
caCORE Training Workbook
Course 2010: Using the caCORE Software
Development Kit (SDK)

caCORE Training Website: http://ncicb.nci.nih.gov/NCICB/training/cadsr_training
Help & Support: ncicb@pop.nci.nih.gov (please include “caCORE Training” in the subject)

http://ncicb.nci.nih.gov/NCICB/training/cadsr_training
mailto:ncicb@pop.nci.nih.gov

 caCORE Training – Course 2010

 Page 2

Table of Contents
1 INTRODUCTION...3
2 COURSE DETAILS..3
3 COURSE OUTLINE...3
4 LESSON 1: SEMANTIC INTEROPERABILITY...4

4.1 LEARNING OBJECTIVES ...4
4.2 WHAT IS THE CACORE SDK?...4
4.3 SDK COMPONENTS ...6

4.3.1 Semantic Integration Workbench (SIW) ..7
4.3.2 UML Loader ..8
4.3.3 Code Generator ...8

4.4 SDK WORKFLOW..9
4.4.1 Phase 1 – Design System and Draw UML Model..11
4.4.2 Phase 2 – Annotate and Review Model Using the SIW..15
4.4.3 Phase 3 – Load Model to caDSR ...16
4.4.4 Phase 4 –Generate Code and Deploy System..17

4.5 MODELING FOR SEMANTIC INTEROPERABILITY...19
4.5.1 Naming Best Practices...22

5 LESSON 2: CODE GENERATION ..23
5.1 LEARNING OBJECTIVES ...23
5.2 CACORE ARCHITECTURE REVIEW..24
5.3 DATA MODELING ..25

5.3.1 Process Overview ..26
5.3.2 Existing Database Schema...28

5.4 RUNNING THE CODE GENERATOR ...29
5.4.1 Configure Properties ...30
5.4.2 Build the System...31
5.4.3 Test the System...32
5.4.4 Troubleshoot Common Problems ..34

6 FURTHER READING..35
7 CONTACT INFORMATION ..35

 caCORE Training – Course 2010

 Page 3

1 Introduction
Welcome to caDSR Training. This course is designed for caDSR Users and Metadata
Consumers, including caBIG Developers and other participants.

This is Course 2010: Using the caCORE SDK. This course has suggested prerequisites of the
basic training sessions (Courses 1000-1040). If for some reason you were unable to take those
courses, session materials are available on the caCORE Training Website.

In order to receive credit for the mastery of this content, you will need to register for this course
and complete the accompanying quiz in the caBIG Learning Management System.

To register, go here: http://ncicbtraining.nci.nih.gov/TP2005/tp2000web.dll/NCICBTraining

We want these sessions to be as effective as possible in meeting your needs so we ask that
you complete the short training evaluation form (available when you register for a course) to
share your feedback on the overall quality of the training process and materials.

2 Course Details
Course Category: caCORE
Course Number: 2010
Course Title: Using the caCORE Software Development Kit (SDK)
Course Level: Intermediate
Audience: caBIG Developers, Application Developers (Using APIs), Metadata

Curators (Using UML Models)

3 Course Outline
Course 2010, Using the caCORE SDK, will cover the following areas:

 Lesson 1: Semantic Interoperability
• Learning Objectives
• What is the caCORE SDK?
• SDK Components
• SDK Workflow
• Modeling for Semantic Interoperability

 Lesson 2: Code Generation
• Learning Objectives
• caCORE Architecture Review
• Data Modeling
• Running the Code Generator

 Further Reading
 Contact Information

http://ncicbtraining.nci.nih.gov/TP2005/tp2000web.dll/NCICBTraining

 caCORE Training – Course 2010

 Page 4

4 Lesson 1: Semantic
Interoperability

The first lesson in this course includes the caCORE Software Development Kit (SDK) and
semantic interoperability. More specifically, this lesson will cover the following topics:

• Learning Objectives
• What is the caCORE SDK?
• SDK Components
• SDK Workflow
• Modeling for Semantic Interoperability

4.1 Learning Objectives
On completion of this lesson, you will be able to:

• Distinguish the components of the SDK
• Describe the SDK workflow
• Generate a valid XMI file for use by SDK tools
• Explain modeling constraints imposed by SDK tools
• Apply best practices for naming domain objects/attributes

4.2 What is the caCORE SDK?
The caCORE SDK is a set of development resources that create, compile and run “caCORE-
like” systems. The SDK is comprised of software tools, standards and documentation. It is
important to remember that the SDK is not merely a set of tools; but it includes standards and
documentation which are critical to understanding and properly using the SDK.

SDK targets intermediate Java programmers but it is understood that there are those who are
not software engineers who will wish to use it. In this case, you should seek the assistance and
support of an experienced programmer.

The NCICB Open Development Initiative (ODI) has just been launched. Members of the
community who are interested in contributing code should visit the NCICB web site for more
information and details.

A “caCORE-like” system is semantically integrated – all exposed API elements have runtime
accessible metadata that defines the meaning of the elements using controlled terminology. To
achieve this integration, “caCORE-like” systems must follow these design practices:

• Model-Driven Architecture (MDA)
• N-tier Architecture
• Controlled Vocabularies
• Registration of Metadata

 caCORE Training – Course 2010

 Page 5

MDA is an approach to software development that has been standardized by the Object
Management Group (OMG). MDA can be described as rapid development using a formal or
informal process, and is Standards-based (UML). MDA leverages UML to allow developers to
build platform-independent models (PIMs) which, through a series of transformations, are
converted to platform-specific models (PSMs) and subsequently to executable code. Figures 1
and 2 below illustrate how MDA works and how the caCORE SDK leverages MDA.

 Platform

independent
model (PIM)

Platform
specific

model (PSM)

TransformationTransformation

mapping
patterns

templates

Figure 1. How MDA works

Domain model
(UML)

Java-based
system

caCORE SDKcaCORE SDK

JET
templates

caCORE
architecture

pattern

Figure 2. caCORE SDK leveraging MDA

The concept of n-tier architecture is the idea of open, standard APIs that are heavily rooted in
object-orientation (OO). The OO paradigm is tightly coupled to MDA and allows us to take
advantage of all of the benefits that these two approaches provide, including information hiding,
encapsulation, abstraction, inheritance, etc. In order to implement an object-oriented system,
the caCORE SDK uses a variety of technologies, including object-relational mapping (ORM).

 caCORE Training – Course 2010

 Page 6

The ORM tool implemented by the SDK, Hibernate, provides rich functionality that can be
controlled at a very granular level by the developer without having to get caught up in complex
implementation details.

Controlled vocabularies and metadata repositories lie at the heart of runtime semantic
interoperability and are the distinguishing features of the caCORE infrastructure. Runtime
semantic interoperability is the ability to determine, at runtime, the context of data that is
returned by a data or analytical service. This is critical to future grid architectures that will need
to perform federated queries across multiple services and will need to determine the nature of
the data on the grid.

Examples of controlled vocabularies include SNOMED, MedDRA, GO Ontology and the NCI
Thesaurus. All of these are served by the Enterprise Vocabulary Services (EVS).

caDSR is an ISO/IEC 11179 compliant metadata repository. The caDSR training courses are an
excellent way to learn about caDSR and how to use it to create, curate and browse Common
Data Elements (CDEs).

Currently, the SDK provides only a read-only framework for exposing data sources. Future
releases will provide a read-write interface that is integrated with the caCORE Common Security
Module (CSM) for user authentication and rights management.

All of the caCORE components (caBIO, EVS, caDSR, CSM) are built using these principles.
caBIO is built using the caCORE SDK itself. As a result, we are able to constantly evaluate the
effectiveness of the principles we endorse. In addition, we get valuable feedback on how to
improve both the best practices as well as the tools in the SDK.

4.3 SDK Components
The SDK is composed of tools, standards and documentation.

The three main software tools include:

• Semantic Integration Workbench (SIW)
• Unified Modeling Language (UML) Loader
• Code Generator

Standards include:

• UML Modeling Guidelines
• Naming Conventions
• Open API Templates

Documentation includes:

• SDK Programmers’ Guide
• caCORE Technical Guide

 caCORE Training – Course 2010

 Page 7

4.3.1 Semantic Integration Workbench (SIW)
One software component of the caCORE SDK is the Semantic Integration Workbench (SIW).
The SIW is designed to facilitate and streamline the
process of semantic integration—how UML metadata is mapped to EVS concept codes. This
prepares the UML domain models for being loaded into the caDSR and helps developers
generate the fully descriptive metadata components.

The SIW takes an XMI representation of a UML model class diagram, processes the classes
and attributes, and then searches EVS for concepts that match the definitions of elements of the
UML model. The output is a report that lists controlled vocabulary concept(s) that match each
element. The model owner can then confirm the appropriate concept from a list of EVS
candidates, or they may also choose to map to existing caDSR elements. Then, using the
report, the SIW annotates the XMI representation of the UML model with the appropriate
concepts for loading into the caDSR.

The SIW can be accessed by navigating to http://cadsrsiw.nci.nih.gov. When the SIW is
running, the viewer displays the Welcome panel that includes five (5) modes listed in the order
of their use in the SIW workflow. Figure 3 below illustrates the five modes.

Figure 3. User Modes of the SIW

The first user mode, Review un-annotated XMI file, allows you to view the XMI representation
of the UML model. This must be done before performing any other SIW steps. This is an easy
way to check for missing description or documentation tags for classes and attributes since
these appear as missing in the error log. Any changes can be saved using the SIW.
Note: the “fix XMI task” is no longer needed in version 3.2 of the SIW.

http://cadsrsiw.nci.nih.gov/

 caCORE Training – Course 2010

 Page 8

The second user mode, Perform XMI roundtrip, is an optional step. This step automatically
annotates the UML model with existing caDSR data. Running this step can save time if a
version of the model was previously loaded or if the model shares classes/attributes with
another previously loaded model. The input is an XMI file and the output is a partially annotated
XMI file. This file is annotated with caDSR Public IDs rather than EVS concepts.

The third mode is to Run the Semantic Connector. This mode performs an EVS search for
each UML model element and attaches one or more EVS concepts to produce the Semantic
Connector Report in XMI format.

The fourth mode is to Curate the SMI file. During this step, the EVS team adds and removes
concepts and indicates recommended semantic mappings.

The fifth mode is to review the annotated model. The SIW performs a number of validation
checks to ensure that the XMI file will be correctly transformed into caDSR metadata. In this
mode, users can search EVS for concepts to change the mapping between a specific class or
attribute and EVS concept. Users may also choose to map UML classes or attributes to existing
caDSR elements.

4.3.2 UML Loader
Another software component of the SDK is the UML Loader. The UML Loader uses an
annotated model from the SIW and registers model metadata into the caDSR. This includes a
self-harmonization process by which the UML Loader searches for Data Elements with the
same set of concept codes and datatype. If a matching Data Element is found, the UML Loader
designates (re-uses) the existing Data Element and classifies it into the model’s Classification
Scheme. The UML Loader is not distributed with the SDK.

The input to the UML Loader is a UML model that has been run through the Semantic
Connector to annotate it with immutable concept codes from EVS. The concepts corresponding
to each class and attribute are mapped to administered components as defined by the ISO/IEC
11179 metamodel. As you have seen in previous caDSR courses, CDEs can then be created
that are tied to EVS concepts. The use of immutable concept codes means that the UML Loader
can also perform a harmonization process whereby it checks for existing CDEs that can be
reused and prevents duplicates, facilitating semantic interoperability.

4.3.3 Code Generator
The final software tool of the SDK is the Code Generator. The Code Generator is the model-
driven, template-based component that actually creates a running caCORE-like system. The
input is a UML model with set system properties. The Code Generator uses Java JET templates
and a variety of transformers to generate Java Beans representing the domain objects as well
as configuration files for object-relational mapping. The interface and convenience layer classes
are generated and the system is deployed to a Tomcat container.

 caCORE Training – Course 2010

 Page 9

4.4 SDK Workflow
The caCORE SDK workflow is a complex interrelated set of activities that must be performed in
a specific sequence to achieve success (i.e. creating a caCORE-like system using UML and the
SDK). If the process is not followed as suggested, the goal of semantic integration cannot be
achieved. The caCORE SDK process using UML and the SDK is divided into four phases:

1. Design system, draw model, export model to XMI
2. Annotate model and review annotation (Semantic Integration Workbench)
3. Load metadata into caDSR (UML Loader)
4. Generate code and deploy system (Code Generator)

Each of these steps has additional sub-steps that are described in detail in the SDK
Programmer’s Guide.

Figure 4 below illustrates the four phases of the caCORE SDK process.

 caCORE Training – Course 2010

 Page 10

Final caCORE
SDK Code
Generation

Yes

Public APIs

NO

Prod

Metadata
Retrieval caDSR

Production

Terminology Services

CodeGen
Success?

Compatibility
Review

YES

Approved
Annotated

XMI

Load to PROD

caDSR Services

Using SDK
CodeGen?

YES

NO

Perform
Semantic
Integration

(SIW)

UML
Loader

EVS

caDSR
SANDBOX

UML
Loader

Review

XMI
File

Exported
‘native’
Format

Create/Edit
UML

Model

XMI
FileVerified

Annotated UML
Model

Run
caCORE SDK

Code
Generation

XMI
File

Exported
using SDK
3.1 format

SIW
RoundTrip

Load to Sandbox

Load
Success?

No

XMI
File

Roundtrip
UML Model

Input
For Next
Version

Figure 4. Overview of the Semantic Integration Process

As illustrated in Figure 4, items in yellow indicate that a file is produced or revised; items in light
blue indicate that a caCORE SDK component is used; the light green items indicate caDSR or
EVS component and the bright green indicates a public application programmatic interface.

The following sections of this workbook will describe each phase in detail.

 caCORE Training – Course 2010

 Page 11

4.4.1 Phase 1 – Design System and Draw UML Model
The first phase in the caCORE SDK is to design the system and draw a UML model of it. There
are three parts to the system model: the logical model, data model, and data mapping model. All
of these are drawn in UML.

The logical model describes the target domain. The data model describes the database
schema. The object-relational mapping is also modeled. The model is exported as an XMI file
for code generation and DDL script for schema creation.

SDK tools impose modeling guidelines by enforcing naming conventions, package rules, and
element constraints. For example, when creating a UML model, only UML class elements may
be used, other elements such as interface and object may not be used.

Figure 5 is an example of a portion of a logical model.

websys::Article
websys::
Keyword - id: Integer

- title: String
- dateAuthored: Date
- abstractText: String
- fullText: String

Figure 5. Sample Logical UML Model

- id: Integer
- term: String

websys::Author

websys::Issue - id: Integer
- nameFirst: String
- nameLast: String
- dateOfBirth: Date

0..*

+articleCollection

1

+author

0..*

+articleCollection

0..*

+keywordCollection

0..*+articleCollection

0..1+issue

- id: Integer
- datePublished: Date
- title: String

 caCORE Training – Course 2010

 Page 12

Figure 6 is an example of a corresponding data model.

Figure 6. Sample Data Model

Figure 7 below shows a data mapping model illustrating how database tables are identified as
data sources for classes in the logical model.

Figure 7. Sample Data Mapping Model

XMI provides an XML-based representation of UML models for interchange purposes. In
addition to generating the XML from the model, it is possible to generate DDL scripts from the

KEYWORD

*PK «column» ID: BIGINT
* «column» TERM: TEXT

+ «unique» UQ_KEYWORD_ID()
+ «PK» PK_KEYWORD()

ARTICLE_KEYWORD

 FK «column» KEYWORD_ID: BIGINT
*FK «column» ARTICLE_ID: BIGINT

+ «FK» FK_ARTICLE_KEYWORD_KEYWORD()
+ «FK» FK_ARTICLE_KEYWORD_ARTICLE()

ARTICLE

*PK «column» ID: BIGINT
* «column» TITLE: TEXT
* «column» DATE_AUTHORED: DATE
*FK «column» ISSUE_ID: BIGINT
*FK «column» AUTHOR_ID: BIGINT
 «column» ABSTRACT_TEXT: TEXT
* «column» FULL_TEXT: TEXT

+ «FK» FK_ARTICLE_AUTHOR()
+ «FK» FK_ARTICLE_ISSUE()
+ «PK» PK_ARTICLE()
+ «unique» UQ_ARTICLE_ID()

0..*+FK_ARTICLE_KEYWORD_KEYWORD

«FK»

(KEYWORD_ID = ID)

1+PK_KEYWORD

0..*

+FK_ARTICLE_KEYWORD_ARTICLE

«FK»

(ARTICLE_ID = ID)

0..1

+UQ_ARTICLE_ID

Data Model::ARTICLE

*PK «column» ID: BIGINT
* «column» TITLE: TEXT
* «column» DATE_AUTHORED: DATE
*FK «column» ISSUE_ID: BIGINT
*FK «column» AUTHOR_ID: BIGINT
 «column» ABSTRACT_TEXT: TEXT
* «column» FULL_TEXT: TEXT

+ «FK» FK_ARTICLE_AUTHOR(BIGINT)
+ «FK» FK_ARTICLE_ISSUE(BIGINT)
+ «PK» PK_ARTICLE(BIGINT)
+ «unique» UQ_ARTICLE_ID(BIGINT)

Data Model::AUTHOR

*PK «column» ID: BIGINT
* «column» NAME_FIRST: TEXT
* «column» NAME_LAST: TEXT
* «column» DATE_OF_BIRTH: DATE
* «column» INSTITUTION_ID: BIGINT

+ «unique» UQ_AUTHOR_ID(BIGINT)
+ «FK» FK_AUTHOR_INSTITUTION()
+ «PK» PK_AUTHOR(BIGINT)

websys::Article

- id: Integer
- title: String
- dateAuthored: Date
- abstractText: String
- ful lText: String

websys::Author

«DataSource»

«DataSource»

- id: Integer
- nameFirst: String
- nameLast: String
- dateOfBirth: Date

 caCORE Training – Course 2010

 Page 13

data model which can be used to create the database schema. This does not apply to those
who have existing schemas.

After models are constructed in UML using a UML modeling tool, the final part of Phase 1 of the
SDK workflow is to export the model files to XMI. XMI is standard interchange format for UML
models, and many UML modeling tools (including EA), can export models as XMI. The caCORE
SDK uses a UML version 1.3 model as a basis for generating source code and other artifacts,
so your UML model must be exported as UML 1.3 or XMI 1.1 with Unisys/Rose extensions.

Figure 8 below illustrates a snapshot of the settings for your UML model to be exported to XMI.

Figure 8. Export UML Model to XMI Options

Figure 9 below illustrates the first phase of the SDK process, designing the system and drawing
the UML model. The yellow items indicate that a file is produced or revised; the items outlined in
blue indicate the SIW is used; and the blue items indicate documentation artifacts.

 caCORE Training – Course 2010

 Page 14

Test With
CodeGen

Successful?

1d. Running
CodeGen?

1c. SIW Mode 1:
Review Un-

annotated XMI file

NO

Definitions
Present? NO

NO

New caDSR
Datatypes?

Send Request to
NCICB App Support

to create new
Datatypes

1b. Export Model
to XMI Standard

Format

NO

+

Review Model
Documentation
and SIW Error

Panel

+

1a. Create
UML Model

YES

YES

YES

YES

Un-annotated XMI

Exported
XMI

Roundtrip XMI New UML Model

Modify UML Model

1b. Export Model
to XMI 1.1

format

Exported
XMI 1.1
Format

UML Domain Model

Figure 9. SDK Workflow - Phase 1 - Create UML Model

As figure 9 illustrates, the first step is to create a UML model of your system. This can be a new
UML model created in EA or a SIW roundtrip XMI file (top two yellow icons). Once the model is
created, the next step is to export it to XMI v1.1. Then, run the XMI file through the first mode of
the SIW, “Review the un-annotated XMI file”. In this mode, you can to ensure that definitions are
included as tags for all classes and attributes because errors are displayed in the bottom viewer
of the SIW. Any changes can be saved directly to the XMI file. If new datatypes are desired, you
must contact NCICB Application Support. They will review the proposed datatypes and add
them if accepted. If you are going to eventually generate code for your system, now is the time
to test running the XMI file through the Code Generator.

 caCORE Training – Course 2010

 Page 15

4.4.2 Phase 2 – Annotate and Review Model Using the
SIW

The second phase in the SDK workflow is to annotate your UML model with concept codes from
EVS and then to review the annotation.

The annotation involves an iterative, semi-automatic process involving the following steps:

1. Model owner or NCICB runs the Semantic Connector (SIW Mode 3)
2. Semantic Connector Report (XMI) is sent to NCICB
3. EVS staff reviews and inserts additional concepts into the Semantic Connector Report
4. Model owner reviews Curated Semantic Report (annotated with EVS concepts) (SIW

Mode 5)

Figure 10 below provides a visual representation of phase 2 in the SDK workflow.

2a. SIW Mode 3:
Model Owner Runs
Semantic Connector

2d. SIW Mode 4:
EVS Runs Curate

XMI File

Semantic
Connector
“Report”

XMI

Curated XMI

2b, 2c. Send Files and
submission templates to

NCICB App Support

2e, 2f. EVS curates and
verifies EVSReport w/ Model

Owner and EVS sends
Report to NCICB App

Support

Un- annotated
XMI

NCICB logs
Artifacts To
UML Project
Gforge site

Add To Sandbox

Imported
Modeling Tool

Make changes in
UML Model

Annotated
XMI

Rev

ised
Annotated

XMI

2h. UML Model
Changes?

Any new caDSR
Datatypes
needed?

2g. SIW Mode 5:
Review Annotated

Model

Y
E
S

Verified
Annotated

XMI

NO

2i. Final?

Add to caDSR
Production

Review Model
Documentation

Send Verified Annotated
XMI with Revised

Submission Package to
NCICB App Support

For Loading to Sandbox

Export
Annotated

XMI

YES

NO

YES

NO

 caCORE Training – Course 2010

 Page 16

Figure 10. SDK Workflow - Phase 2 - Annotate UML Model using SIW

The input to phase 2 of the SDK workflow is the un-annotated XMI file from phase 1 (top left
yellow box). This file has definitions included for all classes and attributes. The model owner
runs this XMI file through user mode 3 of the SIW, the Semantic Connector. This mode
performs an EVS search for each element in the UML model and attaches one or more EVS
concepts per element. The output is a Semantic Connector Report (XMI) (top middle yellow
box). The Semantic Connector Report and other required files are sent to NCICB Application
Support (top right blue box). These artifacts are logged to the proper UML project site in GForge
(middle right white box). The EVS team then runs the Semantic Connector Report through user
mode 4 of the SIW, Curate XMI file. During this step the EVS teams adds and removes
concepts and indicates semantic mapping for each model element. After curating the XMI file,
the EVS team then verifies the EVS report with the model owner and then sends the report back
to NCICB Application Support. NCICB Support then sends the annotated XMI file to the model
owner for review.

TO review the annotated XMI file, the model owner uses mode 5 of the SIW – Review
Annotated Model. If the model is complete and requires no changes or additional data types, the
file is saved as a verified annotated XMI file and sent to NCICB Application Support with a
revised submission package.

4.4.3 Phase 3 – Load Model to caDSR
Phase 3 of the SDK workflow is to load the UML model to caDSR. This is done by NCICB staff
using the UML Loader. Figure 11 illustrates the process for loading a model to caDSR.

 caCORE Training – Course 2010

 Page 17

Verified
Annotated

XMI

Approved
Annotated XMI

caDSR
Production

3d. UML Load
to Prod

3f. Submit to
VCDE WS

Compatibility
Review

Compatibility
Review

Documents

3g. Model
Approved?

caDSR
Sandbox

3e. Post Load
Curation

3a. UML Load
to Sandbox

3b-c. Load
Successful?

Compatibility
Review

Feedback

Approved
Annotated XMI

YES

NO

YES

NO

Figure 11. SDK Workflow - Phase 3 – Review Annotated Model

The input to phase 3 is the output from phase 2, the verified annotated XMI file. This file is
loaded to the caDSR sandbox environment by NCICB using the UML Loader. If the load was
successful, the model is then reviewed and then loaded to the production environment. The
model owners and an assigned caDSR curator then perform necessary curation activities on the
metadata loaded into caDSR. These activities could include curating value domains and setting
the workflow status to “Released” for completely curated metadata. The approved annotated
XMI file is then submitted to the VCDE workspace for compatibility review. Once approved for
compatibility and documentation (blue boxes on right) is generated, the next step is to generate
code and deploy the system.

4.4.4 Phase 4 –Generate Code and Deploy System
The final phase in the SDK workflow is to generate code and then to deploy the system.

 caCORE Training – Course 2010

 Page 18

The first step of this phase is to set the properties of your project including specific project
information, model details, and data source properties. This prepares your model for code
generation. The final step is to run the code generator.

The code generator:

• Applies transformations to the model
• Generates, compiles and packages code
• Deploys .war file to Java servlet container
• Starts instance of Java servlet

In addition to the UML model, the Code Generator uses several inputs to build the system code
and configuration files. More detail on this process will be covered in Lesson 2 of this course.

Figure 12 below illustrates phase 4 of the SDK workflow.

Figure 12. SDK Workflow - Phase 4 – Load into caDSR, Generate Code and Deploy
System

As in the previous workflow slides, the yellow items indicate that a file is produced or revised;
the blue items indicate a documentation artifact; the light green items indicate a caDSR
component (environment); and the bright green item indicates public application programmatic
interface.

Approved
Annotated XMI

4b. Develop APIs

Public APIs

4c. Validate APIs

Metadata
Retrieval caDSR

Production
RoundTrip

Annotated XMI

4a. SIW
Roundtrip

Input for Next
Version

 caCORE Training – Course 2010

 Page 19

Phase 4 begins with the annotated XMI file approved for compatibility. That file can be run
through user mode 2 of the SIW – XMI Roundtrip OR can be used to develop APIs with the
Code Generator.

The SIW Roundtrip annotates the XMI file with caDSR public IDs. This step is helpful when a
prior version of the model was previously loaded or if the model shares classes and/or attributes
with another model.

Once the metadata is completely loaded and curated in the production environment, the next
steps are to generate code and deploy the system. To generate code, the Approved Annotated
XMI file is used by the Code Generator to develop APIs which are used to retrieve metadata
from the caDSR.

This concludes the 4 major phases of the caCORE SDK workflow. The rest this session will
cover more specifics for modeling and generating code.

4.5 Modeling for Semantic Interoperability
When creating a model for semantic interoperability, keep the following points in mind:

• A logical model is the basis for semantic integration and is also used to generate the
caCORE-like system

• A class diagram model the target domain. When modeling the target domain we are
interested in the real-world depiction of the system (i.e. the scientific view of the domain)
rather than a technical view (database-centric, etc).

• Focus on the objects that are part of the target domain (these will be modeled as UML
classes), their properties (modeled as UML attributes) and the relationship between
them (modeled as UML associations).

o The distinction here is an important one. The modeler is free to use all of the
capabilities of the UML when designing a system. For example, we advocate use
cases and use-case diagrams as an effective way of capturing the business and
technical requirements of the system. However, the SDK tools can only
recognize certain portions of the UML model.

• The user must specify the desired packages for code generation. The tools can be
instructed to include/exclude certain portions of the model, enabling great flexibility and
aiding evolutionary development.

• Constraints ensure that the model is complete, helps the generation of code and aids in
performing semantic integration. You must be aware of the following constraints placed
on models by the SDK transformers.

Constraint 1: Allowable UML Elements
Models can contain any element, but only UML class elements are recognized by SDK tools.
Classes may contain both attributes and operations, but operations will be disregarded by the
SDK tools. Because a caCORE-like system is primarily a data management framework, the
SDK templates expose only the attributes.

Constraint 2: Attribute Types
Attribute types must be defined as Java primitive data types (int, float, etc.) or wrapper objects
(java.lang.String, java.lang.Integer, etc.). Complex types should be modeled as associations. It

 caCORE Training – Course 2010

 Page 20

is recommended to define Java primitive objects in model and to note enumerated value
domains.

Figure 13 shows examples of explicitly defining the Java primitive wrapper classes using two
modeling tools—Enterprise Architect and Poseidon.

 Enterprise Architect Poseidon

Figure 13. Java Primitive Wrapper Objects

So far we have looked at the modeling constraints dealing with classes and their attributes. The
next three constraints look at the specific details of defining associations.

Constraint 3: Allowable Relationships
The SDK tools recognize association and Inheritance (generalization) relationships.
Aggregations and compositions are allowed in the model, but are treated the same as simple
associations. The Enterprise Architect associations (or “Link”) menu is shown in Figure 14 to
demonstrate the types of associations recognized by the SDK.

Figure 14. Acceptable Associations

 caCORE Training – Course 2010

 Page 21

Constraint 4: Association End Role Names
Both ends of each association must be given a role name which indicates the role of each
object. This naming is used to generate method names by SDK. The naming convention for
association role names is to use the associated class name. If the multiplicity of the association
is more than 1, append the word “Collection” to the class name for the role name.

Association end role names allow the modeler to indicate how two classes are related to each
other. The SDK then uses these names when creating get/set methods for the classes. For
example, if there are two classes, Car and Person, there are probably multiple associations
between these classes. For example, a Car could have one or more owners. It may also have a
driver. End role names provide a way to differentiate and semantically describe each of these
associations.

Constraint 5: Association End Multiplicity
The multiplicity of each association must be defined. This determines use of collections as
necessary

Constraint 6: Association End Navigability
The navigability (direction) of each association end must be explicitly defined. This determines
the visibility of related objects

Constraints 4-6 ensure the completeness of the model so that the SDK UML Loader and Code
Generator can handle associations.

Figure 15 below represents a simple example of an association that meets the three association
constraints (4, 5, and 6). End roles have been named; the multiplicity (or cardinality) has been
defined as has the navigability (or directionality).

domain::Gene

domain::Target
- id: Long
- title: String
- symbol: String
- locusLinkSummary: String
- OMIMID: String
- locusLinkId: String
- clusterId: Long

0..*

+geneCollection

0..*

+targetCollection
- id: Long
- type: String
- name: String

Figure 15. Associations (Constraints 4, 5, 6)

Constraint 7: Mandatory definitions and “Logical Model” Package
ALL classes and attributes must have a textual description to facilitate semantic interoperability.
A definition for each class must be entered as a value into Tagged Values using
“documentation” as the tag name (case-sensitive). A definition for each attribute must be
entered as a value into Tagged Values using “description” as the tag name (case-sensitive).
The method for adding tagged values varies for each modeling tool; refer to the tool
documentation to determine how to add tagged values. It is important that all elements reside in
the “Logical Model” package; the SIW will ignore all other packages.

 caCORE Training – Course 2010

 Page 22

Class and attribute descriptions are absolutely critical for semantic interoperability. Figure 16
illustrates that the UML model must reside in the Logical Model package within the UML
modeling tool structure.

 Enterprise Architect Poseidon

Figure 16. Logical Model Package

Constraint 8: ID Attribute
For the SDK to properly generate the methods for your system, every domain object must have
a mandatory “id” attribute.

Constraint 9: Java Limitations
UML models should not use Java reserved words as class or attribute names. Model elements
must not use hyphens, angle brackets or other reserved characters that will result in Java
compilation errors.

Review: SDK Modeling Constraints

1. Only UML class elements are recognized.
2. Associations and generalizations are registered by the UML Loader.
3. Attribute types must be Java primitive data types.
4. Each association end must be given a name.
5. Association end multiplicity must be defined.
6. Association end navigability must be defined.
7. Each class and attribute must have a description and reside in the “Logical Model”

package.
8. Every domain object must have an “id” attribute.
9. Java reserved words should not be used.

4.5.1 Naming Best Practices
To ensure semantic interoperability, you should pay close attention to the class and attribute
java bean specification. Decisions on how to name UML elements affect the creation of CDEs in
the caDSR by the UML Loader, as well as the generation of the system by the Code Generator.
When creating UML classes and attributes, below are some helpful tips when naming model
elements.

 caCORE Training – Course 2010

 Page 23

Adopt a consistent naming convention that is used throughout your model (and organization).
For example use UpperCamelCase for class names, lowerCamelCase for attribute names and
UNDERLINED_CAPS for constant names.

Avoid using class identifiers in attribute names. For example, use id instead of geneId and name
instead of chromosomeName. This is particularly important for CDE creation by the UML
Loader. According to the ISO metamodel, a data element concept is composed of an object
class (with qualifiers) and a property (with qualifiers). The UML Loader maps UML classes to
object classes and UML attributes to properties. If the class name is included in the attribute
name, then the property created by the UML Loader will include a qualifier which is the same as
the class name. In this case, the data element concept will include the class name twice (for
example, Gene Gene Identifier)

Avoid using abbreviations and acronyms. For example, use DatabaseReference instead of
DbRef. However, it is acceptable to use ID instead of identifier and SNP instead of
singleNucleotidePolymorphism.

Avoid technical jargon. For example, use Microarray instead of Chip.

Never pluralize class or attribute names. Don’t forget to add “Collection” to association ends
where the multiplicity is greater than one.

Do not use Java reserved words as class or attribute names as this prevents the Code
Generator form compiling the generated system code.

Review of naming conventions:

• Be consistent!
• Adopt a case convention.
• Avoid using class identifiers in attribute names.
• Abbreviations and acronyms should be avoided.
• Avoid technical jargon.
• Never pluralize class and attribute names.
• Add “Collection” to association ends with multiplicity >1.
• Don’t use Java reserved words

5 Lesson 2: Code Generation
Lesson 2 includes the following content:

• Learning Objectives
• caCORE Architecture
• Data Modeling
• Running the Code Generator

5.1 Learning Objectives
Upon completion of this session, you will be able to:

 caCORE Training – Course 2010

 Page 24

• Evaluate the caCORE architecture and its benefits
• Describe the elements of a data model and data mapping model
• Locate and modify the build parameters of a system
• Use Ant targets to build and deploy a system

5.2 caCORE Architecture Review
caCORE is a data management framework designed for researchers who need to be able to
navigate through a large number of sources. caCORE is NCICB’s platform for data
management and semantic integration, built using formal techniques from the software
engineering and computer science communities.

caCORE is based on n-tier architecture. This architecture separates the application into a series
of tiers. This architecture frees the end-user from needing to understand the implementation
details of the underlying data system to retrieve information.

caCORE Architecture provides middleware between data and presentation:

• Object-relational mapping (Hibernate)
• Data Access Objects
• Domain objects (Java Beans)
• Application Service
• Interfaces (Web services, HTTP remoting, XML-HTTP)
• Utilities (logging, etc.)

Figure 17 illustrates an example of a 2 tier system (the client on the left hand side (green boxes)
and the server that returns the data (dark red box)).

 caCORE-Like Server

Java

Web
Services

XML-HTTP
Object-

Relational
Mapping

Application
Service
Layer

Security

Data
Source

Delegation

Perl Client

Web Services
Client

XML-HTTP
Client

Java Client

RDBMS

Non-ORM
Mapping

RDBMS

Non-
Relational

Data
Source

CSMHTTP

HTTP

HTTP

SOAP

remoting

REST

HTTP

SOAP

Figure 17. caCORE Architecture

 caCORE Training – Course 2010

 Page 25

To isolate the client from implementation details, a data system can be built with one or more
layers of ‘middle ware’, software whose purpose is to act as a bridge between the server and
the client. Figure 18 below illustrates sample middleware (blue boxes).

 Java Client

P
resentation Tier

Business Tier

Client Library

HTTP
Client

Domain Objects

caCORE-Like Server

Java

Web
Services

XML-HTTP
Object-

Relational
Mapping

Application
Service
Layer

Security

Data
Source

Delegation

RDBMS

Non-ORM
Mapping

RDBMS

Non-
Relational

Data
Source

CSMHTTP

remotingApp.
Service
Layer

Figure 18. caCORE Architecture

5.3 Data Modeling
The UML Data Modeling profile is not a ratified standard but is widely accepted since it allows
you to model database tables, columns, keys, triggers, constraints, and other relational
database features. Besides modeling database tables, you can generate scripts to create tables
for your database.

When using the caCORE SDK, creating a data model is optional, but it allows you to
automatically create your Object Relational Mapping (ORM).

When constructing a data model, keep the following points in mind:

• The Database schema is modeled in UML
o Standardized language (sort of)
o Same language and tool as logical modeling
o Enables object-relational mapping

• Leverages UML Data Modeling Profile
• Heavy use of stereotypes and tagged values is strongly encouraged

Data model diagrams are similar to class diagrams since they both show classes and
associations among classes. The difference is that data model classes are of stereotype “table”,
so the modeling tool displays them differently and supports difference operations on them.

Figure 19 below is Data Model example of a table named Articles.

 caCORE Training – Course 2010

 Page 26

 ARTICLES

*PK «column» ARTICLE_ID: BIGINT
* «column» TITLE: TEXT
 «column» PUBLICATION_DATE: DATE
 FK «column» AUTHOR_ID: BIGINT

+ «FK» FK_ARTICLES_AUTHORS(BIGINT)
+ «PK» PK_ARTICLES(BIGINT)

Figure 19. Data Model Example

5.3.1 Process Overview
When performing Data Modeling you must first draw the logical model (the class diagram).
Refer to the caCORE SDK Programmer’s Guide for detail in performing this step.

The next step is to draw the data model. The data model is the model of the database schema.

The last step is to draw the data mapping model. This model maps domain objects to database
tables, maps attributes to database columns, and maps object associations to table
relationships.

5.3.1.1 Draw Model of Schema (Data Model)
After the logical model has been created, the next step is to draw the data model of the
database schema.

First, create a table in the data model for each class in the logical model. Each table is named
similar to the name of its corresponding class. For example, the Article class maps to the
ARTICLES data model table. Using a consistent naming strategy is good practice because it
makes the model easier to understand. Such a naming strategy - using the same name that is in
the object model with capital letters for the data model - is recommended by the caCORE team.

When drawing the Data Model:

• Use class objects with <<table>> stereotype
• Columns appear as <<column>> attributes
• Use associations to map relationships
• EA provides facility to handle foreign keys
• Don’t forget correlation tables for many-to-many relationships
• Constraints (PK, FK, index, etc.) modeled as UML operations

Figure 20 below illustrates an example data model.

 caCORE Training – Course 2010

 Page 27

ARTICLES

 *PK «column» ARTICLE_ID: BIGINT
* «column» TITLE: TEXT
 «column» PUBLICATION_DATE: DATE
 FK «column» AUTHOR_ID: BIGINT

+ «FK» FK_ARTICLES_AUTHORS(BIGINT)
+ «PK» PK_ARTICLES(BIGINT)

Figure 20. Database Schema Example

The table for Articles contains the table stereotype icon in the top right corner of the box. The
attributes (ARTICLE_ID, TITLE, etc) are stereotyped as columns and are represented in all
caps with underscores between words.

A foreign key (FK) is a collection of attributes (columns) that enforce a relationship to a primary
key (PK) in another table. When there is a many to many relationship between 2 tables, a
correlation table is required. This correlation table is illustrated in Figure 21 below.

 AUTHORS

Figure 21. Foreign Keys

Since ARTICLES to AUTHORS is a many to many relationship a correlation table of
ARTICLES_AUTHORS is created. As indicated in Figure 21 above, the foreign key,
ARTICLE_ID is the link between the ARTICLES and ARTICLES_AUTHORS tables.

*PK «column» AUTHOR_ID: BIGINT
* «column» AUTHOR_NAME: BIGINT

+ «PK» PK_AUTHORS(BIGINT)
+ «unique» UQ_AUTHORS_AUTHOR_ID(BIGINT)

ARTICLES_AUTHORS

*FK «column» ARTICLE_ID: BIGINT
*FK «column» AUTHOR_ID: BIGINT

+ «FK» FK_ARTICLES_AUTHORS_ARTICLES(BIGINT)
+ «FK» FK_ARTICLES_AUTHORS_AUTHORS(BIGINT)

ARTICLES

*PK «column» ARTICLE_ID: BIGINT
* «column» TITLE: TEXT
 «column» PUBLICATION_DATE: DATE

+ «PK» PK_ARTICLES(BIGINT)

0..*

+FK_ARTICLES_AUTHORS_ARTICLES

«FK»

(ARTICLE_ID = ARTICLE_ID)

1+PK_ARTICLES

0..*

+FK_ARTICLES_AUTHORS_AUTHORS

«FK»

(AUTHOR_ID = AUTHOR_ID)

1+UQ_AUTHORS_AUTHOR_ID

 caCORE Training – Course 2010

 Page 28

5.3.1.2 Map Object to Tables
After the data model is created, the next step in data mapping is to map objects to tables. This
is done in the modeling tool by using dependency relationships. Dependencies have a
<<DataSource>> stereotype. A Table is the DataSource for object.

Figure 22 below illustrates mapping an object to a table using UML.

 ARTICLES

Logical Model::Article
*PK «column» ARTICLE_ID: BIGINT
* «column» TITLE: TEXT
 «column» PUBLICATION_DATE: DATE

 - id: java.lang.Integer
- ti tle: java.lang.String
- publicationDate: java.uti l.Date

+ «PK» PK_ARTICLES(BIGINT)

«DataSource»

Figure 22. Mapping an object to a table

5.3.1.3 Map Attributes to Columns
After mapping objects to tables, the next step is to map Attributes to Columns. This mapping is
performed using tagged values “mapped-attributes”. Tagged values take fully-qualified names,
such as gov.nih.nci.cabio.domain.Gene.id. A column can map to multiple attributes.

5.3.1.4 Map Associations to Relationships
The next step is to map Associations to Relationships. Table relationships that implement object
associations must be explicitly mapped. This mapping is done by using tagged values. Tagged
values take fully-qualified names, such as gov.nih.nci.cabio.domain.Chromosome.taxon.

There are four different kinds of mapping for associations to relationships:

1. One-to-one foreign keys (implements-association)
2. Correlation tables (correlation-table)
3. Many-to-many foreign keys (implements-association)
4. Many-to-many bidirectional (inverse-of)

This can be a bit tricky. The best way to learn mapping is to explore the example model
provided with the SDK. Be sure to contact NCICB Application Support with any questions.

5.3.2 Existing Database Schema
If you already have a database schema, you can reverse engineer the schema into UML. This
allows for object-relational mapping. This step is not required, but can manually configure the
ORM. Figure 23 illustrates how to import a schema from an outside source.

 caCORE Training – Course 2010

 Page 29

Figure 23. Import Database Schema

5.4 Running the Code Generator
When you have created an object model and a data model, exported those models to XMI,
generated a DDL script from the data model, annotated your model with immutable concept
codes from EVS, and registered your metadata in caDSR (enabling semantic interoperability),
the next step is to generate the Java source code for a data access API. This section describes
how to generate the code for an API using the XMI file you generated.

The Code Generator actually creates the caCORE-compatible software system. It takes the
UML model (including the object model and data model) and generates Java-Beans that are
used in the caCORE-like application. It also generates the Object Managers and Data Access
Objects that are used by the JavaBeans to retrieve information from the relational databases
that are the source of the data itself. The Code Generator also generates an XML Schema and
corresponding Castor XML Mapping files. These files are useful while marshalling and un-
marshalling domain objects to and from XML, as well as validating the generated XML. Finally,
the Code Generator also creates a Web Services Deployment Descriptor (WSDD) file, which is
useful for enabling Web Services access to the generated domain objects. This software system
runs in an appropriate web services container such as Apache Tomcat.

Figure 24 below illustrates the directory structure of the Code Generator. Details on setting up
this structure can be found in the caCORE SDK 3.2 Installation and Basic Test Guide
(ftp://ftp1.nci.nih.gov/pub/cacore/SDK/v3.2/caCORE_SDK_32_Installation_and_Basic_Test_Gui
de.pdf).

ftp://ftp1.nci.nih.gov/pub/cacore/SDK/v3.2/caCORE_SDK_32_Installation_and_Basic_Test_Guide.pdf
ftp://ftp1.nci.nih.gov/pub/cacore/SDK/v3.2/caCORE_SDK_32_Installation_and_Basic_Test_Guide.pdf

 caCORE Training – Course 2010

 Page 30

Configuration files
Sample clients

UML models
Required jar files

SDK source code
Output (server/client files)

Figure 24. Code Generator Directory Structure

An overview of the Code Generator Process includes:

1. Configure properties
2. Build the system
3. Test the system

5.4.1 Configure Properties
When configuring properties for the Code Generator, note that the Properties files are located in
the conf directory. We are primarily interested in deploy.properties. Figure 25 below illustrates a
sample properties file.

 caCORE Training – Course 2010

 Page 31

Figure 25. Sample Properties File

When configuring files, the needed tools for directory locations include: Tomcat, Ant, and
MySQL. Tomcat and MySQL are needed for software download and installation. The Database
settings include Server type and location. The necessary model information includes: filename
(in models/xmi directory), packages to include/exclude, and whether to run the XMI pre-
processor. The Database information includes: Schema name, Username / password, and DDL
/ data dump filenames. For a complete reference, please refer to the caCORE 3.2 SDK
Installation and Basic Test Guide.

5.4.2 Build the System
To build your system:

1. In a Command Prompt window, enter cd {home_directory} to go to your home directory
(for example, in Windows c:\cacoretoolkit).

2. Enter ant build-system. Ant messages display as each task is processing. The build-
system task builds the entire system and deploys the software to the webapp directory of
the web application server installation specified in the deploy.properties file.

3. After your web application server has completely finished starting, run the following
command to deploy the system web services: ant deployWS.

 caCORE Training – Course 2010

 Page 32

Figure 26 is a table of useful ant targets for building a system.

creates server and client packages, respectivelypackage-server, package-client

creates Java-based domain objects from UML model using templatesbuild-beans

creates .war package containing server files and client.zip containing
client jars

package-system

creates JavaDoc documentation for SDK toolkit classesdoc

formats source code using Jalopy plugin for Antformat

compiles framework classes, generates project source code and ORM
configuration, compiles project code, creates package, deploys
package and starts instance of JBoss/Tomcat

build-system

removes project code (SDK source, configuration and demo files remain
intact)

clean

compiles and runs test client application (demo/TestClient.java)rundemo

deploys system and start J2SE containerdeploy

deletes, recompiles and packages caCORE framework classes (source
files located in src directory)

build-framework

DescriptionTarget

creates server and client packages, respectivelypackage-server, package-client

creates Java-based domain objects from UML model using templatesbuild-beans

creates .war package containing server files and client.zip containing
client jars

package-system

creates JavaDoc documentation for SDK toolkit classesdoc

formats source code using Jalopy plugin for Antformat

compiles framework classes, generates project source code and ORM
configuration, compiles project code, creates package, deploys
package and starts instance of JBoss/Tomcat

build-system

removes project code (SDK source, configuration and demo files remain
intact)

clean

compiles and runs test client application (demo/TestClient.java)rundemo

deploys system and start J2SE containerdeploy

deletes, recompiles and packages caCORE framework classes (source
files located in src directory)

build-framework

DescriptionTarget

 Figure 26. Useful ant Targets

5.4.3 Test the System
After the system is built, the next step is to test the system. To do so:

1. Verify that server deployed properly
• Check that container is running
• Check HTTP proxy

2. Verify that schema exists and has data
• Only if SDK is creating schema
• Method depends on database server

3. Verify using sample client program
• Easiest way is to modify provided test client

Figures 27-29 below are screen shots of testing a sample system.

 caCORE Training – Course 2010

 Page 33

Figure 27. Testing the System

To ensure classes were generated properly, Figure 28 illustrates the sample application for the
class Gene.

Figure 28. Testing the System

Figure 29 illustrates a sample results set for searching “IL*” for a symbol for the gene class.

 caCORE Training – Course 2010

 Page 34

Figure 29. Testing the System - HTTP Interface

There are nine results related to the search term from Figure 29.

5.4.4 Troubleshoot Common Problems
Here are a few problems you may encounter when generating your system and a few possible
reasons.

Installation errors:

• Installation path contains spaces or is otherwise inaccessible
• Permissions issues on Linux (especially MySQL)
• MySQL / Tomcat cannot download

Configuration errors:
• Incorrect or improper file paths / filenames
• Database schema does not exist (or DB not running)

Connectivity issues:
• Hibernate requires DTD to validate/parse ORM configuration

Model errors:
• Data types are not properly defined
• Packages are incorrectly named or in the wrong place
• Class / attributes names use Java reserved words
• Data mappings are missing
• XMI is not in the proper format

 caCORE Training – Course 2010

 Page 35

6 Further Reading
Here are a few links to documentation that are supplements to this training workbook.

caCORE SDK Programmer’s Guide
• ftp://ftp1.nci.nih.gov/pub/cacore/SDK/v3.2/caCORE_SDK_32_Programmers_Guide.pdf

caCORE Technical Guide
• ftp://ftp1.nci.nih.gov/pub/cacore/caCORE3.2_Tech_Guide.pdf

caCORE Web site
• http://ncicb.nci.nih.gov/NCICB/infrastructure/cacoresdk

caCORE SDK 3.2 Installation and Basic Test Guide
• ftp://ftp1.nci.nih.gov/pub/cacore/SDK/v3.2/caCORE_SDK_32_Installation_and_Basic_Te

st_Guide.pdf

7 Contact Information
If you have any questions or comments regarding the content of this course, please contact the
following people:

Trainer
• Jennifer Brush (jbrush@ScenPro.com)

NCICB Liaison
• Dianne Reeves (reevesd@mail.nih.gov)

Application Support
• ncicb@pop.nci.nih.gov

You can also visit the following links for additional information:

caDSR Home Page
• http://ncicb.nci.nih.gov/NCICB/infrastructure/cacore_overview/cadsr

caDSR Training Home Page

• http://ncicb.nci.nih.gov/NCICB/training/cadsr_training

caDSR Training ListServ

• https://list.nih.gov/archives/cadsr_training-l.html
• http://list.nih.gov

caDSR Training Tools – Staging Server URL (Training Context)
 CDE Browser/Form Builder

• http://cdebrowser-stage.nci.nih.gov/

ftp://ftp1.nci.nih.gov/pub/cacore/SDK/v3.2/caCORE_SDK_32_Programmers_Guide.pdf
ftp://ftp1.nci.nih.gov/pub/cacore/caCORE3.2_Tech_Guide.pdf
http://ncicb.nci.nih.gov/NCICB/infrastructure/cacoresdk
ftp://ftp1.nci.nih.gov/pub/cacore/SDK/v3.2/caCORE_SDK_32_Installation_and_Basic_Test_Guide.pdf
ftp://ftp1.nci.nih.gov/pub/cacore/SDK/v3.2/caCORE_SDK_32_Installation_and_Basic_Test_Guide.pdf
mailto:reevesd@mail.nih.gov
http://ncicb.nci.nih.gov/NCICB/infrastructure/cacore_overview/cadsr
http://ncicb.nci.nih.gov/NCICB/training/cadsr_training
https://list.nih.gov/archives/cadsr_training-l.html
http://list.nih.gov/
http://cdebrowser-stage.nci.nih.gov/

	Introduction
	Course Details
	Course Outline
	Lesson 1: Semantic Interoperability
	Learning Objectives
	What is the caCORE SDK?
	SDK Components
	Semantic Integration Workbench (SIW)
	UML Loader
	Code Generator

	SDK Workflow
	Phase 1 – Design System and Draw UML Model
	Phase 2 – Annotate and Review Model Using the SIW
	Phase 3 – Load Model to caDSR
	Phase 4 –Generate Code and Deploy System

	Modeling for Semantic Interoperability
	Naming Best Practices

	Lesson 2: Code Generation
	Learning Objectives
	caCORE Architecture Review
	Data Modeling
	Process Overview
	Draw Model of Schema (Data Model)
	Map Object to Tables
	Map Attributes to Columns
	Map Associations to Relationships

	Existing Database Schema

	Running the Code Generator
	Configure Properties
	Build the System
	Test the System
	Troubleshoot Common Problems

	Further Reading
	Contact Information

