restrictions.

For this reason, CQL syntax validation can be enabled on a caGrid data service. This

mechanism will reject invalid queries before they ever reach a CQL Query Processor

caGrid 1.1 Programmer’s Guide

92

implementation, saving the processor‟s developer from having to handle them. This same

validation can be performed either on the client side or offline completely by using the query

validation utilities. For syntax validation, the interface

gov.nih.nci.cagrid.data.cql.validation.CqlStructureValidator is provided, as are two

implementations of this interface. The interface provides the validateCqlStructure() method,

which takes a single CQLQuery instance parameter, and throws a MalformedQueryException if

an error is encountered. The default implementation of this interface is the

gov.nih.nci.cagrid.data.cql.validation.ObjectWalkingCQLValidator class. As its name suggests,

this class walks through the CQL object model, seeking out inconsistencies with the published

CQL schema. This class also has a main() method, which allows it to be run from the command

line with a list of CQL query XML files specified as arguments. The data service infrastructure

uses this class by default when query validation is enabled. This can be changed for any other

class which implements the CqlStructureValidator interface by editing the value of the

dataService_cqlValidatorClass service property in a generated data service.

Domain Model Conformance

The Data Service infrastructure also provides mechanisms to validate a structurally sound CQL

query against a Domain Model to ensure its restrictions are supported by the domain model‟s

exposed structure. Doman Model validation may be enabled for a caGrid data service, and will

be performed on every query submitted to the service before it is passed to the CQL query

processor. The interface gov.nih.nci.cagrid.data.cql.validation.CqlDomainValidator is provided,

along with a single implementation. The interface provides the validateDomainModel() method,

which takes a single CQLQuery instance parameter, and throws a MalformedQueryException if

an error is encountered. The lone implementation provided with the caGrid Data Service

infrastructure is the gov.nih.nci.cagrid.data.cql.validation.DomainModelValidator class. Like the

CQL validation instance, this class has a main() method, which allows it to be run from a

command line. The arguments should be first a domain model XML file, then a list of CQL query

files to be validated. The data service infrastructure uses this class when domain model

validation is enabled. This implementation may be substituted for another by editing the value of

the dataService_domainModelValidatorClass service property in a generated data service.

Results Validation

The data service infrastructure also provides a means to both validate the results of a CQL

query against a known set of targets, and determine what target data types are allowed to be

returned by a caGrid Data Service. Every data service exposes a schema through its WSDL

that enumerates the data types which may be returned by the data service. This schema

appears in generated services under the schemas/<ServiceName> directory as

<ServiceName>_CQLResultTypes.xsd. The utility class

gov.nih.nci.cagrid.data.utilities.validation.CQLQueryResultsValidator has been provided to both

retrieve this file and verify that a CQLQueryResults instance conforms to this schema. An

instance of this class can be constructed with either the full path to a data service‟s WSDL file,

or an endpoint reference to a running data service.

The validator exposes two public methods:

public void saveRestrictedCQLResultSetXSD(File fileLocation) throws

 Chapter 6 caGrid Data Services

 93

SchemaValidationException

 fileLocation - a file into which the restriction XSD will be saved.

This method locates the restriction XSD file and saves its contents into the file specified.

public void validateCQLResultSet(CQLQueryResults resultSet) throws
SchemaValidationException

 resultSet - a set of results generated by a query into a caGrid Data Service. The object
contents of this result set will be processed against the restriction XSD.

The CQLQueryResultsValidator class also has a main() method, which takes two
arguments. The first argument is a URL to a caGrid Data Service, which will be used to
retrieve the result restriction schema. The second argument should be the filename of a
CQLQueryResults instance serialized to an XML document.

CQL Query Processors

Overview

The CQL Query Processor is a pluggable implementation which handles the details of

processing CQL against some backend data source and produces a CQLQueryResults

instance. The particular implementation used is determined by a value in the service‟s

deployment properties, and an instance of the processor is loaded at runtime via reflection. The

query processor may optionally supply a set of properties via the getRequiredParameters().

These properties may be configured prior to deployment of the service, and are passed into the

query processor when it is first instantiated via the initialize() method.

When a query is issued to the data service, the query will be passed along to the CQL Query

Processor instance‟s processQuery() method. This method may throw both a

QueryProcessingException in the case of an error in handling the query and a

MalformedQueryException in cases where the query was found to be invalid for any reason.

Implementation

All query processor implementations are required to extend the abstract base class

gov.nih.nci.cagrid.data.cql.CQLQueryProcessor. This base class declares several methods

which are meant to be overridden, however the only method a query processor is required to

implement is the processQuery() method. This method takes a CQL query and returns a

CQLQueryResults instance. This method is declared abstract in the base class, which enforces

this implementation requirement. Generally, this method should be able to translate CQL into

whatever native query language is required by the back end data resource, and translate the

result set into a CQLQueryResults instance.

CQL Query Processors are designed to be configurable at runtime by a set of properties. These

properties are modifiable via the data service extension to the Introduce toolkit, or manually by

editing a configuration file once a service has been built. The base CQL query processor class

provides a method to retrieve required configuration parameters and their associated default

values.

caGrid 1.1 Programmer’s Guide

94

 public Properties getRequiredParameters()

This method is provided by default and returns an empty java.util.Properties instance. CQL

implementers who require properties to be configured should override this method to return a

populated Properties instance. If a property is optional, its value should be set to an empty

string. All property keys must be valid Java identifiers meaning that there cannot be any spaces

or punctuation in the key.

The query processor base class has two protected methods which provide access to any user

configured parameters and an input stream to the server side wsdd configuration file. The

method getConfiguredParameters() returns a java.util.Properties instance containing all the

keys defined in the properties returned by getRequiredParameters(), but with either the default

or a developer configured value specified for each. The method getConfiguredWsddStream()

returns an InputStream instance which will read in the contents of the server side wsdd

configuration file. The call to the query processor‟s initialize method, and in turn the population

of these values, occurs when the data service is first instantiated, typically when the container is

started. Calls to these methods before this time will return null. For this reason, the constructor

of the CQL Query Processor implementation must be fairly simple, and initialization of any

resources required delayed until the initialize() method has been called.

/**

 * Processes the CQL Query

 * @param cqlQuery

 * @return The results of processing a CQL query

 * @throws MalformedQueryException

 * Should be thrown when the query itself does not conform to the

 * CQL standard or attempts to perform queries outside of

 * the exposed domain model

 * @throws QueryProcessingException

 * Thrown for all exceptions in query processing not related

 * to the query being malformed

 */

 public abstract CQLQueryResults processQuery(CQLQuery cqlQuery)

 throws MalformedQueryException, QueryProcessingException;

The only method which is required to be implemented by the CQL query processors is the

processQuery() method. This is the method which executes the CQL query against its data

source and generates an appropriate set of results. There are utilities (discussed earlier) to

make generation of this result set a simpler process. At the time this method is called, the return

values of getConfiguredParameters() and getConfiguredWsddStream() will be non-null.

The processQuery() method throws both a MalformedQueryException and a

QueryProcessingException. Malformed query exceptions should be thrown under conditions

where the query is somehow incorrect syntactically, or uses features of the CQL language

which are not yet supported in the query processor implementation. If query syntax validation is

enabled in the data service infrastructure, then it may be assumed that all queries reaching the

processQuery() method are at least well formed CQL. Query processing exceptions should be

thrown when some error occurs which prevents successful resolution of the query request.

These conditions may include database errors, file system problems, or misconfiguration of

properties.

 Chapter 6 caGrid Data Services

 95

Service Styles Architecture
Data service styles may be added to the data service extension to provide additional
functionality to the service creation and configuration processes, and are selected by the service
developer when a service is first created. Styles may be installed at any time after the primary
caGrid Data Services extension has been installed by adding to the styles directory found in the
installed data service extension directory. Each style must provide its own directory in which
files it uses will be placed, but no restriction is made on the naming of these directories. At the
top level of each style directory, a style.xml file must exist, describing the style. This document
describes the style‟s name, which caGrid and Data Service versions it is compatible with, and
information on which classes are to be loaded for each component of the style. If the service
developer selects no style at service creation time, the service is created with only the standard
data services components and query method, and ready to have a domain model, query
processor, and other data service requirements selected and configured.

Figure 6-2 Data Service styles directory structure

Functionality Extended by Styles

Data Service styles may add functionality to any or all of the following areas of service

development with the Introduce toolkit:

 Creation Wizard

o The service style may supply a list of wizard panels to be displayed and chained

together in a wizard-like fashion to break the setup process for the service style

into a series of steps. These panels will be shown in a wizard dialog when a

service style is selected at service creation time.

 Post-creation processing

o Just as Introduce extensions may add functionality to the service creation

process, data service styles may add processing capabilities to this step.

 Modification User Interface

caGrid 1.1 Programmer’s Guide

96

o The style may supply a graphical panel which will be added to the data service

tab in the Introduce service modification viewer. This tab can be used to

configure any style-specific options in the service.

 Post-code generation processing

o The style may add functionality to the code generation process of service

modification. This processing will be invoked each time the service is modified

and saved in Introduce.

Federated Query Processor Usage Overview
The caGrid Federated Query Infrastructure provides a mechanism to perform basic distributed

aggregations and joins of queries over multiple data services. As caGrid data services all use a

uniform query language, CQL, the Federated Query Infrastructure can be used to express

queries over any combination of caGrid data services. Federated queries are expressed with a

query language, DCQL, which is an extension to CQL to express such concepts as joins,

aggregations, and target services. The infrastructure is composed of a core engine and grid

services which provide access to and management of the use of the core engine.

 Chapter 6 caGrid Data Services

 97

Figure 6-3 DCQL schema

DCQL, the language used to express federated queries, is an extension to CQL, the language

used to express single data service queries. The DCQL schema is shown in Figure 6-3. Both

CQL and DCQL use a declarative approach to describe the desired data by identifying the

nature of the instance data with respect to its containing UML information model. That is, a

query can be seen as identifying a class in a UML model, and restricting its instances to those

which meet criteria defined over that class‟s UML attributes and UML associations.

The primary additions to CQL, which DCQL provides, are the introduction of the ability to specify

multiple target services (aggregations), and the ability to specify object restrictions through

relationships to objects on remote data services (joins). The other primary difference between

the languages is that CQL is context dependent, meaning the language must be interpreted

against the service receiving the query, and DCQL itself specifies the context of the queries (by

caGrid 1.1 Programmer’s Guide

98

identifying the target services). As such, services accepting DCQL (such as the FQP service),

generally do not expose any local data. Details on DCQL can be found in the Federated Query

Processor design document.

An example DCQL query, represented in XML, is shown below in Figure 6-4. In this fictitious

example, a PersonRegistry Data Service is joined with a StudyRegistry Data Service. The query

specifies Persons in the PersonRegistry should be returned when they have a “ssn” that is

equal to that of a Participant‟s “patientSSN” and the Participant should have an “age” greater

than 18. The specification of the target service can be seen on line 18 in the example (in this

case only one service is targeted, though may could have been listed). Additionally, the “join” is

specified starting on line 6, wherein the second target service is identified, and the join condition

is defined. The join condition creates a link between the containing Object (in this case, Person),

and an Object (in this case Participant, as defined on line 10) in the second target service. The

condition specifies a predicate to be evaluated against an attribute in each of the two linked

Objects (in this case Person.ssn and Participant.patientSSN). It is worth noting that as DCQL is

a recursive language, the ForeignObject defined on line 10 could have also specified a join to a

third Data Service, or other more complex criteria.

Figure 6-4 Example DCQL Query

The Federated Query Engine is a simple but powerful design. The main functionality of the

engine is to process a DCQL query by converting it into regular CQL queries to the targeted

data services, appropriately aggregating results. As such, all of the actual “joining” of data is

offloaded to the remote data services. This allows the engine to be reused as a client API as no

databases or complex service infrastructure is needed; it is simply a client-side querying tool.

The engine requires no special support from data services. Each service which is contacted to

satisfy the distributed query is only sent one or more standard, but potentially complex, CQL

queries. It is possible to construct a DCQL query which is essentially a standard CQL query,

with the addition of specifying one or more target data services. In this case, the engine simply

“forwards” that query on to the targeted services, and aggregates their results. Details on the

implementation and query processing logic of the engine can be found in the Federated Query

 Chapter 6 caGrid Data Services

 99

Processor design document.

The Federated Query Processing Infrastructure contains three main client-facing components:

an API implementing the business logic of federated query support, a grid service providing

remote access to that engine, and a grid service for managing status and results for queries that

were invoked asynchronously using the query service.

Federated Query Engine

For clients not wishing to use the grid service, the FederatedQueryEngine is the client-facing

entry point to the engine. It provides two methods which accept DCQL queries, and return the

results. Each of the two methods provides a different variant on how results are represented.

The first method is the executeAndAggregateResults method, which returns the standard

CQLQueryResults (the same result type returned by data services‟ query method). Each

CQLResult obtained from each targeted data service is merged into an aggregate list, and a

master CQLQueryResults object is constructed which contains them all. The information about

which result came from which data service is lost in this scenario, but this provides the ability to

reuse existing data service tooling and APIs when that information is not relevant.

In cases where it is important to know from which data service a given result came, the second

query method called execute can be used. This method returns a new type called

DCQLQueryResultsCollection. The DCQLQueryResultsCollection contains a list of

DCQLResult, wherein each DCQLResult specifies a CQLQueryResults object, and the data

service URL from which it came. That is, the result type is a collection of tuples containing the

standard data service results, and that service‟s URL.

Both query methods will throw a RemoteDataServiceException in the event a queried data

service returns invalid results (such as the wrong target class type), or if a data service itself

throws an exception when being queried, or if there is any problem querying the data service.

Additionally, a FederatedQueryProcessingException, which is the parent class of

RemoteDataServiceException, may be thrown if there is a problem processing the query itself.

Federated Query Processor Service

The Federated Query Processor service is the main service interface to the federated query

engine. It provides three query execution operations. The first two are: execute which takes a

DCQL query and returns a DCQLQueryResultsCollection, and executeAndAggregateResults

which returns a CQLQueryResults. These are both simple grid service wrappers for the

corresponding methods in the FederatedQueryEngine API. The third operation,

executeAsynchronously, provides asynchronous, non-blocking, access to the execute method,

and returns a FederatedQueryResultsReference. The FederatedQueryResultsReference is a

typed container for an EPR to the Federated Query Results service. The Federated Query

Results service client API can be used to subsequently retrieve the

DCQLQueryResultsCollection.

Federated Query Results Service

The Federated Query Results service is the service responsible for providing access to query

caGrid 1.1 Programmer’s Guide

100

results and processing status for asynchronously executed queries. The service can only be

contacted with a resource-qualified EPR, provided by the Federated Query Processor service.

Whenever the query processor service is requested to execute an asynchronous query, a

Resource is created and an EPR, which identifies that Resource in the results service, is

returned. The Federated Query Results service‟s only purpose is to expose information about,

and management of, these Resource instances. This Resource contains the current status of

the query it corresponds to, any exceptions which occurred during processing, and eventually

the results of the query. It supports standard WSRF Resource Lifetime behavior. As such, it

exposes, as Resource Properties, the current time (as believed by the local system), and the

termination time of the Resource. Once created, the resource will be terminated/destroyed by

the service once its termination time is past. This lifetime is initially controlled by a setting in the

grid service. The client can also immediately destroy the resource with the Destroy operation, or

change its termination time with the SetTerminationTime operation. Both of these operations are

standardized operations for resources supporting Resource Lifetime and as such corresponding

common Resource Lifetime clients may be used (though the Federated Query Results client

API also makes these operations available).

In addition to the operations and resource properties necessary to support Resource Lifetime on

the resource, the service also provides the getResults and isProcessingComplete operations.

The isProcessingComplete operation returns a simple Boolean value, indicating whether or not

the query processing has completed. Once the query processing has completed, the results can

be accessed via the getResults operation, which returns a DCQLQueryResultsCollection. If the

operation is invoked prior to the processing being complete, a ProcessingNotCompleteFault

fault will be thrown. If the processing is complete, but an exception occurred, a

FederatedQueryProcessingFault will be thrown, and its cause will be the exception that

occurred during query processing.

Security Considerations

The Federated Query Processor services support two deployment scenarios. The first is an

insecure deployment, wherein no security (authentication or authorization) is enforced by the

container. In this scenario, no encryption is used and no protection of query results is enforced.

That is, anonymous communication is used over an open channel, and it is possible for one

client to manipulate the query resources of another, given it knows the EPR.

The recommended second scenario is when the services are deployed securely, such as with

transport level security (https). Deployments using transport level security ensure integrity and

privacy of the communication channel (and obviously the data traveling over it). In this scenario,

no authorization is performed by the query service, but any query results created via

asynchronous queries are protected such that only the issuer of the query can view or

manipulate the results. In this scenario, clients should use credentials to ensure proper

protection of query results.

The services do not make use of delegated credentials, and as such, remote data services are

accessed either with an identification or anonymously, or with the Federated Query Processor‟s

credentials (depending on the deployment scenario and the settings of the remote data

services). While future work may enable this feature, clients needing this capability (credentialed

access of data services) now may leverage the federated query engine directly using the API.

 Chapter 6 caGrid Data Services

 101

API Details

gov.nih.nci.cagrid.fqp.client.FederatedQueryProcessorClient

The FederatedQueryProcessorClient is the main client interface to the federated query service

(Figure 6-5).

Figure 6-5 FederatedQueryProcessor Inheritance Model

Constructor Documentation

FederatedQueryProcessorClient (String url)
throws MalformedURIException, RemoteException

FederatedQueryProcessorClient (String url, GlobusCredential proxy)
throws MalformedURIException, RemoteException

FederatedQueryProcessorClient (EndpointReferenceType epr)
throws MalformedURIException, RemoteException

FederatedQueryProcessorClient (EndpointReferenceType epr, GlobusCredential proxy)
throws MalformedURIException, RemoteException

Member Function Documentation

Access to caGrid Service Security Metadata:

 gov.nih.nci.cagrid.metadata.security.ServiceSecurityMetadata
getServiceSecurityMetadata ()

o throws RemoteException
o Description: Returns the caGrid service security metadata

Distributed Query Methods:

caGrid 1.1 Programmer’s Guide

102

 gov.nih.nci.cagrid.cqlresultset.CQLQueryResults executeAndAggregateResults
(gov.nih.nci.cagrid.dcql.DCQLQuery query)

o throws RemoteException,
gov.nih.nci.cagrid.fqp.stubs.types.FederatedQueryProcessingFault

o Description: Executes the DCQL query, aggregating and returning them as
standard data service results

 gov.nih.nci.cagrid.dcqlresult.DCQLQueryResultsCollection execute
(gov.nih.nci.cagrid.dcql.DCQLQuery query)

o throws RemoteException,
gov.nih.nci.cagrid.fqp.stubs.types.FederatedQueryProcessingFault

o Description: Executes the DCQL query, aggregating and returning them as
standard data service results

 gov.nih.nci.cagrid.fqp.results.client.FederatedQueryResultsClient
executeAsynchronously (gov.nih.nci.cagrid.dcql.DCQLQuery query)

o throws RemoteException, org.apache.axis.types.URI.MalformedURIException
o Description: Executes the DCQL query asynchronously, returning a results

client which can be used to access the results

 Chapter 6 caGrid Data Services

 103

gov.nih.nci.cagrid.fqp.results.client.FederatedQueryResultsClient

Figure 6-6 FederatedQueryResultsClient Inheritance Model

Constructor Documentation

FederatedQueryResultsClient (String url)
throws MalformedURIException, RemoteException

FederatedQueryResultsClient (String url, GlobusCredential proxy)
throws MalformedURIException, RemoteException

FederatedQueryResultsClient (EndpointReferenceType epr)
throws MalformedURIException, RemoteException

FederatedQueryResultsClient (EndpointReferenceType epr, GlobusCredential proxy)
throws MalformedURIException, RemoteException

Member Function Documentation

Access to caGrid Service Security Metadata:

 gov.nih.nci.cagrid.metadata.security.ServiceSecurityMetadata
getServiceSecurityMetadata ()

o throws RemoteException
o Description: Not used.

Resource Lifetime Methods:

org.oasis.wsrf.lifetime.DestroyResponse destroy (org.oasis.wsrf.lifetime.Destroy params)
throws RemoteException
Description: Destroys the corresponding resource and query results.

caGrid 1.1 Programmer’s Guide

104

org.oasis.wsrf.lifetime.SetTerminationTimeResponse setTerminationTime
(org.oasis.wsrf.lifetime.SetTerminationTime params)
throws RemoteException
Description: Sets the time at which the resource and corresponding query results should be

destroyed.

Query Results Methods:

gov.nih.nci.cagrid.dcqlresult.DCQLQueryResultsCollection getResults ()
throws RemoteException,

gov.nih.nci.cagrid.fqp.results.stubs.types.ProcessingNotCompleteFault,
gov.nih.nci.cagrid.fqp.stubs.types.FederatedQueryProcessingFault,
gov.nih.nci.cagrid.fqp.stubs.types.InternalErrorFault

Description: Returns the query results, if processing is complete. If processing is not
complete, throws ProcessingNotCompleteFault. If processing is complete, but threw an
exception, that exception is then rethrown.

boolean isProcessingComplete ()
throws RemoteException
Description: Returns true if and only if processing of the query is complete.

gov.nih.nci.cagrid.fqp.processor.FederatedQueryEngine

Constructor Documentation

gov.nih.nci.cagrid.fqp.processor.FederatedQueryEngine.FederatedQueryEngine ()

 Default constructor

Member Function Documentation

DCQLQueryResultsCollection

gov.nih.nci.cagrid.fqp.processor.FederatedQueryEngine.execute (DCQLQuery

dcqlQuery) throws FederatedQueryProcessingException

Call Federated Query Processor, and send the generated CQLQuery to each targeted
service, placing each result into a single DCQLQueryResults object.

Parameters:

dcqlQuery

Returns:

Exceptions:

FederatedQueryProcessingException

 Chapter 6 caGrid Data Services

 105

CQLQueryResults

gov.nih.nci.cagrid.fqp.processor.FederatedQueryEngine.executeAndAggregateResult

s (DCQLQuery dcqlQuery) throws FederatedQueryProcessingException

Call Federated Query Processor, and send the generated CQLQuery to each targeted
service, aggregating the results into a single CQLQueryResults object.

Parameters:

dcqlQuery

Returns:

Exceptions:

FederatedQueryException

API Usage Examples

The examples below show various uses of the federated query infrastructure; both executing

the grid services and the engine‟s stand alone API. The exception handling is omitted from the

examples for demonstration purposes. Additionally, the result processing shown is simplistic.

The results returned from the federated query APIs, DCQLResultsCollection instances, are

simple container objects for standard Data Service results, CQLQueryResults. A DCQLResult is

just a CQLQueryResult and the address of the service which created the result. Additional

details on how Data Service results can be processed can be found in the Data Service section

of this document.

Executing a Blocking Query

The first example, shown below in Figure 6-7, demonstrates the simplest case of executing a

query using the Federated Query Processor grid service, via the

FederatedQueryProcessorClient. An instance of the client is constructed on lines 1 and 2,

wherein the address of the service is provided. Next, a query document is created by loading it

from a file (in this case the “exampleDCQL.xml” file) on the local file system. The caGrid

common utilities are used to accomplish this on lines 4 and 5. Though not shown, DCQL

queries can also be constructed programmatically, just as CQL queries can. On line 7, the

service is requested to perform the query as described in the DCQLQuery; this operation will

block until the processing is complete. The result of the invocation is a DCQLResultsCollection,

which contains an array of DCQLResult. Lines 10-16 loop over these results, and then print out

caGrid 1.1 Programmer’s Guide

106

the URL of the service which yielded the result and the number of data instances it produced.

Figure 6-7 Executing a Distributed Query

Executing a Non-Blocking Query

The next example, shown in Figure 6-8, illustrates the capability of the federated query service

infrastructure to execute queries in the background, and allow clients to process the results later

(suitable for long running queries, or distributed processing of results). It begins to diverge from

the example above when it invokes executeAsynchronously on line 8 (as opposed to execute,

as shown in Figure 6-7). This operation returns a new instance of the

FederatedQueryResultsClient, which can be used to access the results once they are

completed. This instance is returned before the service actually starts processing the query. The

FederatedQueryProcessorClient abstracts the details that an EPR was actually returned by the

service, and it directly provides the caller the appropriate API to communicate with the stateful

service container for the not yet populated query results. Lines 10-15 demonstrate checking the

status of the processing and printing out a “.” to the screen each second until the processing is

complete. Future versions of the service will support subscriptions and notifications of query

status and completion. The isProcessingComplete operation will return false until the query

results are available, or the processing is terminated by failure. Once processing is complete,

the results can be accessed via the getResults operation, shown on line 17. This returns a

DCQLQueryResultsCollection, just as execute did in Figure 6-7. At this point, in terms of result

processing, there is no longer a difference between asynchronous (this example) and

synchronous (the previous example) query logic. However, to further demonstrate how to

process the results, the example below loops over each DCQLResult (as before), and prints out

the service which yielded it (on line 23). It then, on line 24-27, accesses the standard Data

Service query result type, and constructs a CQLQueryResultsIterator to iterate over each Object

result. This iteration, shown on lines 29-33, prints the XML representation of each Object, as the

iterator was constructed to use “xml only” by passing true to the second argument of its

constructor on line 27.

 Chapter 6 caGrid Data Services

 107

Figure 6-8 Executing a Non-Blocking Distributed Query

Removing Query Results

As mentioned above, the Federated Query Results grid service is a stateful WSRF service, and

executing asynchronous queries with the Federated Query Processor service generates

Resources on it. These resources house the query results for clients, and can be accessed

multiple times. The example shown below in Figure 6-9, demonstrates how, after the client is

done with the results, they should be removed from the service by invoking the destroy

operation of the FederatedQueryResultsClient, shown on line 12. The results will eventually

“expire” and be automatically removed after a service-specified lifetime, unless their lifetime is

extended as shown in Figure 6-10,, but it is good practice to manually release unneeded

resources.

caGrid 1.1 Programmer’s Guide

108

Figure 6-9 Destroying Query Results

Scheduling Removal of Query Results

As mentioned above, query results will expire after a service-configure default lifetime.

However, this can be controlled by the client by specifying a new termination time for the

resource. The example shown below in Figure 6-10, demonstrates how one client may request

the service to perform a federated query, set the lifetime of the yet to be created results, and

hand off an EPR to those results to some other processing thread or client. In this example, the

query is executed asynchronously just as before (on lines 7-8). However, rather than waiting on

completion of the results, the example uses, on line 13, the setTerminationTime operation of the

results client to request the results live on the service for four hours. This is accomplished by

creating a Resource Lifetime standard SetTerminationTime request, and providing it a Calendar

instance configured to be four hours later than the current time, as shown on lines 11 and 12.

The result of this operation is a Resource Lifetime standard SetTerminationTimeResponse,

which indicates the current time, as believed by the service, and the time at which the resource

will be destroyed. The example prints these out, as well as the value of the local Calendar

instance, on lines 18-23. Finally, the code demonstrates, on line 25, how an EPR to the result

Resource can be accessed from the client with the getEndPointReference method.

It should be noted that if the client‟s system clock and the service‟s system clock have

significant differences in their belief of the current time, this example code could cause the

resource to terminate either earlier or later than expected. In cases where this may be an issue

for clients, the results service provides as a Resource Property, the current time as believed by

the service. A client could access this resource property, and construct the Calendar instance

from it, rather than using its local system clock.

 Chapter 6 caGrid Data Services

 109

Figure 6-10 Scheduling the Destruction of Query Results

Using the Engine Directly to Access Protected Data Services

The final example, shown below in Figure 6-11, demonstrates how the federated query

infrastructure can be used to locally execute federated queries (as opposed to requesting the

service to execute them). While most clients will opt to use the service interfaces, there are

many reasons why a client may wish to invoke the engine locally, such as minimizing data

movement. The most common reason to use the engine locally is if the Data Services being

targeted requires authorization to access the data of interest. The federated query processor

service infrastructure does not currently have the capability to assume the identity of the client

requesting the query; it queries Data Services either anonymously, or with its own credentials

(depending on deployment scenarios). When executing the engine locally, the client has the

ability to use credentials when it queries data services. When executing locally, the engine will

make use of the “default” Globus credentials if the Data Service being accessed does not allow

anonymous access. Consult the caGrid security documentation on how to get and set default

Globus credentials.

Using the engine locally is similar to using the processor service. The engine can be

constructed, as shown on line 1, by instantiating a FederatedQueryEngine. This has the same

query execution methods as the grid service, except it does not provide asynchronous

execution (as this is easily done locally). The example below (Figure 6-11) shows the ability of

the engine to aggregate DCQL results and return them as standard Data Service Results,

shown on line 4. It then uses the CQLQueryResultsIterator to print the XML representation of

the results, just as in Figure 6-8.

caGrid 1.1 Programmer’s Guide

110

Figure 6-11 Invoking the FederatedQueryEngine Locally

 Chapter 7 WS-Enumeration

 111

Chapter 7 WS-Enumeration

This chapter describes the client-side APIs for enumerations.

Topics in this chapter include:

 Overview on this page

 Client API on this page

Overview
An overview of WS-enumeration is beyond the scope of this document. For more
information, see the following websites:

Specification:

http://www.w3.org/Submission/WS-Enumeration/

Schema:

http://schemas.xmlsoap.org/ws/2004/09/enumeration/enumeration.xsd

WSDL:

http://schemas.xmlsoap.org/ws/2004/09/enumeration/enumeration.wsdl

Client API
There are two main client-side APIs for enumerations. The ClientEnumeration API provides

basic functions for managing enumeration lifetime and retrieving its data. The

ClientEnumIterator API provides java.util.Iterator abstraction for retrieving enumeration data and

supports automatic data deserialization.

ClientEnumeration

The ClientEnumeration API provides basic functions for managing enumeration lifetime and

retrieving its data. ClientEnumeration must be initialized with a javax.xml.rpc.Stub instance that

is a Stub for the service that implements the WS-Enumeration operations and with an

EnumerationContextType object returned by the enumerate operation of the service or any

other operation that initiates an enumeration.

The javax.xml.rpc.Stub instance must define all of the WS-Enumeration operations except the

enumerate operation. Also, the Stub instance must be properly configured with the security

properties if calling a secure service.

IterationResult pull(IterationConstraints constraints)

Retrieves the next set of elements of the enumeration. The input parameter defines the

constraints for the operation such as the maximum number of elements to retrieve, the

http://www.w3.org/Submission/WS-Enumeration/
http://schemas.xmlsoap.org/ws/2004/09/enumeration/enumeration.xsd
http://schemas.xmlsoap.org/ws/2004/09/enumeration/enumeration.wsdl

caGrid 1.1 Programmer’s Guide

112

maximum number of characters that the consumer can accept, and the maximum amount of

time in which the data needs to be returned. The return parameter contains the results of the

iteration and an end of sequence flag to indicate if there is more data to be returned. The results

of the iteration are of the javax.xml.soap.SOAPElement type.

This method calls the WS-Enumeration pull operation on the data service.

IterationResult pull()

Same as pull(IterationConstraints) function but uses default constraints (maximum number of

elements set to 1, no maximum characters limit and no time limit).

void release()

Explicitly releases the enumeration. In general, the enumeration context is automatically

released when a client finishes retrieving all the enumeration data or the enumeration expires if

it was configured with an expiration time or duration. In cases where no expiration time was set

for the enumeration or when not enumerating over the entire data, the enumeration should be

released explicitly.

This method calls the WS-Enumeration release operation on the data service.

EnumExpiration renew(EnumExpiration expiration)

Sets a new expiration time/duration of the enumeration. The input parameter can be null to

configure the enumeration without an expiration time/duration (the enumeration will not expire).

The expiration time/duration cannot be in the past (as according to the service clock). The

service can choose to accept a different expiration time then specified. The return parameter

can also be null to indicate that the enumeration does not have an expiration time/duration.

This method calls the WS-Enumeration renew operation on the data service

EnumExpiration getStatus()

Gets the current expiration time/duration of the enumeration. The return parameter can be null

to indicate that the enumeration does not have an expiration time/duration.

This method calls the WS-Enumeration getStatus operation on the data service

ClientEnumIterator

The ClientEnumIterator API provides a simple-to-use API for enumerating over data using the

WS-Enumeration operations. The ClientEnumIterator class implements the java.util.Iterator

interface but the implementation of these functions does not follow the Iterator contract exactly

because of the WS-Enumeration specification limitations. The ClientEnumIterator class uses the

ClientEnumeration API underneath and in contrast to the ClientEnumeration API offers

automatic data deserialization.

The ClientEnumIterator must be initialized with a javax.xml.rpc.Stub instance that is a Stub for

the service that implements the WS-Enumeration operations and with an

EnumerationContextType object returned by the enumerate operation of the service or any

 Chapter 7 WS-Enumeration

 113

other operation that initiates an enumeration.

The javax.xml.rpc.Stub instance must define all of the WS-Enumeration operations except the

enumerate operation. Also, the Stub instance must be property configured with the security

properties if calling a secure service.

During iteration the ClientEnumIterator makes remote calls to the data service to retrieve the

next set of items (calls the WS-Enumeration pull operation). The frequency of these remote calls

is controlled by the maxElements setting of the IterationConstraints of the ClientEnumIterator. If

that number is small the ClientEnumIterator will make a lot of remote calls but will use a small

amount of memory (since it always keeps a few of the items in the memory). But if that number

is big the ClientEnumIterator will make fewer remote calls but will use more memory (since it

now keeps more items in the memory).

void setItemType(Class itemType)

Sets the type of the object returned by the next() operation. By default the objects returned by

the next() operation will be of the javax.xml.soap.SOAPElement type. If the item type is set, the

enumeration elements will be automatically deserialized into this type. This assumes the

enumeration elements are all of the same type.

void setIterationConstraints (IterationConstraints constraints)

Sets iteration constraints for the iterator. By default the constraints are not set and defaults are

assumed (maximum number of elements set to 1, no maximum characters limit and no time

limit).

Object next()

Returns the next object in the enumeration. The returned object can be null. If item type is set

(using the setItemType method) the current object will be automatically converted into that type

and returned. Otherwise, an object of the javax.xml.soap.SOAPElement type is returned. If the

enumeration has ended (hasNext() returns false) or has been released on the client, the

NoSuchElementException is raised. Also, in certain cases the NoSuchElementException can

also be raised even though hasNext() is returned as true. If deserialization is performed and it

fails, a ConversionException is raised and the index of the iteration is not advanced (so that the

user can specify another item type or disable deserialization).

This method calls the WS-Enumeration pull operation on the data service.

boolean hasNext()

Tests if there are more elements in the enumeration to be returned. If it returns false, there are

no more elements to be returned. If true, there might be more elements to be returned. This

method can return true even though the next() operation consistently returns null. Also, this

method can return true even though the next() operation will throw NoSuchElementException.

Object convert(SOAPElement element)

Performs object conversion on the enumeration element. This function is called by the next()

caGrid 1.1 Programmer’s Guide

114

function every time the next() function is called. It can be used to deserialize the enumeration

element into the appropriate Java object. This function is meant to be overwritten by the

subclasses of the ClientEnumIterator to provide custom deserialization behavior. If

deserialization fails, then a ConversionException is thrown.

void release()

Explicitly releases the enumeration context.

This method calls the WS-Enumeration release operation on the data service. hasNext() will

return false and next() will throw NoSuchElementException after this method is called.

Examples

ClientEnumeration

The following example shows how to iterate over the data using the ClientEnumeration API

(Figure 7-1).

import org.globus.ws.enumeration.ClientEnumeration;

import org.globus.ws.enumeration.IterationResult;

import org.globus.ws.enumeration.IterationConstraints;

…

EnumerationServiceAddressingLocator locator =

 new EnumerationServiceAddressingLocator();

URL serviceURL =

 new URL(“http://127.0.0.1:8080/wsrf/services/EnumerationService”);

EnumerationPortType port =

 locator.getEnumerationPortTypePort(serviceURL);

// obtain the enumeration context from the service somehow

EnumerationContextType context = …

// create iteration constraints (return maximum of 10 elements)

IterationConstraints constraints =

 new IterationConstraints(10, -1, null);

http://127.0.0.1:8080/wsrf/services/EnumerationService

 Chapter 7 WS-Enumeration

 115

// create client enumeration

ClientEnumeration enumeration =

 new ClientEnumeration((Stub)port, context);

// iterate over the data

IterationResult iterResult;

do {

 // retrieve the enumeration data with given constraints

 iterResult = enumeration.pull(constraints);

 Object [] items = iterResult.getItems();

 if (items != null) {

 // display the enumeration data

 for (int i=0; i < items.length; i++) {

 System.out.println(items[i]);

 }

 }

} while (!iterResult.isEndOfSequence());

Figure 7-1 Client enumeration example

ClientEnumIterator

This example shows how to iterate over the data using the ClientEnumIterator API (Figure 7-2).

import org.globus.ws.enumeration.ClientEnumIterator;

import org.globus.ws.enumeration.IterationConstraints;

…

EnumerationServiceAddressingLocator locator =

 new EnumerationServiceAddressingLocator();

URL serviceURL =

 new URL(“http://127.0.0.1:8080/wsrf/services/EnumerationService”);

http://127.0.0.1:8080/wsrf/services/EnumerationService

caGrid 1.1 Programmer’s Guide

116

EnumerationPortType port =

 locator.getEnumerationPortTypePort(serviceURL);

// obtain the enumeration context from the service somehow

EnumerationContextType context = …

// create iteration constraints (return maximum of 10 elements)

IterationConstraints constraints =

 new IterationConstraints(10, -1, null);

// create the client iterator

ClientEnumIterator iterator =

 new ClientEnumIterator((Stub)port, context);

iterator.setIterationConstraints(constraints);

// iterate over the data

try {

 while(iterator.hasNext()) {

 Object obj = iterator.next();

 }

} catch (NoSuchElementException e) {

 // next() can throw this exception even though

 // hasNext() returned true

}

Figure 7-2 ClientEnumIterator example

 Chapter 7 WS-Enumeration

 117

Command Line Clients

ws-enumerate-start

Starts an enumeration. It calls the enumerate operation on the data service and prints out the

enumeration context to the console. The enumeration context can then be passed to ws-

enumerate or ws-enumerate-end clients.

ws-enumerate

Enumerates over the data. It calls the pull operation on the data service and prints out the

retrieved data to the console. The client requires an argument that is a filename that contains

the enumeration context (created either by ws-enumerate-start or by other means).

The –n, --maxElements option can be used to configure the maximum number of elements to

retrieve from the data service at a time. The –r, --maxCharacters option can be used to

configure the maximum number of characters the client can accept at a time. The –n, --

maxTime option can be used to specify the maximum amount of time in which the enumeration

data has to be assembled. Any combination of these options can be specified at the same time.

ws-enumerate-end

Releases an enumeration. It calls the release operation on the data service. The client requires

an argument that is a filename that contains the enumeration context (created either by ws-

enumerate-start or other means).

Service

Service WSDL

The service that wishes to support enumerations must define the WS-Enumeration operations in

its WSDL. All operations except the enumerate operation must be defined in the service WSDL.

The enumerate operation of the WS-Enumeration specification is an optional operation and

therefore it is up to the service designer to decide if the service should define and implement

this operation or if the service will provide some other operation that will initiate an enumeration.

Any operation of the service can initiate an enumeration by returning an element of the

wsen:EnumerationContextType type to the client.

Service Implementation

The service must implement the enumerate operation of the WS-Enumeration specification or

provide some other operation that will initiate an enumeration and return an element of the

wsen:EnumerationContextType type to the client.

For all other WS-Enumeration operations the service must be configured with the built-in

enumeration operation provider (EnumProvider). Of course, the service can choose to provide

caGrid 1.1 Programmer’s Guide

118

its own implementation for the WS-Enumeration operations but will need to replicate a lot of the

built-in functionality.

The EnumProvider is configured in the same way as any other operation provider in the service

deployment description (WSDD) file. All the WS-Enumeration operations should have the same

security settings.

Enumeration Implementation Details

Internally, enumerations are managed and implemented just like any other WS-Resources. That

is, there are enumeration resources (EnumResource) which are managed by the enumeration

resource home (EnumResourceHome). The enumeration resources contain lifetime information

and have a reference to the iterator (EnumIterator) that provides the actual data iteration

functionality.

Types

There are two types of enumerations: transient and persistent. The transient enumerations live

only while the container is running and are not restored after a container restart. The persistent

enumerations are restored after a container restart. The type of enumeration has no impact on

how the data of the enumeration is stored or retrieved. For example, a transient enumeration

can query a database, retrieve data from a file, or have all the data in memory. It is entirely up to

the service developers to decide how the data is retrieved, if the data is static or dynamic, etc.

In general it is not recommended to keep the entire enumeration data in memory. If the data is

static, it is recommended to store the data in a database or a file, etc. and retrieve it in an

efficient way.

Visibility

The enumeration resources also contain visibility properties (VisibilityProperties) to restrict what

service and/or resource can access the particular enumeration resource. In general, an

enumeration created by service S is only accessible through service S. Similarly, an

enumeration created by resource R is only accessible through resource R.

Security

The service or resource through which the enumeration data is accessed can be configured with

a security descriptor to further control access to the data.

Example

This example shows how to create a transient enumeration on the server-side with the help of

the built-in WS-Enumeration operation provider (Figure 7-3).

import org.globus.ws.enumeration.EnumResourceHome;

import org.globus.ws.enumeration.EnumIterator;

import org.globus.ws.enumeration.EnumResource;

import org.globus.ws.enumeration.EnumProvider;

 Chapter 7 WS-Enumeration

 119

…

// obtain enumeration resource home

EnumResourceHome enumHome = EnumResourceHome.getEnumResourceHome();

// create iterator for the data

EnumIterator iter = …;

// create transient enumeration resource for the iterator

// with visibility properties obtained from the context

EnumResource resource = enumHome.createEnumeration(iter, false);

// get resource key for the enumeration resource

ResourceKey key = enumHome.getKey(resource);

// create EnumerationContextType to be returned to the client

EnumerationContextType enumContext =

 EnumProvider.createEnumerationContextType(key);

Figure 7-3 Example of creating a transient enumeration on the server-side

API

EnumIterator

This API is used by the service developers to write their own EnumIterator implementations in

order the retrieve the enumeration data in a fast and efficient way.

A new EnumIterator instance must be created for each new enumeration. The implementations

should assume a single thread access. Only one client is allowed to access a particular

enumeration at a time. The implementation must keep track of the progress of the enumeration

(for example, store the index of the last item retrieved).

For persistent enumerations, the EnumIterator implementation must be fully serializable using

the Java serialization framework. That will enable the enumeration to be restored in case of a

container restart or in other conditions. An application should not keep references to the

EnumIterator objects it creates. Such references will prevent efficient memory management by

the EnumResourceHome.

caGrid 1.1 Programmer’s Guide

120

IterationResult next(IterationConstraints constraints)

Retrieves the next set of items of the enumeration. The IterationConstraints define constraints

for this operation such as the maximum number of the items that can be returned, the maximum

number of characters of the items, and timeout in which the items must be returned. The

constraints can change between the calls. If the timeout value constraint is specified and the

data is not collected in that time, a TimeoutException should be raised. If there are no more

elements in the enumeration a NoSuchElementException is raised.

The IterationResult contains the result of the iteration that fulfills the specified constraints. It

must always be non-null. The IterationResult itself contains a list of enumeration items of

javax.xml.soap.SOAPElement type and a flag that indicates if an end of sequence has been

reached.

void release()

Releases any resources associated with this enumeration. For example, close database

connections, delete files, etc. This method is called when the enumeration is explicitly released,

expires, or the user is finished enumerating through all the data.

SimpleEnumIterator

The SimpleEnumIterator is a concrete implementation of the EnumIterator interface. It is a very

simple implementation that can enumerate over in-memory data passed either as an array of

objects or a list (java.util.List). The enumeration contents can be of

javax.xml.soap.SOAPElement type, simple types such as java.lang.Integer, etc. or Axis

generated Java beans.

The SimpleEnumIterator can only be used with transient types of enumerations.

IndexedObjectFileEnumIterator

The IndexedObjectFileEnumIterator is another concrete implementation of the EnumIterator

interface. It is a memory efficient implementation that can enumerate over data stored in an

indexed file created by IndexedObjectFileWriter. The indexed file format is optimized for

retrieving objects in a sequential and random manner. The IndexedObjectFileEnumIterator uses

the IndexedObjectFileReader to read the indexed file and quickly locate and retrieve the next

set of objects of the enumeration.

The IndexedObjectFileEnumIterator can be used with transient and persistent types of

enumerations.

IndexedObjectFileWriter

The IndexedObjectFileWriter is used to create an indexed file. The objects stored in the file will

be serialized using the Java serialization framework, therefore, only the objects that implement

the java.io.Serializable interface can be used.

IndexedObjectFileReader

The IndexedObjectFileReader is used to read an indexed file created by the

IndexedObjectFileWriter. The objects stored in the file will be deserialized using the Java

 Chapter 7 WS-Enumeration

 121

serialization framework.

IndexedObjectFileUtils

The IndexedObjectFileUtils is a collection of utility functions that can be used to create indexed

files with the given data.

Other Implementation Details

WS-Enumeration WSDL and schema changes

The following changes have been made to the WS-Enumeration WSDL and schema files:

1. The WS-Addressing namespace used by the specification was changed to
http://schemas.xmlsoap.org/ws/2004/03/addressing in order to work with the existing
tooling.

2. The EnumerationEndOp operation was commented out as it violates WS-I Basic Profile
1.1 and is not supported by the tooling. Therefore, this part of WS-Enumeration
functionality is not supported by the current implementation.

3. Since the EnumerateOp operation is an optional operation, it was moved into a separate
port type called DataSourceStart. All other operations remain in the DataSource port
type.

4. The EnumerationContextType type was simplified to an equivalent form in order to be
properly recognized by the tooling.

Other comments on the WS-Enumeration WSDL and schema files:

1. The schema file uses the xsd:union type which makes it hard for the tooling to figure out
which value was actually serialized. The xsd:choice type might be better for such cases.

2. Currently there is no way to ask the data service if it has any more elements without
actually retrieving some elements.

3. The EndOfSequence element in the schema file should be defined with an xsd:boolean
type. Currently it defaults to xsd:anyType.

http://schemas.xmlsoap.org/ws/2004/03/addressing

caGrid 1.1 Programmer’s Guide

122

 Chapter 8 Workflow Management Service

 123

Chapter 8 Workflow Management Service

This chapter describes the architecture and APIs for interacting with caGrid workflow.

Topics in this chapter include:

 Overview on this page

 Workflow Architecture on this page

 WorkflowFactoryService API on page 124

 WorkflowServiceImpl API on page 127

 Security in WorkflowFactory and Context Services on page 130

 Service Selection on page 131

 Provenance Tracking on page 131

 WS-RF Resources in Workflows on page 131

Overview
caBIG aims to bring together disparate data and analytic resources into a “World Wide Web of

cancer research”. This will be achieved through common standards and software frameworks

for the federation of these resources into “grid” services. Many of the tasks in the collection and

analysis of cancer-related data on the grid involve the use of workflow. Here, we define

workflow as the connecting of services to solve a problem that each individual service could not

solve. caGrid implements workflow by providing a grid service for submitting and running

workflows that are composed of other grid services.

Workflow Architecture
The workflow component leverages the same infrastructure stack as the caGrid toolkit (GT4,

Tomcat, Java, Ant, and Introduce) with the addition of the ActiveBPEL workflow engine. The

WorkflowFactoryService is a standard Introduce-built grid service that allows a workflow to be

created from a BPEL workflow document. An EPR is returned to a WorkflowImplService

resource that can be used to start, stop, pause, resume, cancel, and destroy the created

workflow. The WorkflowImplService is layered on top of the ActiveBPEL workflow engine, which

provides the primary functionality for running the BPEL-defined workflow. See Figure 8-1 for an

overview of this architecture.

caGrid 1.1 Programmer’s Guide

124

caGrid (GT4)

Service 1

caGrid User

GT4 Axis

Security

GT4

Workflow

Factory and

Impl

Services

R
u
n

W
o

rk
F

lo
w

R
e

s
u
lt
[]

ActiveBPEL Axis + https +

GT4 authz

ActiveBPEL Axis + https +

GT4 authz

ActiveBPEL

Bpel

Engine

Admin

d
e
p

lo
y
B

p
r

R
e
s
u

lt
s
[]

in
v
o
k
e

P
ro

c
e
s
s

caGrid (GT4)

Service 2

In
vo

ke
 h

ttp
s Invoke https

text

tomcat

Figure 8-1 Overview of the architecture of the caGrid Workflow component

The following is a walk-through of a user‟s interactions and the corresponding operations on the

Workflow Services based on Figure 8-1:

 User creates a BPEL document that orchestrates one or more caGrid services.

 Chapter 8 Workflow Management Service

 125

 User configures (if it is not already configured), the workflow Submission GUI to
contact the appropriate WorkflowFactory Service endpoint.

 User uses the WorkflowSubmission GUI to submit the BPEL document to a Workflow
Factory service. The input BPEL document is parsed and an exception is thrown if it
is not well-formed (with respect to schema compliance).

 The factory service implementation invokes PDDGenerator to generate the
deployment descriptor for the workflow.

 The factory service implementation invokes BPRGenerator to generate the
BPELArchive (called bpr hereafter) that is ready to be deployed.

 The workflow services are configured with the location of ActiveBPEL admin service
location at deployment time.

 The factory service implementation invokes deployBpr operation on the ActiveBPEL
Admin service, which is a vanilla Axis-based Web Service, to deploy the workflow
archive that is created in the previous step.

 The admin service responds with a deployment summary reporting success if the
workflow is deployed successfully along with a processId.

 The workflow factory service creates a Workflow Resource that consists of the BPEL
document the user submitted. It constructs an EPR for the workflow resource using
the processId returned by ActiveBPEL Admin Service and the endpoint url for
WorkflowImpl Service that is used to manage the Workflow.

 Once the workflow is deployed successfully, it is deployed as a web service inside
ActiveBPEL.

 The user provides the input to the workflow using the Workflow Submission GUI and
invokes the start operation on the WorkflowImpl Service.

 The input arguments to the workflow are declared as an array of xsd:any. They are
parsed and cast to the types that they are meant to be.

 To start the workflow, the WorkflowImpl Service sends a message to the receiving
partnerLink in the workflow.

 After the workflow successfully executes, the results are returned to the client
app/user by a call to getWorkflowOutput.

 The user can invoke the getStatus operation on the WorkflowImpl Service using the
Workflow GUI to find out the status of the Workflow Execution. The workflow status
is returned in one of the five possible states that a workflow can take (Submitted,
Active, Finished, Failed, Suspended).

 If more detailed status is desired, getDetailedStatus operation can be invoked
through the workflow gui which provides the user the node that is currently being
executed in the workflow.

WorkflowFactoryService API
Workflows are created using the WorkflowFactoryService, which is a grid service that follows

the resource pattern. The returned object holds an EPR to a WorkflowImplService, which can be

used to manipulate the created workflow.

Public WorkflowFactoryOutputType createWorkflow(WorkflowDescriptionType

wmsInputType) throws WorkflowException ()

Description:

This method creates a workflow resource from the BPEL document found in wmsInputType and

returns an EPR of the created resource to the client. The BPEL resource, along with the most

caGrid 1.1 Programmer’s Guide

126

recent state, is persisted in a MySQL database and is recovered in the event of a container

crash.

WorkflowDescriptionType:

This is the input to createWorkflow, and it consists of workflowName, a String bpelDoc, an Array

of wsdlReferences, and an initial termination time for the workflow. If the termination time is not

specified, the service defaults to 24 hours. Termination of the workflow invalidates the

WorkflowManagementService EPR and any running workflow is stopped.

<xsd:complexType name="WorkflowDescriptionType">

 <xsd:sequence>

 <xsd:element name="workflowName" type="xsd:string" minOccurs="1" maxOccurs="1"

/>

 <xsd:element name="bpelDoc" type="xsd:string" maxOccurs="1" />

 <xsd:element name="wsdlReferences" type="tns:WSDLReferences"

maxOccurs="unbounded" />

 <xsd:element name=”InitialTerminationTime” type=”xsd:dateTime”/>

 </xsd:sequence>

 </xsd:complexType>

<xsd:complexType name="WSDLReferences">

 <xsd:sequence>

 <xsd:element name="wsdlNamespace" type="xsd:anyURI"/>

 <xsd:element name="wsdlLocation" type="xsd:string"/>

 <xsd:element name="serviceUrl" type="xsd:anyURI"/>

 </xsd:sequence>

</xsd:complexType>

WorkflowFactoryOutputType:

This is the output of the createWorkflow method. An EPR is constructed by the factory and

returned to the client. At this point the workflow document is deployed in the workflow engine

and is also stored in a database, but it has not started. The EPR points to an instance of the

WorkflowManagementService, which should be used to start the workflow.

<xsd:complexType name="WorkflowFactoryOutputType">

 <xsd:annotation>

 <xsd:documentation>This type represents the output from a

workflow</xsd:documentation>

 </xsd:annotation>

 <xsd:sequence>

 <xsd:element name="WorkflowEPR" type="wsa:EndpointReferenceType" />

 </xsd:sequence>

 </xsd:complexType>

Faults:

UnableToDeployWorkflowFault: This fault is thrown if the workflow is unable to be deployed

(e.g. the BPEL document submitted fails pre-deployment validation).

InvalidBPELFault extends UnableToDeployWorkflowFault: This fault is thrown if the BPEL

document submitted fails pre-deployment validation (e.g. not valid XML).

Factory ResourceProperties:

We intend to provide aggregate resource properties on the factory service in our next iteration.

 Chapter 8 Workflow Management Service

 127

Following are some of the examples of those:

 Total number of workflows

 ListOfWorkflowsSubmitted

WorkflowServiceImpl API
This service is used to manage the workflow resources created by the WorkflowFactoryService

(Figure 8-2). The service provides asynchronous execution of deployed workflows. The

following are the operations the service provides in addition to the standard WS-RF operations

such as destroy(), setTerminationTime(), etc.

Figure 8-2 Workflow service state diagram

Public WorkflowStatusType start(StartInputType input) throws WorkflowException,

StartCalledOnStartedWorkflowFault

Description:

This operation is used to start the workflow deployed using the factory with a set of input

parameters. The input parameters are modeled as an array of xsd:any elements. The output is

a void type.

<xsd:complexType name="StartInputType">

 <xsd:sequence>

 <xsd:element name="inputArgs" type="tns:WorkflowInputType" maxOccurs="1" />

 </xsd:sequence>

</xsd:complexType>

<xsd:complexType name="WorkflowInputType">

 <xsd:sequence>

 <xsd:any maxOccurs="1" />

 </xsd:sequence>

 </xsd:complexType>

caGrid 1.1 Programmer’s Guide

128

Faults:

StartCalledOnStartedWorkflowFault: This is thrown if start() is called on a workflow that is not in

any one of the terminal states (i.e. Done, Failed, Cancelled).

WorkflowException: Every other fault results in the service throwing this with a message

describing more details as to what went wrong.

Public WorkflowStatusType getStatus() throws WorkflowException

Description:

This operation is used to query for the status of the deployed workflow. WorkflowStatusType

includes a fault.

<xsd:simpleType name="WorkflowStatusType">

 <xsd:restriction base="xsd:string">

 <xsd:enumeration value="Pending" />

 <xsd:enumeration value="Active" />

 <xsd:enumeration value="Done" />

 <xsd:enumeration value="Failed" />

 <xsd:enumeration value="Cancelled" />

 </xsd:restriction>

 </xsd:simpleType>

Public WorkflowStatusType pause() throws CannotPauseFault

Description:

This operation pauses the workflow until resume() or cancel() is invoked. This operation

translates to invoking an equivalent operation provided in the ActiveBPEL Admin interface.

When the pause operation is invoked, ActiveBPEL stops the execution of the workflow

document which means that there would no further service invocations or other activities.

However, this will not affect the invocations in progress when the pause() is invoked. This

operation returns the new state of the workflow resource (which always should be Active).

Public WorkflowStatusType resume() throws CannotResumeFault

Description:

This operation resumes a paused workflow. It translates to invoking an equivalent operation

provided in the ActiveBPEL Admin interface.

Public WorkflowOutputType getWorkflowOutput() throws WorkflowException

Description:

This operation is used to get the final output of a completed workflow. It will return a fault if the

workflow is not yet completed. If ActiveBPEL allows for intermediate access of results, then this

operation can potentially return the last result that the workflow engine has for this workflow.

The output is modeled as an array of xsd:any elements.

 Chapter 8 Workflow Management Service

 129

<xsd:complexType name="WorkflowOutputType">

 <xsd:sequence>

 <xsd:any maxOccurs="1" />

 </xsd:sequence>

 </xsd:complexType>

Public void cancel() throws WorkflowException

Decription:

This operation terminates a workflow. It translates to invoking an equivalent operation provided

in the ActiveBPEL Admin interface.

Public WorkflowStatusEventType[] getDetailedStatus() throws WorkflowException

Description:

This operation is used to get more detailed status of the submitted workflow. ActiveBPEL

provides a web application to find more detailed status of the submitted workflows. However,

exposing this management interface to end users is not advisable as it provides access to more

powerful operations like stopping the Workflow Engine, stopping execution of other workflows

etc. In this implementation, an attempt is made to provide the same level of status information in

the Workflow Submission GUI without using the ActiveBPEL Admin webapp. ActiveBPEL

provides an option for executing BPEL processes to log their current state to a file. A file is

created for each execution of the BPEL process under $USER_HOME/AeBPELEngine/process-

logs/*.log. This operation does not take any input arguments and the output type is modeled as

follows :

<xsd:complexType name="WorkflowStatusEventType">

 <xsd:sequence>

 <xsd:element name="timestamp" type="xsd:string"/>

 <xsd:element name="state" type="tns:WorkflowStateType"/>

 <xsd:element name="currentOperation" type="xsd:string"/>

 </xsd:sequence>

 </xsd:complexType>

Resource Properties:

WorkflowStatusRP:

The status of a workflow is exposed as a Resource Property so clients can subscribe to it and

get notified when a state change happens. WorkflowStatusType is modeled as an Enum of

Strings with the following valid values:

 Pending (Created but Start has not been called)

caGrid 1.1 Programmer’s Guide

130

 Active

 Done

 Paused

 Failed

The status also includes the latest fault a workflow execution throws.

<xsd:simpleType name="WorkflowStatusType">

 <xsd:restriction base="xsd:string">

 <xsd:enumeration value="Pending" />

 <xsd:enumeration value="Active" />

 <xsd:enumeration value="Done" />

 <xsd:enumeration value="Failed" />

 <xsd:enumeration value="Cancelled" />

 <xsd:enumeration value="Paused" />

 </xsd:restriction>

 </xsd:simpleType>

WorkflowStartTimeRP:

This property denotes the time when the start() operation is called on the resource.

WorkflowEndTimeRP:

This property denotes the time when the workflow status is set to Done/Failed/Cancelled.

Public void destroy()

Description:

This is a standard WS-RF operation but is mentioned here to clarify the semantics and what it

means to a Workflow Resource. If called, this method will delete a Workflow resource from the

database along with the intermediate results and subscriptions for notifications. This operation is

called by the GT4 framework when the lifetime of a resource is expired. The lifetime is set in the

initial create() call in the factory. Internally, destroy() removes all the database entries for a

particular workflow resource, all the subscriptions for notifications, and other temporary

resources both in memory and on the disk.

Security in WorkflowFactory and Context Services
Two types of deployment patterns for Workflow are needed in regards to security. One

deployment scenario would have the factory and the context service running with grid security

(using Transport level security and caGrid authorization) and would require a client to present

grid credentials to submit and run workflows. Once a workflow resource is created by a user,

programmatic GridMap authorization is used to limit access to the resource to the creator of the

resource. Delegation of credentials is performed using the delegation service of the Globus

Toolkit. This deployment is used to orchestrate workflows that require secure access to any

services involved in the workflow. The other deployment does not have any security and is used

to orchestrate workflow between unsecured grid services.

 Chapter 8 Workflow Management Service

 131

Service Selection
This feature is not implemented yet. A Custom invoke handler is written for ActiveBPEL that

queries a pre-configured GT4 index service to get the list of services. The query would be based

on input and output types of the service invocation. Once a list of service handles is obtained

from the index service, the dynamic endpoint for the service invocation is replaced by the first

endpoint in the list.

Provenance Tracking
This is out of scope for this component during this release. No provenance tracking is exposed

via the workflow component.

WS-RF Resources in Workflows
A BPEL service can involve affecting the state of a WS-RF resource. It is outlined below how

one can go about creating WS-RF resources and passing them in a BPEL workflow using a

hypothetical factory and instance service.

The partner links define the different services that interact with the BPEL process. The

<partnerLinks> section in the code listing below shows the two services that interact with the

workflow.

<partnerLinks>

<partnerLink name="rft" partnerLinkType="RFTPortTypeLink"

partnerRole="RFTPortTypeProvider"/>

<partnerLink name="RFTFactory" partnerLinkType="RFTFactoryPortTypeLink"

partnerRole="RFTFactoryPortTypeProvider"/>

</partnerLinks>

The partnerLinks here correspond to the RFT service (rft), as well as the factory for that service

(RFTFactory). The partner link type and a role name in each partner link identifies the

functionality that must be provided by the partner services. That is, the interface (portType) that

the partners need to implement.

Variables

The code below shows some of the message variables used by the BPEL process. The

variables are defined in terms of WSDL message types, XML Schema simple types, or XML

Schema elements. These variables are used in messages exchanged with partner services.

<variables>

...

<variable messageType="ns4:CreateResourceRequest"

name="CreateResourceRequest"/>

<variable messageType="ns4:CreateResourceResponse"

name="CreateResourceResponse"/>

<variable messageType="ns2:StartTransfersRequest"

name="gsuRequest"/>

<variable messageType="ns2:StartTransfersResponse"

caGrid 1.1 Programmer’s Guide

132

name="rftResponse"/>

<!-- some variables RFT service & factory -->

<variable messageType="ns5:GetResourcePropertyRequest"

name="GetResourcePropertyRequest"/>

<variable messageType="ns5:GetResourcePropertyResponse"

name="GetResourcePropertyResponse"/>

<!-- variable for endpoint reference -->

<variable element="wsa:EndpointReference"

name="DynamicEndpointRef"/>

</variables>

Creating a Web Service Instance

Creating a new Web service resource instance involves making a call to the createResource

operation of a designated factory service. This is achieved by using BPEL's service invocation

mechanism. The <invoke> construct allows a BPEL process to invoke a one-way or request-

response operation on a portType (interface) ordered by a partner service. The code listing

below shows the invocation to the createResource operation of the RFT factory service.

<invoke

name="InvokeRFTFactory"

partnerLink="RFTFactory"

portType="RFTFactoryPortType">

operation="createResource"

inputVariable="CreateResourceRequest"

outputVariable="CreateResourceResponse"

</invoke>

The invoke activity which makes a synchronous call to the factory service, contains the portType

of the operation as well as the inputVariable and outputVariable variables. If the invocation is

successful, the outputVariable will contain the endpoint reference of the created instance. Below

is an example SOAP message returned after a successful invocation to the factory service.

<soapenv:Envelope>

...

<soapenv:Body>

<createResourceResponse xmlns="...">

<wsa:EndpointReference>

<wsa:Address>

http://.../wsrf/services/RFTService

</wsa:Address>

<wsa:ReferenceProperties>

<ns1:RFTResourceKey xmlns:ns1="...">

8807d620-acb3-11db-9abe-b9e88f054119

</ns1:RFTQueryResourceKey>

</wsa:ReferenceProperties>

...

</wsa:EndpointReference>

</createResourceResponse>

</soapenv:Body>

</soapenv:Envelope>

The EndpointReference element can be seen in this message, which contains the Address and

resource key (RFTResourceKey) to the created service instance.

 Chapter 8 Workflow Management Service

 133

Invoking the Web Service Instance

Since the identifier of a WS-Resource instance is obtained at runtime, any message to this

instance must contain the resource identifier in its SOAP header. Note that although the

instance of the service is only known at runtime, the service would have been declared as a

partner at development time. The BPEL specification allows for the actual service endpoint of a

partner to be dynamically defined within the process. The specification, however, does not make

provisions for how dynamically obtained information such as resource identifiers can be defined

for those endpoints. This type of information needs to be mapped to the headers of the SOAP

messages for the target endpoint. Because the BPEL specification is deficient in this regard, the

method mapping desired information to SOAP headers depends on the specific implementation

of the BPEL execution engine. The method described below is suited for the ActiveBPEL

Engine.

To dynamically associate an endpoint reference to a service, the WS-Addressing endpoint

reference is used to represent the dynamic data required to describe a partner service endpoint.

To achieve the association of a partner with its service endpoint, an endpoint reference has to

be assigned to the declared partner link within the process. As shown below, we use the copy

operation of an assignment activity to copy literally an endpoint reference to a variable

(DynamicEndpointRef).

<copy>

<from>

<wsa:EndpointReference xmlns:s="...">

<wsa:Address/>

<wsa:ServiceName PortName="RFTPortType">

s:RFTService

</wsa:ServiceName>

<wsa:ReferenceProperties>

<!--Elements to be mapped to the SOAP Header-->

<wsa:Action/>

<wsa:To/>

<wsa:From/>

<ns2:RFTResourceKey/>

</wsa:ReferenceProperties>

</wsa:EndpointReference>

</from>

<to variable="DynamicEndpointRef"/>

</copy>

This endpoint reference contains an Address element that will hold the service endpoint

address. The ReferenceProperties of the endpoint reference contains some WS-Addressing

message information header elements and a RFTResourceKey element.

The RFTResourceKey element will hold the resource identifier for the WS-Resource. Values for

the endpoint reference will be assigned at run time. The message information header elements

and the RFTResourceKey will be mapped by the BPEL engine to the invocation SOAP

message for the partner Web service, which in this case is RFTService.

The WS-Resource identifier information required for the endpoint reference is copied from the

reply message of their respective factory services. The copy operation below copies the service

endpoint address from the factory response message (CreateResourceResponse) to the

endpoint variable (DynamicEndpointRef).

caGrid 1.1 Programmer’s Guide

134

The query attribute of the <from> and <to> clauses are XPath queries, which are used to select

a field within a source or target variable part.

<copy>

<from variable="CreateResourceResponse"

part="response"

query="/ns4:createResourceResponse

/wsa:EndpointReference/wsa:Address"/>

<to variable="DynamicEndpointRef"

query="/wsa:EndpointReference

/wsa:ReferenceProperties/wsa:To"/>

</copy>

A similar mechanism is used to assign the service endpoint address to the <wsa:Address>

property of the endpoint reference variable. The BPEL engine needs this address to determine

the destination of the invocation message for the service. The <wsa:To> component of the

message information header is used by the service to determine the endpoint of the required

service instance. Here, the same address is returned by the factory because, for this

application, the address of a service and its instance are the same.

<copy>

<from variable="CreateResourceResponse"

part="response"

query="/ns4:createResourceResponse

/wsa:EndpointReference/wsa:Address"/>

<to variable="DynamicEndpointRef"

query="/wsa:EndpointReference

/wsa:Address"/>

</copy>

The name of the operation to be invoked on the WS-Resource instance needs to be assigned to

the Action part of the SOAP header. To achieve this, an XPath expression is used to write the

name as a string to the endpoint reference variable. An XPath expression, which is specified in

an expression attribute in the <from> clause, is used to indicate a value to be stored in a

variable. The string that represents the operation is in the form of a URI that includes the target

namespace of the WSDL document for the WS-Resource and the associated portType. Thus in

the listing below, http://RFTService instance is the namespace, RFTPortType is the portType,

and startTransfers is the operation.

<copy>

<from expression="string('

http://RFTService_instance

/RFTPortType/startTransfers)"/>

<to variable="DynamicEndpointRef"

query="/wsa:EndpointReference

/wsa:ReferenceProperties/wsa:Action" />

</copy>

The listing below shows how the copy operation is used and how XPath queries to copy the

resource instance key (RFTResourceKey) from the factory response message to the endpoint

reference variable.

<copy>

<from variable="CreateResourceResponse" part="response"

query="/ns4:createResourceResponse

 Chapter 8 Workflow Management Service

 135

/wsa:EndpointReference/wsa:ReferenceProperties

/ns2:RFTResourceKey"/>

<to variable="DynamicEndpointRef"

query="/wsa:EndpointReference/wsa:ReferenceProperties

/ns2:RFTResourceKey"/>

</copy>

The <wsa:From> property of the message information header identifies the source of the

message. This property can be set with the WS-Addressing "anonymous" endpoint URI, which

can be used because the invocation to the resource instance is synchronous in this case and

the underlying message layer takes care of delivering replies to the source.

<copy>

<from>

<From xmlns="...">

<Address>

http://schemas.xmlsoap.org/ws/2004/03

/addressing/role/anonymous

</Address>

</From>

</from>

<to variable="DynamicEndpointRef"

query="/wsa:EndpointReference

/wsa:ReferenceProperties/wsa:From"/>

</copy>

After assigning values to all the necessary parts of the endpoint reference variable, an

association is now made with this variable and the desired partnerlink. As shown below, a copy

operation is used to copy the endpoint reference variable (DynamicEndpointRef) to the

predefined partner link. An invocation can now be made to the Web service (WS-Resource)

partner (RFT service).

The information carried in the SOAP message header of the invocation is used to identify the

appropriate instance of this service.

<copy>

<from variable="DynamicEndpointRef"/>

<to partnerLink="rft"/>

</copy>

Accessing resource properties

The WS-ResourceProperties specification includes a set of port types for querying and

modifying the state of a WS-Resource. The RFT service implements the GetResourceProperty

port type of this specification. We use this port type and its operation (also called

GetResourceProperty) to access the result from the RFT Service. Prior to invoking the

GetResourceProperty operation, some initialization needs to be made to the variable of its input

message. This initialization includes the name of the resource property to which we want to

retrieve the value. In our case, this resource property is called result.

The listing below shows how the GetResourcePropertyRequest is initialized in the BPEL

process. The <from> clause includes (as attributes) the target namespace of the WSDL

documents that contain the definitions for the GetResourceProperty port type and the result

resource property.

caGrid 1.1 Programmer’s Guide

136

<copy>

<from>

<GetResourceProperty

xmlns="http://docs.oasis-open.org/wsrf/2004/06

/wsrf-WS-ResourceProperties-1.2-draft-01.xsd"

xmlns:ns3="http://RFTService_instance">

ns3:result

</GetResourceProperty>

</from>

<to variable="GetResourcePropertyRequest"

part="GetResourcePropertyRequest"/>

</copy>

The WS-ResourceProperties specification also includes the GetMultipleResourceProperty port

type for retrieving the values of multiple resource properties. To invoke the operation of this port

type, the variable message initialization must include the list of all the resources properties,

each encapsulated within a </ResourceProperty> element.

<copy>

<from>

<GetMultipleResourceProperty

xmlns="http://docs.oasis-open.org/wsrf/2004/06

/wsrf-WS-ResourceProperties-1.2-draft-01.xsd">

<ResourceProperty

xmlns:ns3="http://RFTService_instance">

ns3:result

</ResourceProperty>

<ResourceProperty xmlns:ns1="...">

...

</ResourceProperty>

</GetMultipleResourceProperty>

</from>

<to .../>

</copy>

Because an attempt is being made to try and access the resource properties of a WS-Resource

instance, assignments need to be made to all parts of the message header necessary for

identifying the instance. The way to do this is previously described. The only difference in this

example is in the URI that specifies the verb of the invocation message.

<copy>

<from expression="string('http://docs.oasis-open.org

/wsrf/2004/06/wsrf-WS-ResourceProperties

/GetResourceProperty')"/>

<to variable="DynamicEndpointRef"

query="/wsa:EndpointReference

/wsa:ReferenceProperties/wsa:Action"/>

</copy>

 Chapter 8 Workflow Management Service

 137

API Sample for WorkflowFactory and WorkflowImpl Services:

caGrid 1.1 Programmer’s Guide

138

Chapter 9 caGrid Global Model Exchange

 139

Chapter 9 caGrid Global Model Exchange
This chapter describes the caGrid Global Model Exchange.

Topics in this chapter include:

 Overview on this page

 GME Client on page 143

Overview
The caGrid Global Model Exchange (GME) is dependent on several software packages/systems
that must be installed prior to installing and deploying the GME. The GME requires all of the
required software packages of the caGrid core (Table 9-1).

Software Version Description

Java SDK

jsdk1.5 or higher GME is written in Java therefore it requires the Java
SDK. After installing you will have to set up an
environmental variable pointing to the Java SDK
directory and name it JAVA_HOME.

Mysql Mysql 4.x or higher For persistence and cache of models, GME uses
the mysql database. Mysql can be downloaded from
http://www.mysql.com/products/mysql/. The GME
requires mysql version 4.X.

Ant Ant 1.6.5 GME along with the Globus Toolkit in which GME is
built on, uses Jakarta Ant for building and deploying.

Globus Globus 4.0.3 GME is built on top of the Globus Toolkit. GME
requires the ws-core installation of the Globus
Toolkit.

Tomcat

(Only
required if
deploying to
Tomcat)

Tomcat 5.0.30 GME can be optionally deployed as a Grid Service
to a Tomcat deployed Globus Toolkit.

Table 9-1 Software prerequisites for GME

Building the GME

GME is built when caGrid core is built. To build caGrid, the following environment variables are
required:

 GLOBUS_LOCATION - The location of your globus 4.0.X installation.

CATALINA_HOME - The location of your Tomcat installation. (optional container)

If you have checked out caGrid core from CVS, installed the required software packages, and
set the required environment variables, begin building caGrid core by going into the caGrid core
checkout directory and entering ant all.

http://www.mysql.com/products/mysql/

caGrid 1.1 Programmer’s Guide

140

Configuring and Deploying the GME

Configuration

GME requires two configuration files for configuring the service. One configuration file is for
configuring the Mobius GME and the other is for configuring the GME security preferences.

Each addresses a different GME set-up: connecting GME to other services, etc. The file gme-

globus-config.xml contains a basic setup for a GME server to run on the local machine

and provides an example of how the configuration files are structured. See
http://projectmobius.org/docs/mobiusconfig.php for information on the elements in the top
resource block of the configuration files.

The localhost config files should never be used for more than single GME testing

purposes. If you are running multiple GMEs, customize the config files by assigning unique
service identifiers and making any other changes necessary to specify the service as unique.
When other services connect to a GME started as localhost, the GME identifies itself as
"localhost" to the connecting service. This can cause problems with service name resolution.

The GME server contains a single resource block that provides certain functionality and
information to other GME components. The resources defined in the block are instantiated by
the GME server at startup and are configured by the config file. The resource for the GME is:

GME Configuration <resource name="gmeConfig"... >. Each configuration element is listed

here, along with its children. Below this list, the purpose of the elements are described.

 policies

 performance-caching

 notification-policy

 root-database

<policies>

This element establishes parameters for how long the GME should keep old data and
what other hosts it should notify of its existence.

<performance-caching>

The <namespace-caching> and <schema-caching> sub-elements of this element tell

the GME how much namespace and schema data it should cache and for how long it
should maintain the cache.

<notification-policy>

This element contains a <notification-list> sub-element that specifies which

running GMEs it should notify upon instantiation.

<root-database>

This element configures the MySQL root database information. The children of this
element configure the database. Its "id" attribute is the base name of the MySQL
databases that will be created and used by the GME. If you configure multiple GMEs to
use a single MySQL installation, be sure to give a unique value to the "id" for each GME
or there will be problems with name collision in MySQL.

<name>

http://projectmobius.org/docs/mobiusconfig.php

Chapter 9 caGrid Global Model Exchange

 141

This element specifies the name of the database. For MySQL's root database, this
should be nothing.

<driver>

The driver class for accessing the MySQL database.

<urlPrefix>

The URL prefix for accessing the database.

<host>

The host the database lives on. Usually, this will be localhost.

<port>

The port from which the database can be accessed.

<username>

The username to log into the database with. This username must have privileges to
create and delete databases and tables.

<password>

The password to authenticate the username.

<pool>

This element determines how many connections to the database will be made
initially. When the GME needs to communicate with the database, it will get a
connection and when it‟s done, it releases it. Should the Database Manager run out
of available connections, it will make a new one, but this causes a slight delay. Set
the pool value in anticipation of how many concurrent database operations will be
needed.

Deployment

The GME_LOCATION/deploy.properties file allows the configuration of deployment time

properties of the service. The properties file contains two variables for configuring the service
name and the service path, as well as information needed to identify the service. These
variables are defaulted during skeleton creation time.

service.name=GlobalModelExchange

service.deployment.path=cagrid/GlobalModelExchange

service.deployment.host.default=localhost

service.deployment.port.default=8080

service.deployment.protocol.default=http

Once GME is configured, it can be deployed to Globus running in Tomcat by entering ant

deployTomcat or ant deployGlobus from the GME_LOCATION directory. These targets will

prompt for the host, port, and protocol which the GME will be running with, and can be changed
from the defaults set above in the deploy.properties.

Note: For proper functioning of the GME, these values must be set according to the deployment
environment in use

Once deployed starting or restarting the container starts up the GME.

caGrid 1.1 Programmer’s Guide

142

GME Backup and Restore

GME installations should run a backup script to make sure the integrity of the database can be
restored if there are any failures. A general purpose script for this is provided in the tools/backup
directory. There is one script for backup and one for restore. Each script has a short description
inside describing the usage of the script and what variables might need to be configured. This
script can be executed from a crontab and maintains five rolling backup caches of the GME
databases.

GME Move

If the GME is started up with a different service URL or a move if required to another machine,
the GME database will need to be updated. Scripts are provided in the tools/move directory for
exporting and importing a GME database. Scripts are also provided for updating the service
URL in the database if the service has a new URL resulting from either moving or changing the
address of the machine etc. In order to move a GME, the following steps are required.

1. Export the database:

a. Use the gmeExportDB.sh script to create an archive of the database data

i. ./gmeExportDB.sh [databaseprefix] [optional database password]

2. Import the database:

a. First make sure that you have started up the container on the new machine with
the gme service deployed to it. This will create the database and its required
tables.

b. Use the gmeImportDB.sh script to import the archived data created from the
export step.

i. ./gmeImportDB.sh [databaseprefix] [data file] [optional database
password]

3. Update the service URL in the database:

a. Use the gmeChangeURL.sh script to modify the databases service url entries
with the new service URL.

i. ./gmeChageURL.sh [databaseprefix] [old service url] [new service url]
[optional database password]

Important Notes

The default GME configuration is set to connect to a MySQL database on the localhost with no

password and username root. If you need to change this be sure to edit the gme config file in

the etc directory. The GME also dynamically creates its databases and tables. Make sure that
the database privileges are set correctly to enable this.

Chapter 9 caGrid Global Model Exchange

 143

GME Client

GME Client API

The GME client API is a simple java based API that enables simple access to remote GMEs in
order to publish, retrieve, and discover models as well as manage GMEs. The client API comes
from the Mobius project and is included in the caGrid release. The communication factories
required to use the GME in the caGrid environment are built into the caGrid release jar and
deployed into the skeleton. Below is a code example of how to get a handle to a GME and
request a schema, and all its referenced schemas, to be retrieved and written to a place on the
file system.

For more information on other methods the GME API provides, refer to
http://projectmobius.org/docs/gmeapi.php or browse the Mobius GME source code, which is
freely available at www.projectmobius.org.

GME Viewer

To launch the GME Viewer, run ant gmeViewer from the GME_LOCATION. This launches the

Mobius GME Viewer GUI configured to use Globus for communication. Once this tool is

launched, follow the Mobius GUI Documentation for using the GUI

(http://projectmobius.org/docs/gmeqs.php).

A simplified GUI for communicating with the GME is also provided as an Introduce extension,

under the “Browse Data Types” menu.

GridServiceResolver.getInstance().setDefaultFactory(new GlobusGMEXMLDataModelServiceFactory());

List writtenNamespaces = null;

File directory = new File(CACHE_LOCATION);

try {

XMLDataModelService handle = (XMLDataModelService) GridServiceResolver.getInstance()

.getGridService(“http://dc04.bmi.ohio-state.edu:8080/ogsa/services/cagrid/gme”);

 writtenNamespaces = handle.cacheSchema(cagrid.nci.nih.gov/1/Gene,directory);

} catch (MobiusException e1) {

 e1.printStackTrace();

}

http://projectmobius.org/docs/gmeapi.php
http://www.projectmobius.org/
http://projectmobius.org/docs/gmeqs.php

caGrid 1.1 Programmer’s Guide

144

 Appendix A References

 145

Appendix A References

Scientific Publications
[1] B. Allcock, J. Bester, J. Bresnahan, A. Chervenak, I. Foster, C. Kesselman, S. Meder, V.

Nefedova, D. Quesnal, and T. S., "Data Management and Transfer in High Performance

Computational Grid Environments," Parallel Computing Journal, vol. 28, pp. 749-771,

2002.

[2] W. E. Allcock, I. Foster, and R. Madduri, "Reliable Data Transport: A Critical Service for

the Grid.," in Proceedings of Building Service Based Grids Workshop, Global Grid Forum

11. Honolulu, Hawaii, USA, 2004.

[3] G. Allen, T. Dramlitsch, I. Foster, T. Goodale, N. Karonis, M. Ripeanu, E. Seidel, and B.

Toonen, "Cactus-G Toolkit: Supporting Efficient Execution in Heterogeneous Distributed

Computing Environments," in Proceedings of the 4th Globus Retreat. Pittsburg, PA,

2000.

[4] H. Andrade, T. Kurc, A. Sussman, and J. Saltz, "Active Proxy-G: Optimizing the Query

Execution Process in the Grid," in Proceedings of the ACM/IEEE Supercomputing

Conference (SC2002). Baltimore, MD: ACM Press/IEEE Computer Society Press, 2002.

[5] J. Annis, Y. Zhao, J. Voeckler, M. Wilde, S. Kent, and I. Foster, "Applying Chimera

Virtual Data Concepts to Cluster Finding in the Sloan Sky Survey," in Proceedings of the

ACM/IEEE Supercomputing Conference (SC2002). Baltimore, MD: ACM Press/IEEE

Computer Society Press, 2002.

[6] M. P. Atkinson and et.al., "Grid Database Access and Integration: Requirements and

Functionalities," Technical Document, Global Grid Forum. http://www.cs.man.ac.uk/grid-

db/documents.html, 2002.

[7] F. Berman, H. Casanova, J. Dongarra, I. Foster, C. Kesselman, J. Saltz, and R. Wolski,

"Retooling Middleware for Grid Computing," NPACI & SDSC enVision, vol. 18, 2002.

[8] M. Beynon, T. Kurc, A. Sussman, and J. Saltz, "Design of a Framework for Data-

Intensive Wide-Area Applications," in Proceedings of the 2000 Heterogeneous

Computing Workshop (HCW2000). Cancun, Mexico, 2000.

[9] H. Casanova, O. Graziano, F. Berman, and R. Wolski, "The AppLeS Parameter Sweep

Template: User-Level Middleware for the Grid," in Proceedings of the ACM/IEEE

Supercomputing Conference (SC2000): ACM Press/IEEE Computer Society Press,

2000.

[10] A. Chervenak, E. Deelman, I. Foster, L. Guy, W. Hoschek, A. Iamnitchi, C. Kesselman,

P. Kunst, M. Ripeanu, B. Schwartzkopf, H. Stockinger, and B. Tierney, "Giggle: A

Framework for Constructing Scalable Replica Location Services," in Proceedings of the

ACM/IEEE Supercomputing Conference (SC2002): ACM Press/IEEE Computer

Computer Society Press, 2002, pp. 1-17.

[11] A. Chervenak, E. Deelman, C. Kesselman, B. Allcock, I. Foster, V. Nefedova, J. Lee, A.

http://www.cs.man.ac.uk/grid-db/documents.html
http://www.cs.man.ac.uk/grid-db/documents.html

caGrid 1.1 Programmer’s Guide

146

Sim, A. Shoshahi, B. Drach, D. Williams, and D. Middleton, "High-performance remote

access to climate simulation data: a challenge problem for data grid technologies,"

Parallel Computing, vol. 29, pp. 1335-1356, 2003.

[12] A. Chervenak, I. Foster, C. Kesselman, C. Salisbury, and S. Tuecke, "The Data Grid:

Towards an Architecture for the Distributed Management and Analysis of Large

Scientific Datasets," Journal of Network and Computer Applications, vol. 23, pp. 187-

200, 2000.

[13] E. Deelman, J. Blythe, Y. Gil, C. Kesselman, G. Mehta, K. Vahi, K. Blackburn, A.

Lazzarini, A. Arbree, R. Cavanaugh, and S. Koranda, "Mapping Abstract Complex

Workflows onto Grid Environments," Journal of Grid Computing, vol. 1, pp. 25-39, 2003.

[14] E. Deelman, G. Singh, M. P. Atkinson, A. Chervenak, N. P. Chue Hong, C. Kesselman,

S. Patil, L. Pearlman, and M. Su, "Grid-Based Metadata Services," in Proceedings of the

16th International Conference on Scientific and Statistical Database Management

(SSDBM '04), 2004.

[15] I. Foster and C. Kesselman, "Globus: A Metacomputing Infrastructure Toolkit.,"

International Journal of High Performance Computing Applications, vol. 11, pp. 115--

128, 1997.

[16] I. Foster, J. Voeckler, M. Wilde, and Y. Zhao, "Chimera: A Virtual Data System for

Representing, Querying, and Automating Data Derivation," in Proceedings of the 14th

Conference on Scientific and Statistical Database Management (SSDBM '02), 2002.

[17] J. Frey, T. Tannenbaum, M. Livny, I. Foster, and S. Tuecke, "Condor-G: A

Computational Management Agent for Multi-institutional Grids," in Proceedings of the

Tenth International Symposium on High Performance Distributed Computing (HPDC-10):

IEEE Press, 2001.

[18] N. Furmento, W. Lee, A. Mayer, S. Newhouse, and J. Darlington, "ICENI: An Open Grid

Service Architecture Implemented with JINI," in Proceedings of the ACM/IEEE

Supercomputing Conference (SC2002). Baltimore, MD: ACM Press/IEEE Computer

Society Press, 2002.

[19] A. S. Grimshaw and W. Wulf, "The Legion: Vision of a Worldwide Virtual Computer,"

Communications of the ACM, vol. 40, pp. 39--45, 1997.

[20] S. Hastings, S. Langella, S. Oster, and J. Saltz, "Distributed Data Management and

Integration: The Mobius Project," Proceedings of the Global Grid Forum 11 (GGF11)

Semantic Grid Applications Workshop, Honolulu, Hawaii, USA., pp. 20-38, 2004.

[21] S. Langella, S. Oster, S. Hastings, F. Siebenlist, T. Kurc, and J. Saltz, "Dorian: Grid

Service Infrastructure for Identity Management and Federation," presented at The 19th

IEEE Symposium on Computer-Based Medical Systems, Special Track: Grids for

Biomedical Informatics, Salt Lake City, Utah., 2006.

[22] R. Oldfield and D. Kotz, "Armada: A Parallel File System for Computational Grid," in

Proceedings of the IEEE International Symposium on Cluster Computing and the Grid

(CCGrid2001). Brisbane, Australia: IEEE Computer Society Press, 2001.

[23] M. Sato, H. Nakada, S. Sekiguchi, S. Matsuoka, U. Nagashima, and H. Takagi, "Ninf: A

 Appendix A References

 147

Network based Information Library for a Global World-Wide Computing Infrastructure,"

in Proceedings of the Conference on High Performance Computing and Networking

(HPCN '97) (LNCS-1225), 1997, pp. 491-502.

[24] G. Singh, S. Bharathi, A. Chervenak, E. Deelman, C. Kesselman, M. Mahohar, S. Pail,

and L. Pearlman, "A Metadata Catalog Service for Data Intensive Applications," in

Proceedings of the ACM/IEEE Supercomputing Conference (SC2003), 2003.

[25] G. Singh, E. Deelman, G. Mehta, K. Vahi, M. Su, B. Berriman, J. Good, J. Jacob, D.

Katz, A. Lazzarini, K. Blackburn, and S. Koranda, "The Pegasus Portal: Web Based Grid

Computing," in Proceedings of the 20th Annual ACM Symposium on Applied Computing.

Santa Fe, New Mexico, 2005.

[26] J. Smith, A. Gounaris, P. Watson, N. W. Paton, A. A. Fernandes, and R. Sakellariou,

"Distributed Query Processing on the Grid.," presented at Proceedings of the Third

Workshop on Grid Computing (GRID2002), Baltimore, MD, 2003.

[27] D. Thain, J. Basney, S. Son, and M. Livny, "Kangaroo Approach to Data Movement on

the Grid," in Proceedings of the Tenth IEEE Symposium on High Performance

Distributed Computing (HPDC-10), 2001.

[28] L. Weng, G. Agrawal, U. Catalyurek, T. Kurc, S. Narayanan, and J. Saltz, "An Approach

for Automatic Data Virtualization," in Proceedings of the 13th IEEE International

Symposium on High-Performance Distributed Computing (HPDC-13). Honolulu, Hawaii,

2004, pp. 24-33.

[29] I. Foster, C. Kesselman, J. M. Nick, and S. Tuecke, "The Physiology of the Grid: An

Open Grid Services Architecture for Distributed Systems Integration," Open Grid Service

Infrastructure Working Group Technical Report, Global Grid Forum.

http://www.globus.org/alliance/publications/papers/ogsa.pdf 2002.

[30] I. Foster, C. Kesselman, and S. Tuecke, "The Anatomy of the Grid: Enabling Scalable

Virtual Organizations.," International Journal of Supercomputer Applications, vol. 15, pp.

200-222, 2001.

[31] E. Cerami, Web Services Essentials: O'Reilly & Associates Inc., 2002.

[32] S. Graham, S. Simeonov, T. Boubez, D. Davis, G. Daniels, Y. Nakamura, and R.

Neyama, Building Web Services with Java: Making Sense of XML, SOAP, WSDL, and

UDDI: SAMS Publishing, 2002.

[33] K. Czajkowski, D. F. Ferguson, I. Foster, J. Frey, S. Graham, I. Sedukhin, D. Snelling, S.

Tuecke, and W. Vambenepe, "The WS-Resource Framework version 1.0," vol. 2004,

2004.

[34] J. Saltz, S. Oster, S. Hastings, T. Kurc, W. Sanchez, M. Kher, A. Manisundaram, K.

Shanbhag, and P. Covitz, "caGrid: Design and Implementation of the Core Architecture

of the Cancer Biomedical Informatics Grid," Bioinformatics. (in press). 2006.

[35] S. Langella, S. Hastings, S. Oster, T. Kurc, U. Catalyurek, and J. Saltz, "A Distributed

Data Management Middleware for Data-Driven Application Systems," in Proceedings of

the 2004 IEEE International Conference on Cluster Computing (Cluster 2004), 2004.

[36] K. Bhatia, S. Chandra, and K. Mueller, "GAMA: Grid Account Management Architecture,"

http://www.globus.org/alliance/publications/papers/ogsa.pdf

caGrid 1.1 Programmer’s Guide

148

San Diego Supercomputer Center (SDSC), UCSD Technical Report. #TR-2005-3, 2005.

[37] I. Foster, C. Kesselman, S. Tuecke, V. Volmer, V. Welch, R. Butler, and D. Engert, "A

National Scale Authentication Infrastructure," IEEE Computer, vol. 33, pp. 60-66, 2000.

[38] V. Welch, F. Siebenlist, I. Foster, J. Bresnahan, K. Czajkowski, J. Gawor, C. Kesselman,

S. Meder, L. Pearlman, and S. Tuecke, "Security for Grid Services," presented at 12th

International Symposium on High Performance Distributed Computing (HPDC-12), 2003.

[39] H. Morohoshi and R. Huang, "A User-friendly Platform for Developing Grid Services over

Globus Toolkit 3," presented at The 2005 11th International Conference on Parallel and

Distributed Systems (ICPADS'05), 2005.

[40] S. Mizuta and R. Huang, "Automation of Grid Service Code Generation with AndroMDA

for GT3," presented at The 19th International Conference on Advanced Information

Networking and Applications (AINA'05), 2005.

[41] G. von Laszewski, I. Foster, J. Gawor, and P. Lane, "A Java Commodity Grid Kit,"

Concurrency and Computation: Practice and Experience, vol. 13, pp. 643-662, 2001.

[42] G. von Laszewski, I. Foster, J. Gawor, W. Smith, and S. Tuecke, "CoG Kits: A Bridge

Between Commodity Distributed Computing and High Performance Grids," presented at

ACM Java Grande 2000 Conference, 2000.

[43] R. Buyya and S. Venugopal, "The Gridbus Toolkit for Service Oriented Grid and Utility

Computing: An Overview and Status Report," presented at the First IEEE International

Workshop on Grid Economics and Business Models (GECON 2004), New Jersey, USA,

2004.

[44] M. Humphrey and G. Wasson, "Architectural Foundations of WSRF.NET," International

Journal of Web Services Research, vol. 2, pp. 83-97, 2005.

[45] M. Smith, T. Friese, and B. Freisleben, "Model Driven Development of Service Oriented

Grid Applications," presented at Advanced International Conference on

Telecommunications and International Conference on Internet and Web Applications

and Services (AICT-ICIW '06), 2006.

Technical Manuals/Articles
National Cancer Institute. "caCORE 3.1 Technical Guide",
ftp://ftp1.nci.nih.gov/pub/cacore/caCORE3.1_Tech_Guide.pdf

Java Bean Specification: http://java.sun.com/products/javabeans/docs/spec.html

Foundations of Object-Relational Mapping: http://www.chimu.com/publications/objectRelational/

Object-Relational Mapping articles and products:

http://www.service-architecture.com/object-relational-mapping/

Hibernate Reference Documentation: http://www.hibernate.org/hib_docs/reference/en/html/

Basic O/R Mapping: http://www.hibernate.org/hib_docs/reference/en/html/mapping.html

Java Programming: http://java.sun.com/learning/new2java/index.html

Javadoc tool: http://java.sun.com/j2se/javadoc/

ftp://ftp1.nci.nih.gov/pub/cacore/caCORE3.1_Tech_Guide.pdf
http://java.sun.com/products/javabeans/docs/spec.html
http://www.chimu.com/publications/objectRelational/
http://www.service-architecture.com/object-relational-mapping/
http://www.hibernate.org/hib_docs/reference/en/html/
http://www.hibernate.org/hib_docs/reference/en/html/mapping.html
http://java.sun.com/learning/new2java/index.html
http://java.sun.com/j2se/javadoc/

 Appendix A References

 149

JUnit: http://junit.sourceforge.net/

Extensible Markup Language: http://www.w3.org/TR/REC-xml/

XML Metadata Interchange: http://www.omg.org/technology/documents/formal/xmi.htm

Global Grid Forum: http://www.gridforum.org

Globus: http://www.globus.org

Mobius: http://www.projectmobius.org

W3C: http://www.w3c.org

OGSA-DAI: http://www.ogsadai.org

Apache: http://www.apache.org

Globus Toolkit 3 Programmer's Tutorial:

http://gdp.globus.org/gt3-tutorial/singlehtml/progtutorial_0.4.3.html

XPath tutorial: http://www.w3schools.com/xpath/xpath_syntax.asp

Globus Security Overview:

http://www.ogsadai.org.uk/docs/OtherDocs/SECURITY-FOR-DUMMIES.pdf

High level Overview of Grid:

http://gridcafe.web.cern.ch/gridcafe/index.html

Overview of Globus Toolkit 3 and the OGSI architecture :

http://www-128.ibm.com/developerworks/grid/library/gr-gt3/

caBIG Material
caBIG: http://cabig.nci.nih.gov/

caBIG Compatibility Guidelines: http://cabig.nci.nih.gov/guidelines_documentation

http://junit.sourceforge.net/
http://www.w3.org/TR/REC-xml/
http://www.omg.org/technology/documents/formal/xmi.htm
http://www.gridforum.org/
http://www.globus.org/
http://www.projectmobius.org/
http://www.w3c.org/
http://www.ogsadai.org/
http://www.apache.org/
http://gdp.globus.org/gt3-tutorial/singlehtml/progtutorial_0.4.3.html
http://www.w3schools.com/xpath/xpath_syntax.asp
http://www.ogsadai.org.uk/docs/OtherDocs/SECURITY-FOR-DUMMIES.pdf
http://gridcafe.web.cern.ch/gridcafe/index.html
http://www-128.ibm.com/developerworks/grid/library/gr-gt3/
http://cabig.nci.nih.gov/
http://cabig.nci.nih.gov/guidelines_documentation

caGrid 1.1 Programmer’s Guide

150

caCORE Material
caCORE: http://ncicb.nci.nih.gov/NCICB/infrastructure

caBIO: http://ncicb.nci.nih.gov/NCICB/infrastructure/cacore_overview/caBIO

caDSR: http://ncicb.nci.nih.gov/NCICB/infrastructure/cacore_overview/cadsr

EVS: http://ncicb.nci.nih.gov/NCICB/infrastructure/cacore_overview/vocabulary

CSM: http://ncicb.nci.nih.gov/NCICB/infrastructure/cacore_overview/csm

http://ncicb.nci.nih.gov/NCICB/infrastructure
http://ncicb.nci.nih.gov/NCICB/infrastructure/cacore_overview/caBIO
http://ncicb.nci.nih.gov/NCICB/infrastructure/cacore_overview/cadsr
http://ncicb.nci.nih.gov/NCICB/infrastructure/cacore_overview/vocabulary
http://ncicb.nci.nih.gov/NCICB/infrastructure/cacore_overview/csm

 Glossary

 151

Glossary

Term Definition

API Application Programming Interface

Authz caGrid Authorization component

BPEL Business Process Execution Language

CA Certificate Authority

caArray cancer Array Informatics

caBIG cancer Biomedical Informatics Grid

caBIO Cancer Bioinformatics Infrastructure Objects

caCORE cancer Common Ontologic Representation Environment

caDSR Cancer Data Standards Repository

caGrid Current test bed architecture of caBIG

CRL Certificate Revocation List

CSM Common Security Module

CVS Concurrent Versions System

DAO Data Access Objects

DN Distinguished Name

IdP Identity Provider

EPR End Point Reference

EVS Enterprise Vocabulary Services

GAARDS Grid Authentication and Authorization with Reliably Distributed
Services

GDE Introduce Graphical Development Environment

GForge Primary site for collaborative project development for the NCI Center
for Bioinformatics (NCICB) and for the NCI's Cancer Biomedical
Informatics Grid™ (caBIG)

GGF Global Grid Forum

GME Mobius Global Model Exchange - DNS-like service for the universal
creation, versioning, and sharing of data descriptions

Grid Service Basically a Web Services with improved characteristics and standard
services like stateful and potentially transient services, Service Data,
Notifications, Service Groups, portType extension, and Lifecycle
management.

GSH Grid Service Handle

caGrid 1.1 Programmer’s Guide

152

Term Definition

GSI Grid Security Infrastructure - represents the latest evolution of the
Grid Security Infrastructure. GSI in GT3 builds off of the functionality
present in early GT2 toolkit releases - X.509 certificates, TLS/SSL for
authentication and message protection, X.509 Proxy Certificates for
delegation and single sign-on.

GTS Grid Trust Service - maintains a federated trust fabric of all the
trusted digital signers in the grid

HTTP Hypertext Transfer Protocol

ISO International Organization for Standardization

JAAS Java Authentication and Authorization Service

JAR Java Archive

Javadoc Tool for generating API documentation in HTML format from doc
comments in source code (http://java.sun.com/j2se/javadoc/)

JDBC Java Database Connectivity

JUnit A simple framework to write repeatable tests
(http://junit.sourceforge.net/)

LDAP Lightweight Directory Access Protocol

MAGE MicroArray and Gene Expression

MAGE-OM MicroArray Gene Expression - Object Model

Metadata Definitional data that provides information about or documentation of
other data.

MGED Microarray Gene Expression Data

Mobius An array of tools and middleware components to coherently share
and manage data and metadata in a Grid and/or distributed
computing environment.

NCI National Cancer Institute

NCICB National Cancer Institute Center for Bioinformatics

OGSA Open Grid Services Architecture - developed by the Global Grid
Forum, aims to define a common, standard, and open architecture
for grid-based applications.

OGSI Open Grid Services Infrastructure -gives a formal and technical
specification of what a Grid Service is. In other words, for a high-
level architectural view of what Grid Services are, and how they fit
into the next generation of grid applications

PKI Public Key Cryptography

RDBMS Relational Database Management System

SAML Secure Access Markup Language

http://java.sun.com/j2se/javadoc/
http://junit.sourceforge.net/

 Glossary

 153

Term Definition

SDK Software Development Kit

SOAP Simple Object Access Protocol

SQL Structured Query Language

TRA Trusted Registration Authority

UI User Interface

UID User Identification

UML Unified Modeling Language

UPT User Provisioning Tool

URL Uniform Resource Locators

Virtualization Make a computational or data resource available to caBIG
community - some people call "Gridification"

VO Virtual Organization

WAR Web Application Archive

Web Service Application to application communication using web based service
interfaces as describe by the Web Services 1.0 or 2.0 specification.

WSDD Web Service Deployment Descriptor

WSDL Web Services Description Language

WSRF Web Services Resource Framework

X.509 Certificate With its corresponding private key forms a unique credential or so-
called “grid credential” within the grid

XMI XML Metadata Interchange
(http://www.omg.org/technology/documents/formal/xmi.htm) - The
main purpose of XMI is to enable easy interchange of metadata
between modeling tools (based on the OMG-UML) and metadata
repositories (OMG-MOF) in distributed heterogeneous environments

XML Extensible Markup Language (http://www.w3.org/TR/REC-xml/) -
XML is a subset of Standard Generalized Markup Language
(SGML). Its goal is to enable generic SGML to be served, received,
and processed on the Web in the way that is now possible with
HTML. XML has been designed for ease of implementation and for
interoperability with both SGML and HTML

XPath XML query/traversal language adhering to the XPath specification
set forth by the W3C.

http://www.omg.org/technology/documents/formal/xmi.htm
http://www.w3.org/TR/REC-xml/

caGrid 1.1 Programmer’s Guide

154

 Index

 155

Index
addNonNullPredicate

gov::nih::nci::cagrid::discovery::client::Discov
eryClient, 49

annotateServiceMetadata, 56
API

caDSR grid service usage, 25, 55
caDSR Grid Service usage examples, 61
caDSR Grid Services details, 58
Discovery API details, 36
Discovery usage examples, 51
Discovery usage overview, 34
EVS usage overview, 66
federated query processor details, 101
federated query processor examples, 105
GME client, 143
metadata details, 28
metadata usage examples, 31
WS-enumeration client, 111
WS-enumeration usage examples, 114

BPEL, 125
buildDataUMLClassPredicate

gov::nih::nci::cagrid::discovery::client::Discov
eryClient, 48

buildPOCPredicate
gov::nih::nci::cagrid::discovery::client::Discov

eryClient, 48
buildUMLClassPredicate

gov::nih::nci::cagrid::discovery::client::Discov
eryClient, 48

caBIG
references, 149

caCORE
references, 150

caDSR Grid Service
overview, 25, 55
security considerations, 58

caDSR Grid Services
API details, 58
API usage examples, 61
examining project information model, 62
generating data service metadata, 63

caDSRServiceClient, 58
caGrid

security overview, 73
caGrid document, 2
CQL syntax validation, 91
CQLQueryResults, 88

creating, 89
createConceptPredicatedUMLClass

gov::nih::nci::cagrid::discovery::client::Discov
eryClient, 44

createPermissibleValuePredicatedUMLClass

gov::nih::nci::cagrid::discovery::client::Discov
eryClient, 44

Data Services
CQL query results, 88
CQL query syntax, 91
domain model conformance, 92
results validation, 92
utility classes, 89

DataServiceConstants, 86

deserializeDomainModel, 33
gov::nih::nci::cagrid::metadata::MetadataUtils,

30
deserializeServiceMetadata, 33

gov::nih::nci::cagrid::metadata::MetadataUtils,
29

discoverByFilter
gov::nih::nci::cagrid::discovery::client::Discov

eryClient, 49
discoverDataServicesByAssociationsWithClass

gov::nih::nci::cagrid::discovery::client::Discov
eryClient, 47

discoverDataServicesByDomainModel, 53
gov::nih::nci::cagrid::discovery::client::Discov

eryClient, 45
discoverDataServicesByExposedClass

gov::nih::nci::cagrid::discovery::client::Discov
eryClient, 46

discoverDataServicesByModelConceptCode
gov::nih::nci::cagrid::discovery::client::Discov

eryClient, 45
discoverDataServicesByPermissibleValue

gov::nih::nci::cagrid::discovery::client::Discov
eryClient, 46

discoverServiceByOperationInput, 54
discoverServicesByConceptCode, 53

gov::nih::nci::cagrid::discovery::client::Discov
eryClient, 39

discoverServicesByDataConceptCode
gov::nih::nci::cagrid::discovery::client::Discov

eryClient, 42
discoverServicesByName

gov::nih::nci::cagrid::discovery::client::Discov
eryClient, 39

discoverServicesByOperationClass
gov::nih::nci::cagrid::discovery::client::Discov

eryClient, 41
discoverServicesByOperationConceptCode, 54

gov::nih::nci::cagrid::discovery::client::Discov
eryClient, 42

discoverServicesByOperationInput
gov::nih::nci::cagrid::discovery::client::Discov

eryClient, 40

caGrid 1.0 Programmer’s Guide

156

discoverServicesByOperationName, 53
gov::nih::nci::cagrid::discovery::client::Discov

eryClient, 40
discoverServicesByOperationOutput

gov::nih::nci::cagrid::discovery::client::Discov
eryClient, 41

discoverServicesByPermissibleValue
gov::nih::nci::cagrid::discovery::client::Discov

eryClient, 43
discoverServicesByPointOfContact

gov::nih::nci::cagrid::discovery::client::Discov
eryClient, 38

discoverServicesByResearchCenter, 53
gov::nih::nci::cagrid::discovery::client::Discov

eryClient, 37
discoverServicesBySearchString, 53

gov::nih::nci::cagrid::discovery::client::Discov
eryClient, 37

Discovery API
configuring index service, 51
details, 36
discovering services, 52
usage examples, 51

DiscoveryClient
definition, 34
gov::nih::nci::cagrid::discovery::client::Discov

eryClient, 36
Disovery API

overview, 34
Document conventions, technical guide, 2
domain model, 90
Domain Model, 92
EVS API

getHistoryRecords, 69
getMetaSources, 66
getVocabularyNames, 67
searchDescLogicConcept, 67
searchMetaThesaurus, 70
searchSourceByCode, 71
usage overview, 66

execute
gov::nih::nci::cagrid::fqp::processor::Federate

dQueryEngine, 104
executeAndAggregateResults

gov::nih::nci::cagrid::fqp::processor::Federate
dQueryEngine, 105

FederatedQueryEngine
gov::nih::nci::cagrid::fqp::processor::Federate

dQueryEngine, 104
FileReader, 33
FileWriter, 32
generateDomainModelForClasses, 56
generateDomainModelForClassesWithExcludes,

56
generateDomainModelForPackage, 56
generateDomainModelForProject, 55, 64

getAllDataServices
gov::nih::nci::cagrid::discovery::client::Discov

eryClient, 44
getAllServices

gov::nih::nci::cagrid::discovery::client::Discov
eryClient, 36

getDomainModel
gov::nih::nci::cagrid::metadata::MetadataUtils,

29
getIndexEPR

gov::nih::nci::cagrid::discovery::client::Discov
eryClient, 50

getServiceMetadata
gov::nih::nci::cagrid::metadata::MetadataUtils,

28
Getting help, 1
Global Model Exchange. See GME
GME

building, 139
client API, 143
configuring, 139
deploying, 141
software prerequisites, 139
viewer, 143

GME XE "Global Model Exchange" \t "See
GME" XE "GME:software prerequisites"
overview, 139

gov::nih::nci::cagrid::discovery::client::Discovery
Client
addNonNullPredicate, 49
buildDataUMLClassPredicate, 48
buildPOCPredicate, 48
buildUMLClassPredicate, 48
createConceptPredicatedUMLClass, 44
createPermissibleValuePredicatedUMLClass,

44
discoverByFilter, 49
discoverDataServicesByAssociationsWithCla

ss, 47
discoverDataServicesByDomainModel, 45
discoverDataServicesByExposedClass, 46
discoverDataServicesByModelConceptCode,

45
discoverDataServicesByPermissibleValue, 46
discoverServicesByConceptCode, 39
discoverServicesByDataConceptCode, 42
discoverServicesByName, 39
discoverServicesByOperationClass, 41
discoverServicesByOperationConceptCode,

42
discoverServicesByOperationInput, 40
discoverServicesByOperationName, 40
discoverServicesByOperationOutput, 41
discoverServicesByPermissibleValue, 43
discoverServicesByPointOfContact, 38
discoverServicesByResearchCenter, 37

 Index

 157

discoverServicesBySearchString, 37
DiscoveryClient, 36
getAllDataServices, 44
getAllServices, 36
getIndexEPR, 50
main, 50
setIndexEPR, 50
translateXPath, 49

gov::nih::nci::cagrid::discovery::XPathUtils
translateXPath, 50

gov::nih::nci::cagrid::fqp::processor::FederatedQ
ueryEngine
execute, 104
executeAndAggregateResults, 105
FederatedQueryEngine, 104

gov::nih::nci::cagrid::metadata::MetadataUtils
deserializeDomainModel, 30
deserializeServiceMetadata, 29
getDomainModel, 29
getServiceMetadata, 28
serializeDomainModel, 30
serializeServiceMetadata, 29

Grid Authentication and Authorization with
Reliably Distributed Services. See GAARDS

Grid Grouper
overview, 77

InternalRuntimeException, 28, 34
InvalidProjectException, 55
InvalidResourcePropertyException, 28, 35
main

gov::nih::nci::cagrid::discovery::client::Discov
eryClient, 50

Malformed query, 94
Metadata

accessing from service, 31
API details, 28
API usage examples, 31
processing as XML, 32

PointOfContact, 54

processQuery() method, 94

properties, 93
optional, 94

QName, 86
QueryInvalidException, 28, 35
Reader, 33
References

caBIG, 149
caBIG materials, 149

caCORE, 150
caCORE material, 150
scientific publications, 145
technical manuals, guides, 148

RemoteResourcePropertyRetrievalException,
28, 35

ResourcePropertyHelper, 27
ResourcePropertyRetrievalException, 28, 34, 35
serializeDomainModel, 32

gov::nih::nci::cagrid::metadata::MetadataUtils,
30

serializeServiceMetadata, 32
gov::nih::nci::cagrid::metadata::MetadataUtils,

29
ServiceMetadata, 33, 56
setIndexEPR

gov::nih::nci::cagrid::discovery::client::Discov
eryClient, 50

sourceClassName, 56
sourceRoleName, 56
target data types, 92
targetClassName, 56
targetRoleName, 56
Text conventions, technical guide, 2
thread, 86
translateXPath

gov::nih::nci::cagrid::discovery::client::Discov
eryClient, 49

gov::nih::nci::cagrid::discovery::XPathUtils, 50
UMLAssocation, 57
UMLAssociationExclude, 57
UMLAssociationExcludes, 56
UMLAssociationMetadata, 57
UMLClass, 54
URL, 86
Workflow

architecture description, 123
overview, 123
security contexts, 130
WorkflowFactoryService API, 125
WorkflowManagementService API, 127

Writer, 32
wsdd parameters, 91
WS-Enumeration

client API, 111
command line clients, 117
overview, 111

	Credits and Resources
	Table of Contents
	Chpt 1 About This Guide
	Purpose
	Release Schedule
	Audience
	Getting Help
	How to User This Guide
	Relevant Documents
	Document Text Conventions

	Chpt 2 Overview of caGrid
	Introduction
	Standards Compliant
	Model Driven
	Semantically Discoverable
	Secure and Manageable
	Revolutionary Development

	Chpt 3 caGrid Release Structure
	Overview
	caGrid Projects
	Multiple Grid Support

	Chpt 4 caGrid Metadata Infrastructure
	Code Example Information
	Metadata API Usage Overview
	Discovery API Usage Overview
	caDSR Grid Service Usage Overview
	EVS API Usage Overview

	Chpt 5 caGrid Security
	Dorian Overview
	Grid Grouper Overview

	Chpt 6 caGrid Data Services
	Overview
	CQL
	Validation Tools
	CQL Query Processors
	Service Styles Architecture
	Federated Query Processor Usage Overview
	API Details

	Chpt 7 WS-Enumeration
	Overview
	Client API

	Chpt 8 Workflow Management Service
	Overview
	Workflow Architecture
	WorkflowFactoryService API
	WorkflowServiceImpl API
	Security in WorkflowFactory and Context Services
	Service Selection
	Provenance Tracking
	WS-RF Resources in Workflows

	Chpt 9 caGrid Global Model Exchange
	Overview
	GME Client API

	Appdx A References
	Scientific Publications
	Technical Manuals and Articles
	caBIG Material
	caCORE Material

	Glossary
	Index

