CACORE
SOFTWARE DEVELOPMENT KIT 3.2.1

Programmer’s Guide

i&: NIATIONAL
e (CANCER
[ITUTE

% (C Center for Bioinformatics
thf‘?ﬂ

This is a U.S. Government work Revised July 16, 2007

CREDITS AND RESOURCES

caCORE SDK 3.2 Contributors

Development

Programmer's Guide

Program Management

Anwar Ahmad? Thai Le! Anwar Ahmad® Tara Akhavan!
Prerna Aggarwal® Art Lian? Steve Alred® Steve Alred
Gavin Brennan’ Ying Long? Michael Connolly? Bill Britton’
Vanessa Caldwell’ Wei Lu’ Dan Dumitru® Peter Covitz?

Ben Chapman’

Christophe Ludet®

Wendy Erickson-Hirons®

Charles Griffin®

Ram Chilukuri® Harsh Marwaha® Jill Hadfield 2 Frank Hartel?

Michael Connolly* Doug Mason? Shan Jiang* George Komatsoulis?
Eric Copen?® Kunal Modi* George Komatsoulis? Sichen Liu?

Kim Diercksen’ Shaziya Muhsin® Christophe Ludet® Krishnakant Shanbhag2

Dan Dumitru®

Kim Ong®

Doug Mason?

Denise Warzel?

Craig Fee’

Satish Patel*

Kunal Modi*

Gilberto Fragoso?

Ralph Rutherford’

Shaziya Muhsin®

Steven Hunter?

Nick Schroedt

Satish Patel?

Jane Jiang3 Jiang Scott! Tracy Safran?

Shan Jiang* Claire Wolfe’ Nick Schroed!

Sriram Ye wut Krishnakant Shanbhag?
Kalyanasundaram’

Doug Kanoza’ Rob Wynne® Denise Warzel 2

Alan Klink” Bob Wysong’ Ye wul

Vinay Kumar® Nafis Zebarjadil Nafis Zebarjadil

Norval Johnson’

Jennifer Zeng?

1 science Applications
International Corpora-
tion (SAIC)

3 Oracle Corporation

SNorthrop-Grumman

" Terpsys

2 National Cancer Insti-
tute Center for Bioinfor-
matics (NCICB)

4 Ekagra

6 Northern Taiga Ven-
tures, Inc.

8 Semantic Bits

9Management System
Designers, Inc.

caCORE SDK 3.2.1 Programmer’s Guide

The following table lists each caCORE area or tool described in this guide and its cur-
rent version. GForge is a cross project collaboration site for NCICB caCORE develop-
ers located at http://gforge.nci.nih.gov/projects/cacore/. Additional information for tools
can be found at the GForge project listed in the URL.

,:raec;/(?rzgl Description Version GForge URL
cacoresdk The NCICB caCORE Software 3.2.1 http://gforge.nci.nih.gov/
Development Kit is a set of tools projects/cacoresdk/
designed to aid in the design and
creation of a 'caCORE-like' soft-
ware system.
caAdapter The caAdapter Model Mapping 3.2.01 http://gforge.nci.nih.gov/
Service is a tool that facilitates projects/caadapter/
object to database mapping.
SIW The Semantic Integration Work- | 3.2 https://gforge.nci.nih.gov/
bench (SIW) is designed to facili- projects/siw/
tate the semantic annotation
process.
UML Loader | The UML Loader is a Java appli- | 3.2 https://gforge.nci.nih.gov/
cation that transforms UML projects/siw/
object model class diagrams into
caDSR metadata, creating or
reusing existing caDSR adminis-
tered components as needed.
Common The CSM provides application 3.2 http://gforge.nci.nih.gov/
Security developers with powerful security projects/security/
Module tools to allow application devel-
(CSM) opers to integrate security with

minimal coding effort.

http://gforge.nci.nih.gov/projects/cacore/
https://gforge.nci.nih.gov/projects/siw/
https://gforge.nci.nih.gov/projects/siw/
http://gforge.nci.nih.gov/projects/security/
http://gforge.nci.nih.gov/projects/caadapter/
http://gforge.nci.nih.gov/projects/cacoresdk/

The following NCICB listserv facilities are pertinent to this SDK Programmer’s Guide.

LISTSERV

URL

Name

caBIO_Users

https://list.nih.gov/archives/cabio_users.html

caBIO Users Discus-
sion Forum

caBIO_Developers

https://list.nih.gov/archives/
cabio_developers.html

caBIO Developers Dis-
cussion Forum

caCORE_SDK_ https://list.nih.gov/archives/ caCORE SDK Users
Users cacore sdk users-l.html Discussion Forum
caCORE_SDK _ https://list.nih.gov/archives/cacore_sdk_dev- | caCORE SDK Develop-
Developers L.html ers Discussion Forum

caDSR_Users

https://list.nih.gov/archives/cadsr_users.html

Cancer Data Standards
Repository

NCI EVS Listserv

https://list.nih.gov/archives/ncievs-l.html

NCI Vocabulary
Services Information

https://list.nih.gov/archives/cabio_users.html
https://list.nih.gov/archives/cabio_developers.html
https://list.nih.gov/archives/cacore_sdk_users-l.html
https://list.nih.gov/archives/cacore_sdk_dev-l.html
https://list.nih.gov/archives/cadsr_users.html
https://list.nih.gov/archives/ncievs-l.html

caCORE SDK 3.2.1 Programmer’s Guide

TABLE OF CONTENTS

Chapter 1
Using the Software Development Kit Programmer’s Guide 1
INtroductionccoviiiiiiiiiiiii s 1
Recommended Reading ..o, 2
Organization of this Guide ..., 2

Chapter 2
NCICB caCORE Infrastructureoceeevrevenernnesncenncsnnnesneesnensnenns 5
caCORE Infrastructure OVerview ..o 5
caCORE Development Principles ..., 5
CABIG .o 7
caBIO as an Example Systemccccccciviiiiiiiiiiiiiiiiiiccicccee 7
Model Driven Architecturecccccevivieiiiiiiiniiiiiinceeeeieeeeceeeeee 7
n-tier Architecture and Consistent APISsccccoeiiiiiiiiiiiiie, 7
Metadata and Controlled Vocabulariescccoccoiiiiiiii. 8
Registration of Metadata in the caDSRccccocooiiiiiiiii 10
Examples of caCORE-Like Systemsccccccooeviiiiiiiiiiiiiccc 12
Finalizing the Development Processcccccoceeeiiiiieiceieiceccc 13
Software Configuration Managementcccccoviiiiiiiiiinicce 13

Chapter 3
caCORE Software Development Kit Architecturecceuevnenens 15
caCORE 3.2.1 SDK Minimal System Requirementscccccceeincnnnnene. 15
CaCORE SDK Packageccccccooeiiiiiiiiiiiciiiiccc s 16
caCORE SDK Software and Technology Requirementsc..ccccceeuennee. 16
Additional SOftware ... 22
Documentation and Style TOOISc.ccccoceiiiiiiiiiie, 23
SDK Installationcccccoiiiiiiiiiiiiii s 24

caCORE SDK 3.2.1 Programmer’s Guide

Chapter 4
caCORE SDK Process WOrkflowceeevueennnneeennnncnsenncnnnnnnee 25
Overview of the SDK Process WOorkflowcccccccoviiiiiiiiiiiiiiiicne, 25
caCORE SDK Components and Their Functionscccccoevveiviiiiiiiiinnnne. 26
Semantic Integration Workbench ..., 26
UML Loader ... 26
Code GeNeTatorcccouiuiiiiiiiiiiiic e 27
caCORE SDK Process Flow Detailscccccoeiiiiiiiiiiiiiiiiiiicccs 27
Step-by Step WOrkflow ..o, 29
End Result: A caCORE-Like Systemc.ccccccceeiiiiniiniiiniiiiicce, 30

Chapter 5
Creating the UML Modelscoirrrevvcnisunsnsensenencnncsncsensenessenns 31
PrereqUiSites ..o 31
INtrodUuCtioNcocviviiiiiiii 32
Modeling Constraints ... 32
Naming Best Practices ..., 34
Creating Use-Case Artifactscccooiiiiiiiiiiiccccc 35
Creating a Class Diagramc..ccccececiiiiiniiiiiiiiniiiiicicccccce 36
Opening the caBIO Example Modelccooiiiiiiiiiiic 36
Creating a New Project ..o 38
Creating a New Element (Class)cccccoviiiiiiiiiiiiiiiiiicccce, 39
Creating a Data Modelccoooiiiiiiiiiiiiiiiiicccc 48
Opening an Example Data Modelcccocooiiiiiiiiiiii, 48
Creating a New Data Modelcccooiiiii, 49
Creating a Sequence Diagramccccoceviiiiiiiniiiiiiiiiiicccccees 63
Generating XMIccooiiiiii 63
Generating Data Definition Languagec.cccccoeiiniiiniiiiiniiiiicee, 64

Chapter 6
caAdapter Model Mapping Serviceccovevevruesrcvensensecsncssensenenans 65
OVEIVIEW .ot 65
caAdapter Minimal System Requirementscccccccoeiiiiiiiiiiniinncces 65
Downloading caAdapterccooeiiiiiiiiiiiiiiiiiiiiccce 67
Installing caAdapter ... 68
Verifying Installationccccooiiiiiiii 69
USINg CAAdAPLETovouiiiiiiiiiiiiiiiicccc s 70
Exporting an XMI File from EA ..., 71
Creating an Object Model to Data Model Map Specification 73
Opening an Existing Object to Database Map Specification 73
Creating a Basic Mapping Lineccccccoviiiiiiiiiiiicce 74

Vi

Table of Contents

Generating XMI for caCORE SDK Integrationccccccceeveiniiciniinnnns 78
Mapping Inheritanceccccoeiiiiiiiiiiiiiiiiis 86
User Interface Legendccoiiiiiiiiiiiiiiiiccce, 86
INOde COLOTS ... 86
Node Detailsccocoiiiiiiiiiiiiiiic 87
Mapping Line Colors ..ot 87
Chapter 7

Performing Semantic Integrationeeeervnccnnnnccnnnncnnnnnnee. 89
INtrOdUCHON ..o 90
Generating the XMI File for the SIW ... 91
Semantic Integration Workbenchccoooiii 92
Launching the SIW ...t 93
SIW USer MOdesccoviiiiiiiiiiiiiiiicciccc s 94
Suggested Workflow for the SIW ... 96
Using the XMI Roundtrip Mode ... 98
Running the Semantic CoNNectorcccoveviiiiiiiiiiiiicce, 100
Exiting the SIW ... 103
Curating XMIFilesccccoiiiiiiiiiic 103
Browsing the Navigation Tree ... 104
Annotation BasiCs ... 107
Identifying Errors in the Source File ... 108
Veritying the Curated XMI Fileccccccccciviiiiiniiiiiiiiiiiiics 109
Editing Annotation Detailscccoooiiiiiiiiiiiiiiiiiice 110
Saving Changes to a Filec.ccccooiiiiiiiiice, 115
Reviewing an Annotated Modelcocooiiiiiiii 115
Errors Tab ... 116
Viewing AsSOCIationsccccceiiiiiiiiiiiiiiiiiiiiiiice 116
Setting Preferences ... 118
Viewing ASSOCIAtIONccooiiiiiiiiiiiiiiiiic 118
UML DeSCIIPHION ..cvoiviiiiiiiiiiiiiciicicccc e 120
Search EVS ..o 121
Use Private API ... 121
Display Primary Concept Firstccccoooiiiiiiiiiiiiiiicccc 121
Display Inherited Attributes ..o 121
Sort Element by Nameccoooiiiiiiiiiiiccccccccccccc 121
Use Pre-Production Thesaurus to Validate Conceptscccceueveeee. 121
Setting UML Loader Run-Time Parametersccccccocooeiiiiiiiiinnne, 122
Updating UML Model Definitionscccocoeeeiniiiiiiiicccceee 123
Updating UML Model Definitions Workflowc..ccccccccciiinninne. 123

vii

caCORE SDK 3.2.1 Programmer’s Guide

Errors and Log Tabscccccoiiiiiiiiiiiiiiicicccc 124
The Errors Tab ... 124
The Log Tab ..o 124

Mapping UML Attributesccccooiiiiiiiiiiiiicccc 125
Mapping a UML Attribute to an Existing Common Data Element 125
Mapping a UML Attribute to an Existing Value Domain 131

Validating Concept Mappings Against EVS ... 132

Creating Value DOmainscccccviiiiiiiiiiiiniiiiiiiciccceee, 133
Value Meaningscccccoeoiiiiiiiiiiiiiiiiiiiiccc e 135
Pointing a UML Attribute to a Value Domaincccooiiiinnnnn, 136

TroubleShOOtINgccccoiviiiiiiiiiiiiicc e 136
Beginning to Use the SIW “Midstream”cccccoeviviviviniininininnnnne. 137
The Status Bar ..o 137
The Tabscccoiiiiiiii 137
EVS Search Dialogcccoiiiiiiiiiiiiiiiicccce 137

Chapter 8
Registering Metadata ...t 139

UML Loaderccocoiiiiiiiiiiiiiiiiiicic e 139
Submitting a UML Model to caDSRccccccooiiiiiiiiiiie, 141
Reviewing UML-Derived caDSR Metadatacccoccoveviviiiiiinnnn, 145
Accessing UML-Derived caDSR Metadata ..., 146
UML Domain Model Query Serviceccccoevviviniiininiinicniieiinne. 147

Creating a Concept for Object Class and Property ... 148
Creating New Concepts in caDSRcccoiiiiiiiiiiiicn, 150
Creating an Alternate Definition ..o, 151
Updating Existing Concepts in caDSRccccoiviviiininiiiniiiiiine 151

Mapping a UML Class to an Object Classccccccovriiiiiiiiiiiciciiiiccne 151
Creating a New Object Classccccocoeiiiiiiiiiiniiiicccccce 152
Creating an Alternate Name (Designation)ccccccccceeiiiiiiiiinnnn, 152
Creating an Alternate Definitioncccccoiiniiiiiiniiniinie, 152
Using an Existing Object Classccccceiiiiiiniiiiiiiiiiiiiciccce 152
Classifying an Object Classcccocoiiiiiiiiiniiiiicccccce 153

Mapping a UML Attribute to a Property ..o 153
Creating an Alternate Name (Designation)ccccccceeviniiniiinnnnnne. 153
Creating an Alternate Definitioncccccoiiiniiiiiiniiniiiie, 154
Using an Existing CDE (Common Data Element)ccccccceeinine. 154
Classifying a Property ... 154

Creating Data Element Conceptscccocovvieiiiiiiiiiiiicccce, 154
Creating an Alternate Name (Designation)ccccccceiviviiiiiinnnnnne. 155

viii

Table of Contents

Creating an Alternate Definitionc.ccccoeviiiiiiiiiiiiiiiie, 155
Using an Existing Data Element Concept ..o, 156
Classifying a Data Element Conceptccccccoiiiiiiiiiiiiiiiiine, 156
Mapping a UML Class to a Value Domainccccccoevviiiiiiiiinenn 156
Value Meaningsccocccvuiiiiiiiiiiiiiiiiiiiiiiccteeee e 157
Permissible Valuescccooiiiiiiiiiiiiccc 158
Using a Value Domain Defined within the Model 158
Creating Data Elementsccccoiiiiiiiiiiiiiccc 158
Creating an Alternate Namecccccoceeiiiiiiiiiiiiiiniiiicecce 160
Creating an Alternate Definitionc.ccccoeviiiiiiniiiiiiiiiiie, 161
Using an Existing Data Elementccocociiiiiiie, 161
Classifying a Data Element ... 161
Mapping UML Model Metadata to Classification Scheme and Classification
Scheme Ttems ... 161
Assigning Classificationscccocoeveeiiiiiiiiiccicccce 162
Mapping UML Associations to Object Class Relationships 163
Creating a New Object Class Relationshipc.ccccocoviiiiiiiiinn, 163
Classifying an Object Class Relationshipccccooiviiiiiiiiiinn, 164
Mapping UML Inheritance ... 164
Chapter 9
Generating a caCORE-Like Systemcooueevierierninecrnnncncsnnncnenes 167
Generating Code ..o 167
Updating the Property File ..o, 167
Building the System ..o, 171
Selectively Generating Artifactsccccooiiiiiiiiiiii, 171
Documentation and Style ToOISscccccooiiiiiiiiiiii 172
Executing JUnit Testscccooooviiiiiiiiiiii 172
Using a Generated Systemcccccoceciiiiiiiiiniiiiiniiiiiccccccee 173
Configuring Java CLentscccocoiiiiiiiiiiiiiiicccc 173
Configuring Non-Java Clientscccooviiiiiiiiiicccce, 174
Variations to Generating a caCORE-like Systemcccccccceviiiiiniinnnne. 174
Using Second-Level Cachingccccocciviiiiiniiiiiiiiniiiiiiicccce, 174
Using Custom OR Mappingscccocceevveuiiiniiiininiiiiceiccciecceeee 175
Using Custom Classescccooviuiiiiiiiiiiiiiiiccccces 176
Generating a Thick-Client ..., 177
Implementing a Custom XMI Preprocessorccccoceevveieieieienenennnn. 177
Customizing the Build Processccccooooviiiiiiiccas 179
Generating a Writable API for an Applicationcccccooiiiiiiiiicnnnne 182

caCORE SDK 3.2.1 Programmer’s Guide

Chapter 10
Integrating CSM with a caCORE
SDK Generated Applicationcceevvvnvsucscnscnsennecscscssenecnnes 185
CSOM OVETVIEW ...viiiiiiiiiiiiiiiiiciiic e 185
Session Management OVeIVIEWcccouvviiiiiiiiiiiciicicc 186
Configuring CSM for the Generated Application ... 186
Configuring the Application's Authorization Data Using UPT 187
Using the CSM-Enabled ApplicationService APIccccoooviiiiniinnnnn 187
Using the CSM-Enabled ApplicationService Web Servicesc.......... 188
Using the CSM-Enabled HTTP Interfaceccccccooceiiiiiiiiiiiiiiiiiics 190
getHTML Interfaceccccooiiiiiiiiiiicccce 190
getXML Interface ... 190
Appendix A
Unified Modeling Languagecc.coccevceuecrevursensensescsncsncsnesessesessenns 193
UML MOdelingcocooviiiiiiiiiiiciiiccc s 193
Use-Case Documents and Diagramsccccoeiviiiiiniiininciiniiiiicciieces 194
Class DIagramsccocoeriiiiiiiiiiiiiiccc s 196
Naming Conventionsc.cccociiiiiiiiiiniiicc e 197
Relationships Between Classesccoocoieiiiiiiiiccccccccccnes 198
Package Diagramsccooviiiiiiiiiiiiiiii s 200
Component Diagramscooeiiiiiiiiiiiiiic s 201
Sequence DIiagrams ..o 202
Appendix B
Software Configuration
Managementeiienieninnienienineeeesess e saesaaes 205
Appendix C
Performance ISSUESucvviiereniiernnintcenintceineeiseenseesssensnens 207
Hibernate Issue with Enabling Security in the SDK ..., 207
Appendix D
Referencesueeniieernnieneinintcinincnnenisscenesensesessesesssssssssssens 209
Technical Manuals/Articles ..o 209
Scientific Publicationsccccocooiiiiiiiiii 210
€aBIG Materialccccocoiiiiiiiiiiii 210
CaCORE Materialccocoooiiiiiiiiiiiiiiicccccc 210
Modeling CONCEPLSoovuiuiiiiiiiiiccccccc e 210
Applications Currently Using caCOREcccccooviiiiiiiiiiiiiccce, 210
Software Products ... 211

Table of Contents

L@ 0 T-T:F: ¥ o 2O 213

Index

Xi

caCORE SDK 3.2.1 Programmer’s Guide

Xii

CHAPTER

USING THE SOFTWARE DEVELOPMENT
KIT PROGRAMMER’S GUIDE

This chapter introduces you to the caCORE Software Development Kit 3.2.1 Program-
mer’s Guide and suggests ways you can maximize its use.

Topics in this chapter include:

e Introduction on this page
e Recommended Reading on page 2
e Organization of this Guide on page 2

Introduction

The caCORE Software Development Kit 3.2.1 Programmer’s Guide (SDK Guide) is the
companion documentation to the caCORE (cancer Common Ontologic Representation
Environment [http://ncicb-dev.nci.nih.gov/infrastructure/cacore_overview]) Software
Development Kit (SDK). The SDK aids intermediate level Java programmers with some
life science background who are interested in using or extending the capabilities of
caCORE. The caCORE SDK is a set of development resources that allows you to cre-
ate, compile, and run caCORE-like software.

This guide includes information and instructions for using the SDK. When the pro-
cesses outlined in this guide are followed, a Java programmer of moderate skill, start-
ing with a Unified Modeling Language (UML) model, should be able to create and install
a caBIG ‘Silver’ compliant caCORE-like system. (For more information, see caBIG on
page 7.)

Before continuing, note three points about this caCORE Software Development Kit Pro-
grammer’s Guide:

e Installation and basic test instructions for the SDK are available in an indepen-
dent document, the caCORE Software Development Kit 3.2.1 Installation and

http://ncicb.nci.nih.gov/infrastructure/cacore_overview

caCORE SDK 3.2.1 Programmer’s Guide

Basic Test Guide, downloadable at http://ncicb.nci.nih.gov/NCICB/infrastruc-
ture/cacoresdk#Documentation.

e This document contains no information on the topic of Java programming or
Object-Oriented Programming in the abstract.

e Generally, caCORE-like systems persist their data in relational database man-
agement systems (RDBMS), although other data storage and retrieval facilities
are also supported. Although it is possible to create an RDBMS schema that
mirrors the Object Model of the caCORE-like system, this is not necessarily the
most efficient practice. This guide does not cover optimization of relational data-
bases.

Users wanting more information about these topics are referred to the documentation
noted or to the substantial literature on these subjects.

Recommended Reading

Following is a list of recommended reading materials and resources that can be useful
for familiarizing oneself with concepts contained within this guide.

e Java Programming

e Enterprise Architect Online Manual

e OMG Maodel Driven Architecture (MDA) Guide Version 1.0.1

e Hibernate

Uniform Resource Locators (URLS) are also included throughout the document to pro-
vide more detail on a subject or product.

Organization of this Guide

The caCORE Software Development Kit 3.2.1 Programmer’s Guide contains the follow-
ing chapters:

Chapter 1 Using the Software Development Kit Programmer’s Guide — This
chapter provides information about using the SDK Guide.

Chapter 2 NCICB caCORE Infrastructure — This chapter provides an overview of
the caCORE infrastructure including a discussion on Model Driven Architecture, n-tier
architecture with open APIs, use of controlled vocabularies, and registered metadata.

Chapter 3 caCORE Software Development Kit Architecture — This chapter pro-
vides an overview of the caCORE SDK and its architecture including its process flow
from an architectural perspective, components, and software requirements.

Chapter 4 caCORE Software Development Kit Workflow — This chapter summa-
rizes the process workflow for using the caCORE SDK to generate a caCORE-like,
semantically-interoperable system.

Chapter 5 Creating the UML Models — This chapter contains all of the necessary
procedures to create UML models for the caCORE-like system.

Chapter 6 caAdapter Model Mapping Service — This chapter describes how to
install and use the caAdapter Model Mapping Service, a tool that facilitates object to
database mapping.

http://ncicb.nci.nih.gov/NCICB/infrastructure/cacoresdk#Documentation
http://ncicb.nci.nih.gov/NCICB/infrastructure/cacoresdk#Documentation
http://java.sun.com/learning/new2java/index.html
http://www.sparxsystems.com.au/EAUserGuide/index.html
http://www.hibernate.org/5.html

Chapter 1: Using the Software Development Kit Programmer’s Guide

Chapter 7 Performing Semantic Integration — This chapter describes all of the nec-
essary procedures to configure semantic integration in the SDK.

Chapter 8 Registering Metadata — This chapter describes the process of registering
and mapping metadata using the UML Loader.

Chapter 9 Generating the caCORE-Like System — This chapter describes the pro-
cess for generating the code that produces a caCORE-like system, executing tests on
the system, and creating manual ORMs.

Chapter 10 Integrating CSM with the SDK — This chapter describes functionality
that enables security, session management, and writable APIs for your application. This
chapter also demonstrates how to combine the writable APIs with the SDK-generated
domain model.

Appendix A Unified Modeling Language — This appendix is designed to familiarize
the reader who has not worked with UML with its background and notation for the mod-
els described in this guide.

Appendix B Software Configuration Management — This appendix describes the
best practices of Software Configuration Management (SCM) used by the caCORE
development team.

Appendix C Performance Tuning — This appendix describes a specific Hibernate
issue relevant to using CSM with the SDK.

Appendix D References — This appendix provides a list of references used to pro-
duce this guide or referred to within the text.

caCORE SDK 3.2.1 Programmer’s Guide

CHAPTER

NCICB CcCACORE INFRASTRUCTURE

This chapter provides an overview of the caCORE infrastructure.
Topics in this chapter include:

e caCORE Infrastructure Overview on this page

e caBlO as an Example System on page 7

o Examples of caCORE-Like Systems on page 12

e Finalizing the Development Process on page 13

e Software Configuration Management on page 13

caCORE Infrastructure Overview

NCICB provides biomedical informatics support and integration capabilities to the can-
cer research community. NCICB has created a core infrastructure called caCORE, a
data management framework designed for researchers who need to be able to navi-
gate through a large number of data sources. caCORE is NCICB's platform for data
management and semantic integration, built using formal techniques from the software
engineering and computer science communities.

caCORE Development Principles

Characteristics of caCORE include:

e Model Driven Architecture (MDA)

e n-tier architecture with open Application Programming Interfaces (APIs)
e Use of controlled vocabularies, wherever possible

e Registered metadata

When all four development principles are addressed, the resulting system has several
desirable properties. Systems with these properties are said to be “caCORE-like”.

caCORE SDK 3.2.1 Programmer’s Guide

1. The n-tier architecture with its open APIs frees the end user (whether human or
machine) from needing to understand the implementation details of the underly-
ing data system to retrieve information.

2. The maintainer of the resource can move the data or change implementation
details (Relational Database Management System, and so forth) without affect-
ing the ability of remote systems to access the data.

3. Most importantly, the system is ‘semantically interoperable’; that is, there exists
runtime-retrievable information that can provide an explicit definition and com-
plete data characteristics for each object and attribute that can be supplied by
the data system.

The use of MDA and n-tier architecture, both standard software engineering practices,
allows for easy access of data, particularly by other applications. The use of controlled
vocabularies and registered metadata, less common in conventional software prac-
tices, requires specialized tools, generally unavailable.

As a result, the NCICB (in cooperation with the NCI Office of Communications) has
developed the Enterprise Vocabulary Services (EVS) system to supply controlled
vocabularies, and the Cancer Data Standards Repository (caDSR) to provide a
dynamic metadata registry.

EVS and caDSR are two of the main components of caCORE, created and deployed by
NCICB. Cancer Bioinformatics Infrastructure Objects (caBlO) and the Common Secu-
rity Model (CSM) are also main components of caCORE. All components, designed
using these same four development principles, are described as follows:

e Cancer Bioinformatics Infrastructure Objects (caBIO) — A set of JavaBeans
with open APIs that can be used to directly access bioinformatics data (http://
ncicb.nci.nih.gov/NCICB/infrastructure/cacore_overview/caBlO). Unified Model-
ing Language™ (UML) models of biomedical objects are implemented in Java
as middleware connected to various cancer research databases to facilitate data
integration and consistent representation.

e Cancer Data Standards Repository (caDSR) — A metadata registry, based on
the ISO/IEC 11179 standard, used to register the descriptive information needed
to render cancer research data reusable and interoperable (http:/
ncicb.nci.nih.gov/NCICB/infrastructure/cacore_overview/cadsr). The caBIO,
EVS, and caDSR data classes are registered in the caDSR, as are the data ele-
ments on NCI-sponsored clinical trials case report forms.

e Enterprise Vocabulary Services (EVS) — Controlled vocabulary resources
that support the life sciences domain, implemented in a description logics frame-
work (http://ncicb.nci.nih.gov/NCICB/infrastructure/cacore_overview/vocabu-
lary). EVS vocabularies provide the semantic 'raw material' from which data
elements, classes, and objects are constructed.

e Common Security Model (CSM) — A flexible solution for application security
and access control (http://ncicb.nci.nih.gov/NCICB/infrastructure/
cacore_overview/csm). CSM provides three main functions:

° Authentication to validate and verify a user's credentials
° Authorization to grant or deny access to data, methods, and objects

° User Authorization Provisioning to allow an administrator to create and assign
authorization roles and privileges

http://ncicb.nci.nih.gov/NCICB/infrastructure/cacore_overview/caBIO
http://ncicb.nci.nih.gov/NCICB/infrastructure/cacore_overview/caBIO
http://ncicb.nci.nih.gov/NCICB/infrastructure/cacore_overview/cadsr
http://ncicb.nci.nih.gov/NCICB/infrastructure/cacore_overview/cadsr
http://ncicb.nci.nih.gov/core/caDSR
http://ncicb.nci.nih.gov/NCICB/infrastructure/cacore_overview/vocabulary
http://ncicb.nci.nih.gov/NCICB/infrastructure/cacore_overview/vocabulary
http://ncicb.nci.nih.gov/NCICB/infrastructure/cacore_overview/vocabulary
http://ncicb.nci.nih.gov/NCICB/infrastructure/cacore_overview/vocabulary
http://ncicb.nci.nih.gov/NCICB/infrastructure/cacore_overview/csm
http://ncicb.nci.nih.gov/NCICB/infrastructure/cacore_overview/csm

caBIG

Chapter 2: NCICB caCORE Infrastructure

The NCICB, in cooperation with various cancer centers and other research institutions
has recently launched the cancer Biomedical Informatics Grid (caBIG) (http://
cabig.nci.nih.gov/) that is designed to create a large data system using Grid technology.
Because of the federated nature of data grids, it was deemed essential that semantic
interoperability be integrated into caBIG, with guidelines devised for various levels of
compliance ranging from Legacy (no semantic interoperability), through Bronze, Silver
and Gold (fully Grid compatible). See caBIG Compatibility Guidelines (http://
cabig.nci.nih.gov/quidelines_documentation) for more information.

caBIO as an Example System

To understand the mechanics of creating a software system using the caCORE SDK, it
is useful to study an existing system built using its principles and tools. caBIO, an inte-
gral part of the NCICB caCORE infrastructure, provides an excellent example of how all
of the various parts of the caCORE infrastructure and SDK interact in a caCORE-com-
patible software system.

Model Driven Architecture

Model Driven Architecture (MDA) is a software development practice that uses a struc-
tured modeling language to describe the requirements, objects, and interactions of a
data system prior to its construction. When coupled with a design process such as the
Rational Unified Process (RUP) and Extreme Programming (XP), it can greatly assist in
the production of quality software delivered in a timely fashion. At NCICB, caCORE is
modeled using the UML, coupled with a fusion of the RUP and XP.

For more information about UML, see Appendix A.

n-tier Architecture and Consistent APIs

The caBIO system uses an architecture that separates the application into a series of
tiers (Figure 2.1). A typical client-server system is a two-tier system (the client and the
server that returns the data). While simple, it ties the client very tightly to the details of
the implementation model. To isolate the client from the implementation details, a data
system can be built with one or more layers of ‘middle ware’, software whose purpose
is to act as a bridge between the server and the client. If changes are made to the

server, the middle ware is modified so that the client sees a consistent interface (API).

http://cabig.nci.nih.gov/
http://cabig.nci.nih.gov/
http://cabig.nci.nih.gov/guidelines_documentation
http://cabig.nci.nih.gov/guidelines_documentation

caCORE SDK 3.2.1 Programmer’s Guide

HTTP Java
remating AP|
Object-
Relational
XML-HTTP Mapping

Service Source
Layer Delegation

: Web
HTTP
WebC?er\tilces Services Non-QRM
ien SOAP AP Mapping Non-

relational

data source

Figure 2.1 caCORE architecture

Metadata and Controlled Vocabularies

Metadata

The use of controlled vocabularies and registration of data in caCORE through EVS

and caDSR helps resolve the issue of identifying in an unambiguous manner the mean-
ing of each object and attribute in an API. Generally, metadata is ‘data about data’. That
is, it is a definition of an attribute rather than its value and this is the case for caCORE.

Two examples:

e The value of the attribute ‘zipCode’, might be ‘20852’ while its metadata (defini-
tion) is ‘a 5 or 9 digit number used by the United States Postal Service to divide
geographical regions into delivery zones’. By registering metadata (using terms
in an electronically-accessible controlled vocabulary) in a repository, caCORE
provides a means to select appropriate information resources and to aggregate
information from multiple sources.

e An object model that describes an Agent, in this setting, is a chemotherapeutic
agent. An excerpt from the caBIO model describing the Agent class is shown in
Figure 2.2.

Chapter 2: NCICB caCORE Infrastructure

domain::Agent

{leaf}

nSCNumber. Long
isCMAPAgent: Boolean |
evsld: String

comment. String o
source: String O Sequrce
name: String ¢ o

™ O OE R W’

+agentCollection fp * 0..%
+agentt

Figure 2.2 Agent Class from caBIO class diagram

The Agent class has several attributes including ‘name’, ‘nSCNumber’, etc. Table 2.1
displays a specific instance of this class with its attributes and values, and demon-
strates two possible sets of metadata: one from the perspective of the National Cancer
Institute (NCI) and the other from the perspective of the Central Intelligence Agency

(CIA).
Class or
Attribute Value NCI Metadata CIA Metadata
Name
Agent A chemical compound administered to a | A sworn intelligence
human being to treat an existing disease | agent; a spy
or condition, or prevent the onset of a
disease or condition
nSCNumber | 007 Identifier given to a chemical compound | Identifier given to an
by the US Food and Drug Administration | intelligence agent by
(FDA) Nomenclature Standards Commit- | the National Security
tee (NSC) Council (NSC)
Name Taxol Name of a chemical compound given by | Code name given to
the NCI Cancer Therapeutics Evaluation | intelligence agents by
Program (CTEP) the Central Intelli-
gence Agency (CIA)

Table 2.1 Metadata examples

As can be seen in the table, the same values are reasonable whether Agent is
described as a chemotherapeutic agent (NCI) or a spy (CIA); the metadata, on the
other hand, allows us to distinguish between two sets of completely valid information.

Controlled Vocabularies

As noted, for maximum interoperability, the metadata should be derived from terms with
unambiguous meanings. This prevents misunderstanding based on differences in the

caCORE SDK 3.2.1 Programmer’s Guide

use of terms or phrases between different specialties or geographic regions. In a data
system context, this can be accomplished by having all parties use the same dictionary
of terms. When these dictionaries reside in a central location and are managed accord-
ing to defined rules, they are known as ‘controlled vocabularies’. These vocabularies
come from a variety of sources and can cover a wide range of topics. Furthermore, they
can be organized into ontologies; these hierarchical structures exhibiting well defined
relationships make it easy to compute certain relationships between data.

Registration of Metadata in the caDSR

10

Metadata Repositories

For metadata to be useful, it must be accessible to applications at runtime. For this rea-
son, the NCICB developed the caDSR to store metadata, based on the ISO/IEC 11179
metamodel. This model describes a wide range of characteristics of data elements
including definitions, permissible values, data types, units of measure, minimum and
maximum lengths, etc. Figure 2.3 shows an example of a Common Data Element or
CDE (in this case, the attribute ‘nSCNumber’ from Table 2.1 as it is represented with a
non-enumerated, generic value domain of datatype "String" in the caDSR).

Common Data Element
Agent Name java.lang.String

C1708 C42614 C45253
Agent I

Data Element Conhcept
I Agent Name
hame . |java.lang.String k|- - -, C1708 C42614

Object Class
Agent
C1708 [p\s

nSCNumber :@ java.lang.Long

A 4

» Name
C42614 [pys

|
|
|
|
|
: Property
|
|
|
|
|

Value Domain

L4 java.lang.String
C45253

Figure 2.3 A CDE as represented in the caDSR (ISO/IEC 11179 model)

In the ISO/IEC 11179 model, a Data Element consists of two parts as shown in Figure
2.4.

1. a Data Element Concept that provides the conceptual definition of the data
element.

2. a Value Domain that describes specific acceptable values for that data ele-
ment. Value domains can be either 1) enumerated with an explicit list of permis-
sible values, or 2) non-enumerated, restricting the values to a description,
specification or rule. Attributes of the Value Domain include data characteristics
such as the data type, representation class, and unit of measure.

Chapter 2: NCICB caCORE Infrastructure

Data Element

Data Element Concept

Object Class
EVS]|

Property

EVS

Value Domain

Permissible Values
EVS

Figure 2.4 Representation of a Data Element

The parts of the caDSR implementation of the ISO/IEC 11179 model, Object Class,
Property, and Value Domain are described using controlled vocabulary terms main-
tained by the EVS. Thus the caDSR provides a link between a data element (such as
an attribute in an object model) and definitions in a controlled vocabulary.

A Data Element Concept is represented by a combination of at least two EVS con-
cepts—a primary concept for Object Class and Property, each of which may have qual-
ifiers that are also EVS terms. Similarly, the Value Domain has at least a representation
that reflects the operational characteristics of the form in which the value is being
recorded. The representation could be ‘Currency’, ‘Number’, ‘Code’, etc. It is intended
to convey information in addition to the datatype. If the value domain is enumerated,
the list of values and the meaning associated with each may be based on one or more
concepts from EVS.

UML Models and the caDSR

The previous section describes metadata in the caDSR in the abstract. For most users
of this SDK, the more relevant information is the means by which attributes of an object
model (specifically a UML model) are stored in the caDSR. Figure 2.5 shows the map-
ping of an attribute from a UML model into the components of the caDSR described
above.

11

caCORE SDK 3.2.1 Programmer’s Guide

UML Model ISO/IEC 11179

Common Data Element

| UMLClass I DEC + Value Domain

Data Element Concept
[Object Class + Property
UMLAttribute| : [UMLDataType

Object Class

EVS .

Property

A 4

Value Domain Enumeration EVS

Value Domain

\ 4

Permissible Values
EVS

Figure 2.5 Mapping a UML model into an ISO/IEC 11179 compliant caDSR CDE

In the caDSR implementation, a data element corresponds to a semantically-enhanced
UML attribute. A Common Data Element’s semantics are based on a Data Element
Concept (DEC) and a Value Domain as shown in Figure 2.5. A DEC is composed of the
UML class concatenated with one of its attributes. The UML class is mapped to the
caDSR ‘Object Class’ and the UML attribute is mapped to the caDSR ‘Property’. The
caDSR Object Class and properties are concepts derived from EVS. Combined with
the Value Domain (if enumerated as described in Registration of Metadata in the
caDSR on page 10), this gives an unambiguous mapping of an attribute in a UML
model to terms in a controlled vocabulary. This mapping or transformation of UML Mod-
els into caDSR metadata is performed by the UML Loader and is described in more
detail in Chapter 8. The complete process for mapping UML model elements to con-
trolled vocabulary concepts is described in Chapter 7.

Examples of caCORE-Like Systems

12

The following applications are caCORE-like and have been built using the caCORE
principles described here.

o BlOcrawler (http://ncicb.nci.nih.gov/download/index.jsp)
e BIlOgopher (http://biogopher.nci.nih.gov/BlOgopher/index.jsp)
¢ BIO Browser (http://www.jonnywray.com/java/index.html)

e caArray (http://caarray.nci.nih.gov)
e Cancer Molecular Analysis Project (CMAP) (http://cmap.nci.nih.gov)
e Cancer Models Database (http://cancermodels.nci.nih.gov)

http://ncicb.nci.nih.gov/download/index.jsp
http://biogopher.nci.nih.gov/BIOgopher/index.jsp
http://www.jonnywray.com/java/index.html
http://caarray.nci.nih.gov
CMAP) (http://cmap.nci.nih.gov
http://cancermodels.nci.nih.gov

Chapter 2: NCICB caCORE Infrastructure

e Cancer Centralized Clinical Database (C3D) (http://ncicbsupport.nci.nih.gov/sw/
content/C3D.html)

Finalizing the Development Process

To summarize the SDK development process: 1) object models and data models are
created and exported to XMI; 2) DDL scripts are generated from the data models; 3) the
models are annotated with immutable concept codes from EVS; 4) the metadata is reg-
istered in caDSR, thereby enabling semantic interoperability; 5) the Java source code
is generated for a data access API, using the XMl file generated in the SDK process.

For a complete discussion of the SDK process workflow, see Chapter 4.

Software Configuration Management

Appendix B introduces basic Software Configuration Management (SCM) concepts,
describing a set of management processes that we recommend you have in place if
you plan to distribute your caCORE-like software or deploy it outside of your site. The
caCORE SDK development team has followed this defined set of SCM processes cen-
tered around caCORE open source tools. Refer to Appendix B for additional informa-
tion and links to resources about SCM to help you manage your own software
environment.

13

http://ncicbsupport.nci.nih.gov/sw/content/C3D.html
http://ncicbsupport.nci.nih.gov/sw/content/C3D.html

caCORE SDK 3.2.1 Programmer’s Guide

14

CHAPTER

CACORE SOFTWARE DEVELOPMENT KIT
ARCHITECTURE

This chapter provides an overview of the caCORE SDK architecture.
Topics in this chapter include:
e caCORE 3.2.1 SDK Minimal System Requirements on this page
e caCORE SDK Package on page 16
e caCORE SDK Software and Technology Requirements on page 16
e Documentation and Style Tools on page 23
e SDK Installation on page 24

caCORE 3.2.1 SDK Minimal System Requirements

Minimal system requirements for the caCORE 3.2.1 SDK consist of:

e Internet connection

e Tested platforms
The caCORE 3.2.1 SDK has been tested on the platforms shown in Table 3.1.

Linux Server Solaris Windows
Model HP Proliant ML 330 Sunfire 480R Dell GX 270
CPU 1 x Intel® Xeon™ Proces- | 2 x 1050MHz 1 x Intel® Pentium™ Pro-
sor 2.80GHz cessor 2.80GHz
Memory 4 GB 4GB 1GB

Table 3.1 Platform Testing Environment

15

caCORE SDK 3.2.1 Programmer’s Guide

Linux Server Solaris Windows

Local Disk | (RAID 1)

System 2 x 36GB System 2 x 72GB System 1 x 36GB

Data = 2 x 146 (RAID 1)

Red Hat Linux ES 3 (RPM | Solaris 8 Windows XP/2000 Profes-
2.4.21-20.0.1) sional

Table 3.1 Platform Testing Environment (Continued)

Note: The Semantic Integration Workbench (SIW) has been tested on Windows 2000, Linux,
Mac OSX, and Solaris 8.

caCORE SDK Package

The caCORE SDK includes the following components:

Sample UML object/data model to use with the development kit
° cacoretoolkit.eap

XML Metadata Interchange (XMI) Version of the sample model
° cabioExampleDomainModel . xmi

Framework packages

° gov.nih.nci.system

° gov.nih.nci.common

° org.hibernate

Configuration files to enable you to customize your installation to meet your
specific database, server, and other network needs. Users may need to modify
other configuration and property files, such as os.[linux|unix|windows].xml.

° deploy.properties

° download.properties

Antbuildfile.xml file

Code generator package

° gov.nih.nci.codegen.core

° gov.nih.nci.codegen.framework

Java JET templates for generating caCORE-like APIs

Demo package with sample Java clients and examples of how to leverage the
code generation framework (for advanced users)

caCORE SDK Software and Technology Requirements

16

The required and optional software to use the caCORE SDK are listed in Table 3.2 and
Table 3.3. The software name, version, description, URL, and whether it is included in
the distribution are indicated. The included (Incl.) column indicates (with a Yes) if the
software is packaged with the SDK. No indicates that you must supply the software.

Chapter 3: caCORE Software Development Kit Architecture

Required software not packaged with the caCORE SDK:

Java Software Development Kit (SDK); downloaded from Sun Microsystems

to run the Semantic Integration Workbench, Java Web Start must be installed
on your machine. It can be downloaded from Sun Microsystems

a UML modeling tool (Enterprise Architecture was used to create models and
screen shots for this guide)

Hyperlinks are included in Table 3.2 for your reference to appropriate sources.

Software Name Version Description URL Incl
Java 2 Platform Stan- jdk1.4.2 The J2SE Software Develop- http://java.sun.com/j2se/1.4.2/ No
dard Edition (J2SE) ment Kit (SDK) supports creat- download.html
1.4.2 Development Kit ing J2SE applications
(JDK 5.0)

UML 1.3 Modeling Tool | EA 4.50.744 | We recommend using Enter- http://www.Sparxsystems.com.au No
that produces XMl 1.1 or higher prise Architect (EA)
output format
ant.jar 1.6.5 Apache Ant is a Java-based http://ant.apache.org/bindown- Yes
build tool load.cqi
activation.jar The classes that make up the http://java.sun.com/products/java- | Yes
JavaBeans Activation Frame- beans/glasgow/jaf.html
work (JAF) standard extension
are contained in the included
Java Archive (JAR) file, "activa-
tion.jar"
antlr-2.7.6.jar 2.7.6 Query parser used by Hibernate | http://www.antlr.org/download.html | Yes
3
axis-ant.jar 1.4 Ant tasks for building axis. http://ws.apache.org/axis/ Yes
releases.html
ant-testutil.jar 1.6.5 Part of the Ant framework. Not available as a standalone Yes
Needed to run the JUnit task | binary download. You would have
from within Ant. to download the ANT sources and
then build it.
asm.jar 153 ASM is a Java bytecode http://asm.objectweb.org/ Yes
manipulation framework. It index.html
can be used to dynamically
generate stub classes or
other proxy classes, directly
in binary form, or to dynami-
cally modify classes at load
time, i.e., just before they are
loaded into the Java Virtual
Machine.
asm-attrs.jar 153 Part of the ASM bytecode Yes
manipulation framework.
axis.jar 1.4 Apache Axis is an implementa- | http://ws.apache.org/axis/ Yes
tion of the SOAP (Simple Object | releases.html
Access Protocol)

Table 3.2 Required Software and Technology for the Development Kit

17

http://java.sun.com/j2se/1.4.2/download.html
http://www.sparxsystems.com.au
http://ant.apache.org/bindownload.cgi
http://java.sun.com/products/javabeans/glasgow/jaf.html
http://ws.apache.org/axis/releases.html
http://ws.apache.org/axis/releases.html
http://www.antlr.org/download.html

caCORE SDK 3.2.1 Programmer’s Guide

Software Name Version Description URL Incl
castor-1.0.2 jar 1.0.2 http://www.castor.org/down- Yes
load.html
cglib-2.1.3.jar 2.1.3 Dynamic Java byte code gener- | http://sourceforge.net/project/ Yes
ator showfiles.php?group_id=56933
codegen.jar Classes required for Java Emit- | http://www.eclipse.org/ Yes
ter Template (JET) compilation.
commons-collections- 3.2 Apache Jakarta Commons utili- | http://apache.bestwebcover.com/ | Yes
3.2.jar ties java-repository/commons-collec-
tions/jars/
commons-dbcp- 121 The Jakarta Commons DBCP http://archive.apache.org/dist/ Yes
1.2.1.jar Component provides database java-repository/commons-dbcp/
connection pooling. jars/?C=S:0=A
commons-discovery- 0.2 Apache Jakarta Commons dis- | http://jakarta.apache.org/com- Yes
0.2.jar covery utilities mons/discovery/
commons-lang-2.1.jar | 2.1 Provides a helper utilities for the | http://linux.cs.lewisu.edu/apache/ | Yes
java.lang API. java-repository/commons-lang/
jars/?C=N;0=D
commons-logging- 1.1 Provides a helper http://public.planetmirror.com/pub/ | Yes
1.1jar utilities logging. maven/commons-logging/jars/
commons-logging.jar Apache Jakarta Commons log- | http://jakarta.apache.org/com- Yes
ging utilities mons/logging/
commons-pool-1.3.jar 13 The Jakarta Commons Pool http://apache.intissite.com/java- Yes
Component provides a generic | repository/commons-pool/jars/
object pooling API.
classes12.jar Oracle JDBC drivers. JDBC driver classes, except Yes
Classes for use with JDK 1.2 | classes for NLS support in Oracle
and JDK 1.3. Object and Collection types.
clm.jar Common Logging Module Yes
(CLM), which provides a sep-
arate service under caCORE
for audit and logging capabil-
ities.
csmapi.jar Common Security Module Yes
(CSM) APIs.
dtsrpcclient.jar Server API extensions to Yes

EVS, which provide the
capability for users to
retrieve vocabulary and edit
history data from the DTS
database.

Table 3.2 Required Software and Technology for the Development Kit (Continued)

18

http://sourceforge.net/project/showfiles.php?group_id=56933
http://www.eclipse.org/
http://apache.bestwebcover.com/java-repository/commons-collections/jars/
http://archive.apache.org/dist/java-repository/commons-dbcp/jars/?C=S;O=A
http://jakarta.apache.org/commons/discovery/
http://linux.cs.lewisu.edu/apache/java-repository/commons-lang/jars/?C=N;O=D
http://linux.cs.lewisu.edu/apache/java-repository/commons-lang/jars/?C=N;O=D
http://jakarta.apache.org/commons/logging/
http://jakarta.apache.org/commons/logging/
http://www.castor.org/download.html

Chapter 3: caCORE Software Development Kit Architecture

Software Name

Version

Description

URL

Incl

datafile.jar

1.3.2

Java data file read/write utility
that provides a convenient set of
interfaces for reading and writ-
ing data to and from files in
widely accepted format such as
comma separated values (CSV),
fixed width, tab separated, and
others.

http://datafile.sourceforge.net/

Yes

db2java.jar

Contains classes to support
connections to DB2 databases.

http://www-306.ibm.com/software/
data/db2/udb/

Yes

dom4j-1.6.1.jar

Contains classes that allow
read, write, navigate, create and
modify capability to XML docu-
ments.

http://public.planetmirror.com/pub/
maven/dom4j/jars/

Yes

ehcache-1.2.2 jar

122

Ehcache is a pure Java, in-pro-
cess cache.

http://smokeping.planetmir-
ror.com/pub/maven/ehcache/jars/

Yes

freemarker.jar

2.3

FreeMarker is a "template
engine"; a generic tool to gener-
ate text output (anything from
HTML or RTF to auto generated
source code) based on tem-
plates.

http://freemarker.sourceforge.net/
freemarkerdownload.html

Yes

hibernate3.jar

3.1.3

Hibernate is used for the server-
side object-relational mapping
(ORM).

3.05

Hibernate jar file used by CSM;
this should replace the 3.1.3 jar
ONLY when security is enabled.
For more information, see
Appendix C.

http://www.hibernate.org

Yes

jakarta-oro-2.0.8.jar

2.0.8

The Jakarta-ORO Java classes
are a set of text-processing Java
classes that provide Perl5 com-
patible regular expressions,
AWK-like regular expressions,
glob expressions, and utility
classes for performing substitu-
tions, splits, filtering filenames,
etc.

http://jakarta.apache.org/site/bin-
index.cqi

Yes

jalopy-1.0b11.jar

1.0b11

Source code formatter.

http://public.planetmirror.com/pub/
maven/jalopy/jars/

Yes

jalopy-ant-0.6.2.jar

0.62

Ant task for building jalopy.

http://public.planetmirror.com/pub/
maven/jalopy/jars/

Yes

jaxen-core.jar

The jaxen project is a Java
XPath Engine. jaxen is a univer-
sal object model walker, capable
of evaluating XPath expres-
sions across multiple models.

http://jaxen.org/releases.html

Yes

Table 3.2 Required Software and Technology for the Development Kit (Continued)

19

http://datafile.sourceforge.net/
http://www-306.ibm.com/software/data/db2/udb/
http://public.planetmirror.com/pub/maven/dom4j/jars/
http://smokeping.planetmirror.com/pub/maven/ehcache/jars/
http://freemarker.sourceforge.net/freemarkerdownload.html
http://www.hibernate.org
http://jakarta.apache.org/site/binindex.cgi
http://public.planetmirror.com/pub/maven/jalopy/jars/
http://public.planetmirror.com/pub/maven/jalopy/jars/
http://jaxen.org/releases.html

caCORE SDK 3.2.1 Programmer’s Guide

Software Name

Version

Description

URL

Incl

jaxen-jdom.jar

The jaxen project is a Java
XPath Engine. jaxen is a univer-
sal object model walker, capable
of evaluating XPath expres-
sions across multiple models.

http://jaxen.org/releases.html

Yes

jaxrpc.jar

11

Java API for XML-based RPC.

Yes

jboss-client.jar

Contains the JBoss EJB con-
tainer proxy and stub client
classes.

Yes

jdom.jar

1.0

Java-based solution for access-
ing, manipulating, and outputting
XML data from Java code.

http://www.jdom.org/downloads/
index.html

Yes

jdtcore.jar

Eclipse Tomcat Plugin.

Yes

jetc-task.jar

Ant task for translating JET tem-
plates outside of Eclipse.

http://download.eclipse.org/tools/
emf/scripts/docs.php?doc=tutori-
als/jet2/jet_tutorial2.html

Yes

jmi.jar

JMI is a standards-based, plat-
form independent, vendor-neu-
tral specification for modeling,
creating, storing, accessing,
querying, and interchanging
metadata using UML, XML, and
Java.

http://mdr.netbeans.org/download/
daily.html

Yes

jmiutils.jar

http://mdr.netbeans.org/download/
daily.html

Yes

jta.jar

JTA specifies standard Java
interfaces between a transaction
manager and the parties
involved in a distributed transac-
tion system.

http://java.sun.com/products/jta/

Yes

junit-3.8.1.jar

JUnit is a regression testing
framework that is used by the
developer who implements unit
tests in Java.

http://www.junit.org/index.htm

Yes

log4j-1.2.13.jar

1.2.13

Log4j is an open source tool
developed for putting log state-
ments into your application. With
log4j you can enable logging at
runtime without modifying the
application binary.

http://logging.apache.org/log4j/
docs/download.html

Yes

log4j.properties

Log4J.

Yes

mail.jar

1.2

JavaMail API.

Yes

mdrant.jar

Ant tasks for building MDR.

Yes

Table 3.2 Required Software and Technology for the Development Kit (Continued)

20

http://jaxen.org/releases.html
http://www.jdom.org/downloads/index.html
http://download.eclipse.org/tools/emf/scripts/docs.php?doc=tutorials/jet2/jet_tutorial2.html
http://mdr.netbeans.org/download/daily.html
http://mdr.netbeans.org/download/daily.html
http://java.sun.com/products/jta/
http://www.junit.org/index.htm
http://logging.apache.org/log4j/docs/download.html

Chapter 3: caCORE Software Development Kit Architecture

Software Name Version Description URL Incl
mdrapi.jar MDR implements the OMG's http://mdr.netbeans.org/download/ | Yes
MOF (Meta Object Facility) stan- daily.html
dard based metadata repository
and integrates it into the Net-
Beans Tools Platform. It con-
tains an implementation of an
MOF repository including a per-
sistent storage mechanism for
storing the metadata. The inter-
face of the MOF repository is
based on (and fully compliant
with) JMI (Java Metadata Inter-
face - JSR-40).
mof.jar http://mdr.netbeans.org/download/ | Yes
daily.html
mysgl-connector-java- Contains classes that support a Yes
3.1.13-bin.jar JDBC connection
nbmdr.jar http://jaxen.codehaus.org/ http://mdr.netbeans.org/download/ | Yes
daily.html
openide-util.jar Contains low level basic support | http://mdr.netbeans.org/download/ | Yes
classes on which MDR daily.html
depends.
osgi.jar http://www.osqi.org/ Yes
osqi_technology/
download_specs.asp?section=2
ojdbcl4.jar Oracle JDBC Dirivers. Yes
Classes for use with JDK 1.4.
It contains the JDBC driver
classes, except classes for
NLS support in Oracle Object
and Collection types.
p6spy.jar Open source framework for | http://www.p6spy.com Yes
applications that intercept
and optionally modify data-
base statements.
resources.jar Yes
runtime.jar Yes
saaj.jar 1.2 Yes
saxpath.jar 1.0 SAXPath is an event-based API Yes
for XPath parsers that parse
XPath expressions.
serializer.jar Contains the serializer Yes
classes of Xalan-Java2.
servlet.jar Yes
uml-1.3.jar Yes

Table 3.2 Required Software and Technology for the Development Kit (Continued)

21

http://jaxen.codehaus.org/
http://jaxen.codehaus.org/
http://mdr.netbeans.org/download/daily.html
http://mdr.netbeans.org/download/daily.html
http://mdr.netbeans.org/download/daily.html
http://mdr.netbeans.org/download/daily.html
http://www.osgi.org/osgi_technology/download_specs.asp?section=2
http://www.p6spy.com

caCORE SDK 3.2.1 Programmer’s Guide

Software Name

Version

Description

URL

Incl

wsdl4j-1.5.1.jar

Web Services Description Lan-
guage support for Java.

Yes

xerceslmpl.jar

271

Xerces Java XML parser.

http://xml.apache.org/xerces-j/

Yes

xml-apis.jar

2.0.2

XSLT processor for transforming

http://xml.apache.org/xalan-j/

Yes

types.

XML documents into HTML,
text, or other XML document

xmlrpc.jar

Apache XML-RPC is a Java
implementation of XML-RPC, a
popular protocol that uses XML
over HTTP to implement remote
procedure calls.

http://www.apache.org/

xalan.jar

An XSLT (Extensible
Stylesheet Language Trans-
formation) processor for
transforming XML docu-
ments into HTML, text, or
other XML document types.

http://xalan.apache

Table 3.2 Required Software and Technology for the Development Kit (Continued)

Additional Software

The caCORE SDK requires a Java 2 container in which the server component can run.
Several different open source and commercial applications are available; the software
in Table 3.3 have been tested and are known to work with the SDK.

Server

Software Name Version URL Notes
Apache Tomcat 5.5.20 http://tomcat.apache.org | The SDK can install Tomcat
as part of the build process.
JBoss Application | 4.0.2 http://www.jboss.org See the JBoss documenta-

tion for instructions on
installation and configura-
tion.

Table 3.3 Additional software and technology for the Development Kit

The caCORE SDK typically also requires a relational database management system
(RDBMS) for data persistence. The SDK provides support for the RDBMS software in

Table 3.4.
Software Name Version URL Notes
MySQL 4.1.x http://dev.mysqgl.com/ The SDK can install MySQL as

downloads/mysqgl/
4.1.html

part of the build process.

Table 3.4 RDBMS software

22

Yes

http://xml.apache.org/xerces-j/
http://xml.apache.org/xalan-j/
http://www.apache.org/
http://tomcat.apache.org
http://www.jboss.org
http://dev.mysql.com/downloads/mysql/4.1.html

Chapter 3: caCORE Software Development Kit Architecture

Software Name Version URL Notes

Oracle 9i 9i http://www.oracle.com/ Oracle is commercial soft-
technology/software/ ware. Release 9i is currently
products/oracle9i/ the only release supported by
index.html the SDK.

IBM DB2 8.2 http://www-306.ibm.com/ | DB2 is commercial software.
software/data/db2/

Table 3.4 RDBMS software

Note: Drivers for MySQL, Oracle 9i and DB2 are included with the SDK. If you are using a dif-
ferent version of Oracle or DB2, you must obtain the appropriate drivers. JDBC drivers
can be downloaded from the Sun Developer Network at http://developers.sun.com/
product/jdbc/drivers/index.html, or from the individual vendors’ sites (for example, the
Oracle 8i driver classes12.zip can be downloaded from http://www.oracle.com/
technology/software/tech/java/sqlj_jdbc/index.html). These drivers should be placed in
the {project_home}/lib directory and the appropriate directory in your J2SE con-
tainer (e.g., Tomcat, JBoss) to enable connection to the appropriate database. In addi-
tion, some manual modification of the Hibernate configuration files may be necessary.

Additional optional software to use with the caCORE SDK is listed in Table 3.5, includ-
ing the software name, version, description and URL columns. The included (Incl.) col-
umn indicates (with a Yes) if the software is packaged with the SDK. No indicates that
you must supply the software. A hyperlink is included for your reference to appropriate
sources.

Software Name Version Description URL Incl.

Eclipse IDE 3.0 or higher An open platform http://www.eclipse.org | No
for tool integration
which provides
developers with
flexibility and con-
trol over their soft-
ware technology.

jeteditor-eclipse | 0.0.1-alpha- JET-Editor is an http://jet-editor.source- | Yes
plugin 2004-07-22 Eclipse-based edi- | forge.net/
tor for Java Emitter
Template (JET)
technology.

Table 3.5 Optional software and technology for the SDK

Documentation and Style Tools

The following tools are part of the SDK framework and are useful for documentation
and styling.

e Javadoc — Execute the Ant task doc to generate Javadocs for your beans. Your
javadocs will be generated to the {home_directory}/output/
{project_name}/doc directory. For more information on Javadoc see http://
java.sun.com/j2se/javadoc/. The documentation is generated from the "docu-

23

http://developers.sun.com/product/jdbc/drivers/index.html
http://developers.sun.com/product/jdbc/drivers/index.html
http://www.eclipse.org
http://jet-editor.sourceforge.net/
http://java.sun.com/j2se/javadoc/
http://java.sun.com/j2se/javadoc/
http://www.oracle.com/technology/software/tech/java/sqlj_jdbc/index.html
http://www.oracle.com/technology/software/products/oracle9i/index.html
http://www-306.ibm.com/software/data/db2/

caCORE SDK 3.2.1 Programmer’s Guide

mentation" tag for the class and "description" tag for the class attributes. This
target is executed at the end of the build-system execution sequence.

e Jalopy — Execute the Ant task Format to make your code well formatted. The
default indentation format is used in the SDK. This task is configurable to
enforce coding standards that you wish to adhere to for your project. See http://
jalopy.sourceforge.net/manual.html for information on how to customize this
task.

SDK Installation

Complete instructions for installing and performing basic tests for the SDK are found in
the caCORE Software Development Kit 3.2.1 Installation and Basic Test Guide, avail-
able from http://ncicb.nci.nih.gov/NCICB/infrastructure/cacoresdk#Documentation.

24

http://ncicb.nci.nih.gov/NCICB/infrastructure/cacoresdk#Documentation
http://jalopy.sourceforge.net/manual.html

CHAPTER

CACORE SDK PrROCESS WORKFLOW

This chapter summarizes the process workflow for using the caCORE SDK to generate
a caCORE-like, semantically interoperable system.

Topics in this chapter include:

e Overview of the SDK Process Workflow on this page
e caCORE SDK Components and Their Functions on page 26
e CcaCORE SDK Process Flow Details on page 27

Overview of the SDK Process Workflow

The caCORE SDK facilitates the creation of a caCORE-like service-oriented architec-
ture as shown in Figure 4.1 and described in caCORE 3.2.1 SDK Minimal System
Requirements on page 15 in Chapter 3. Based on a model driven architecture, leverag-
ing UML and using the UML model and system properties as inputs, the SDK applies
Java JET templates to model elements, then produces a fully functional caCORE-like
system.

The SDK was developed to promote semantic interoperability and expedite n-tier appli-
cation development in the research community. Using a process supported by EVS
APIls, the model owner can use the SDK to produce a model annotated with EVS con-
cept codes. The SDK process takes the EVS-annotated model in XMl and registers the
metadata in caDSR, using the UML Loader described in Chapter 8.

25

caCORE SDK 3.2.1 Programmer’s Guide

Clients

Figure 4.1 SDK process flow

caCORE SDK Components and Their Functions

The caCORE SDK consists of several components:
e Semantic Integration Workbench (SIW)
e UML Loader
e Code Generator
These tools are used to automate creation of the infrastructure described above.

Semantic Integration Workbench

The Semantic Integration Workbench (SIW) is designed to facilitate and streamline the
process of semantic integration—the steps whereby data element metadata are
mapped to EVS concept codes. This prepares the UML domain models for being
loaded into the caDSR and helps developers generate the fully descriptive metadata
components described above. The SIW takes an XMl representation of a UML model
class diagram, processes the classes and attributes, and then searches EVS for con-
cepts that match the elements of the UML model. The output is a report that lists con-
cept(s) that match each element. The model owner can then select the appropriate
concept from a list of candidates, or manually enter an alternative when the SIW finds
no satisfactory matches. Then, using the report, the SIW annotates the XMI represen-

tation of the UML model with the appropriate concepts for eventual loading into the
caDSR.

UML Loader

26

The UML Loader does the work of registering the metadata in the caDSR. The input to
this tool is the semantically-annotated XMI representation of the UML model class dia-
gram that was generated by the developer. Since this XMl is fully annotated with con-
cepts corresponding to Object Classes and Properties (and the data types as defined
by the UML attribute itself), the loader has sufficient information to populate most of the

Chapter 4: caCORE SDK Process Workflow

required fields of the caDSR. After loading, the CDEs representing UML attributes are
curated to add certain properties, such as valid values of enumerated value domains.

Note: The UML loader is not distributed with this version of the SDK. However, if you create
properly annotated XMI representations of your UML models, your models will be
loaded into the caDSR by NCICB staff.

Code Generator

The Code Generator actually creates the caCORE-compatible software system. It
takes the UML model (including the object model and data model) and generates Java-
Beans that are used in the caCORE-like application. It also generates the Object Man-
agers and Data Access Obijects that are used by the JavaBeans to retrieve information
from the relational databases that are the source of the data itself.

The Code Generator also generates an XML Schema and corresponding Castor XML
Mapping files. These files are useful while marshalling and unmarshalling domain
objects to and from XML, as well as validating the generated XML. Finally, the Code
Generator also creates a Web Services Deployment Descriptor (WSDD) file, which is
useful for enabling Web Services access to the generated domain objects.

caCORE SDK Process Flow Details

This section summarizes the process of creating a caCORE-like system using UML
and the SDK. This complex interrelated set of activities must be performed in a specific
seqguence to achieve success. If the process is not followed as suggested, the goal of
semantic integration will not be realized. Detailed steps for performing the procedures
are included under four consecutive process segments, identified by number in Figure
4.2 and summarized below.

27

caCORE SDK 3.2.1 Programmer’s Guide

EVS - - .- - .I
:
:
:
L}
:
Y ‘
IEr :
S '
Create/Edit ‘:ﬁ} ps .
UML g S Perform :
Model _— aAdapter A ’
SeajEnne - - -Terminology Services-- i
Integration Y f
(SIW) -
- ---caDSR Services------!
[
H
H
:
Annotated UML :
7 '
Mode! | pad to Sandboxi
Sl

For Mext
Wearsian UmML

1
L}
H
:
L}
H
Roundtrip :
UML Mods! H
Bl L}
H
L}
(4] :
@__ E
Siw '
RoundTrip i b E
Approved ‘
Annotated :
XMI ;
Final caCORE .
SDK Code | Load to PROD H
Generation = H
Compatibility ;
Review e Prod E
L}
:
N - e .ﬁ%‘?ﬁiﬂ%... Revie caDSR K
etrieval Production

Figure 4.2 caCORE SDK workflow yielding semantically-integrated APIs; caCORE infra-
structure components = light blue, caCORE SDK components = white; artifacts (docu-
ments) = yellow; generated software system = green

28

Chapter 4: caCORE SDK Process Workflow

Step-by Step Workflow

1.

Design the system and draw the model. See Chapter 5.

a.

Create use-case artifacts (optional). See Creating Use-case Artifacts on
page 37.

Create class diagrams (required). See Creating a Class Diagram on
page 39.

Create data model and mapping diagrams (recommended, but optional
if you have an existing database schema). See Creating a Data Model
on page 52 and Creating Manual ORMs on page 107.

Create sequence diagrams (optional). See Creating a Sequence Dia-
gram on page 66.

Generate XMl file from UML model (required). See Generating XMI on
page 66.

Generate DDL from data model (optional). See Generating Data Defini-
tion Language on page 67.

Annotate the model. See Chapter 7.

a.

Run the Semantic Integration Workbench to perform semantic integra-
tion. See Semantic Integration Workbench on page 92.

The names of entities (class, attribute) in the UML Model are semanti-
cally annotated by EVS in an iterative process with the model owner.

The model owner reviews the Annotated XMl file and, if accepted, com-
pletes the submission template and sends a request to NCICB.
(ncicb@pop.nci.nih.gov).

Register the Metadata. See Chapter 8.

a.
b.

The UML model is loaded to the caDSR Sandbox environment.

If the model loads successfully, it is submitted to load to caDSR Produc-
tion for final curation and a compatibility review.

Generate Code and Deploy the System. See Chapter 9.

a.

Once the model has passed the compatibility review, the model owner
can use the SIW to run RoundTrip, which will insert the caDSR metadata
identifiers for the model into the XMI as tagged values and ready the
model for reuse or the next version.

Model owners can also produce the final public APIs using the SDK
code generator.

If a change is required in a UML entity (e.g., class, attribute, or relationship) as a
result of running the semantic interoperability steps (2 and 3), it may be necessary
to repeat certain parts of the process. For example, if, during curation of caDSR
metadata, the decision is made to change an attribute to reuse an existing CDE, the
model will have to be updated and re-run through the Semantic Integration Work-
bench.

5. After the first four steps are complete, users can optionally enable CSM, Ses-
sion Management, and Simple Writable APIs. See Chapter 10.

29

caCORE SDK 3.2.1 Programmer’s Guide

a. Use the generated domain objects to produce simple writable APls for
the application (optional).

b. Integrate with CSM authentication, authorization, and user provisioning
(optional).

End Result: A caCORE-Like System

30

The end result of using this SDK is a caCORE-like system, tailored to your specific
needs, that allows you to run a Java program to query your persistence layer (the
actual data storage layer, which is generally a relational database system). The gener-
ated system and artifacts are essentially the same as a caCORE system, meaning that
the code generation and ORM artifacts generated during the process described in this
chapter are using "out-of-the-box" SDK generation components. With the exception of
the UML Loader, all of the components and generated artifacts described are available
for your use or reference. You can create a new model or enhance the example models
by following the procedures in this chapter.

Prerequisites

CHAPTER

CREATING THE UML MODELS

This chapter contains all of the necessary procedures to create a UML model for the
caCORE-like system.

Topics in this chapter include:

Prerequisites on this page

Introduction on this page

Modeling Constraints on page 32

Naming Best Practices on page 34

Creating Use-Case Artifacts on page 35

Creating a Class Diagram on page 36

Creating a Data Model on page 48

Creating a Sequence Diagram on page 63
Generating XMI on page 63

Generating Data Definition Language on page 64

Note:

Before proceeding with this chapter, it is essential that you have completed the steps in
the caCORE SDK 3.2.1 Installation and Basic Test Guide available at http://
ncicb.nci.nih.gov/NCICB/infrastructure/cacoresdk#Documentation. Doing so ensures

that your system is configured correctly. To enhance the example models or create new
models, you must install Enterprise Architect or another UML 1.3 compliant modeling
tool that produces XMl 1.1 output format. For more information, see the Installation and
Basic Test Guide.

All of the examples and screenshots included in this chapter are Windows specific. If
you are using a different platform, then modify the information as appropriate for your
system.

31

http://ncicb.nci.nih.gov/NCICB/infrastructure/cacoresdk#Documentation
http://ncicb.nci.nih.gov/NCICB/infrastructure/cacoresdk#Documentation

caCORE SDK 3.2.1 Programmer’s Guide

Introduction

The processes described in this chapter use the international standard modeling nota-
tion, UML, for specifying, visualizing and documenting modeling diagrams (artifacts) of
an object-oriented modeling system. The caCORE team bases its software develop-
ment, as well as this caCORE SDK, primarily on UML. Appendix A is included in this
guide to familiarize the reader who has not worked with UML with its background and
notation. As you follow the steps in this chapter that refer to UML models, you may
want to refer to Appendix A for more information.

Enterprise Architect (EA) (http://www.sparxsystems.com.au/) was used to create the
example UML models included with the SDK and the screen captures of the UML mod-
eling process shown throughout this chapter. It is not a requirement of the SDK that you
use EA, but the modeling tool you use must be capable of exporting the UML model in
a format that is XMI 1.1 compatible and is a valid Metadata Repository (MDR) XMl file.
The XMI produced by EA is not a valid NetBeans Metadata Repository MDR XMl file
since it contains some specific EA characteristics. The SDK 3.2.1 includes an XMI pre-
processor which can be invoked by calling an Ant task, fix-xmi, to make some minor
modifications to the structure of a given XMl file before code generation begins. If you
use a modeling tool other than EA, you will have to make sure you have a valid Net-
Beans MDR XMI file for code generation.

EA was chosen for the following reasons:

e EA is an object-oriented tool supporting full life-cycle development
e EA s aflexible, complete, and powerful UML modeling tool

o EA facilitates the system development, project management, and business anal-
ysis process

Modeling Constraints

32

The caCORE SDK places no constraints on the structure of the class diagrams, so you
are free to concentrate on creating a model that captures the objects in a scientific or
real-world domain with no thought to code generation. However, while the SDK frame-
work does not constrain the contents of models, the SDK transformers (the tools that
perform semantic connection and generate source code) do place constraints on the
models themselves. You must be aware of the following constraints placed on models
by the SDK transformers:

Constraint 1: Allowable UML Elements—Only UML class elements are recognized

by SDK tools. Classes may contain both attributes and operations, however operations
will be disregarded by the SDK tools.

Constraint 2: Attribute Types—Each attribute must have a type assigned to it, and
the type must be a Java primitive data type or one of the Java wrapper objects, with the
class defined within the model. For Java class types, you must add default class decla-
rations such as java. lang.String as shown in Table 5.9 on page 43 (for example,
jJava.lang.String, java.util .Date, etc.). In accordance with object-oriented
design principles, attributes of a class that are of a complex type should be modeled as
associations. The only exception is if you create an enumeration of acceptable values
as a caDSR Value Domain stereotyped class in your UML Model as described in Chap-

http://www.sparxsystems.com.au/

Notes:

Chapter 5: Creating the UML Models

ter 7 on on page 133. For a UML attribute to use this value domain, the model owner
adds a tagged value: 'CADSR Local Value Domain' / 'My Value Domain’, as described
in Pointing a UML Attribute to a Value Domain on page 136. Alternatively, for the pur-
pose of building enumerated values for common data elements, Value Domains can be
added to caDSR during the curation stage.

Constraint 3: Allowable Relationships—The SDK tools recognize association and
generalization (inheritance) relationships. In addition, the UML Loader records aggre-
gations and compositions when registering metadata, but for the purposes of generat-
ing common data elements, these are treated the same as simple associations.

Constraint 4: Association End Role Names—Both ends of each association must be
given a role name.

Constraint 5: Association End Multiplicity—The multiplicity of each association end
must be specified at both ends.

Constraint 6: Association End Navigability (Directionality)—The navigability of
each association end must be specified at both ends.

The characteristics of associations described in Constraints 4, 5 and 6 are used by the
Code Generator to determine where collection classes should be used, whether get/set
methods should be generated and, if so, what they should be named. In order for the
Code Generator to function properly, and as a general guideline to enhance the seman-
tic richness of the model, it is suggested that as a convention that the role name should
be set to the name of the associated class and should begin with a lower-case alpha-
betic character. If the multiplicity at that end of the association is greater than 1, the
word “Collection” should be appended to the role name. If there are two associations
between the same two classes, or to the class itself, name the associations and roles
distinctly to clarify the semantics. This ensures that the associations end names are
uniquely represented in the object and thus ensures the Code Generator functions
properly. Using SIW, you may also differentiate the metadata for these associations and
roles by using different EVS concepts to reduce ambiguity.

Constraint 7: “Logical Model” Package—ALL classes and attributes must have tex-
tual descriptions to facilitate semantic interoperability.

¢ A definition for each class must be entered into Tagged Values using "documen-
tation" as the tag (the term is case-sensitive). Up to eight "documentation”
tagged values are used during semantic integration by the Semantic Connector/
UML Loader. The format for additional tagged values is “documentation[n]”
where “[n]” can be 2-8; for example, “documentation2”.

e A definition for each attribute must be entered into Tagged Values using
"description” as the tag (the term is case-sensitive). Up to eight "description”
tagged values are used during semantic integration by the Semantic Connector/
UML Loader. The format for additional tagged values is “description[n]” where
“[n]” can be 2-8; for example, “description2”.

The method of adding tagged values differs for each UML modeling tool; refer to the
documentation for your tool to determine how to add these tagged values.

Constraint 8: id Attribute—For the SDK to properly generate the java bean’s
equals(Object obj) and hashCode() methods, every domain object must have a
mandatory “id” attribute. This attribute must be called “id”.

33

caCORE SDK 3.2.1 Programmer’s Guide

Constraint 9: Java Limitations—Because the SDK produces a Java-based system,
class and attributes names are subject to the conventions defined by the Java lan-
guage. UML models should not use Java reserved words (e.g. int, long, class, inter-
face, void, etc.) as class or attribute names. Also, model elements must not use
hyphens, angle brackets or other reserved characters that will result in Java compila-
tion errors.

Naming Best Practices

34

Note:

You should pay close attention to the class and attribute naming conventions estab-
lished by the Sun Microsystems Java Bean Specification. Decisions as to how to name
UML entities affect the semi-automated mapping of classes and attributes to existing
common data elements in caDSR. The SIW Roundtrip features can find existing
classes and attributes in caDSR prior to performing semantic annotation if the exact
same names for classes and attributes are used. If the names are not the same, the
UML Loader will find the matching classes and attributes based on the concept map-
pings. The UML entity names are also used in the generation of the system code by the
Code Generator.

Semantic interoperability is not based on the use of the same names.

The following best practices, while not an exhaustive list, provide some broad outlines
to be considered during modeling.

e Adopt a consistent naming convention that is used throughout your model and, if
possible, across your organization.
As an example, the Sun Microsystems Java Bean Specification establishes the
use of camel case for class and attribute names:

° Classes
--One word class names are capitalized (for example, Taxon, Location).

--Multiple word class names contain multiple words, with no space between
words. The first and subsequent words are all capitalized. (for example,
SequenceVariant or TaxonCollection). Consult the specification for details.

° Attributes

--One-word attribute names should be all lowercase (for example, name or
taxons).

--Multiple word attribute names contain multiple words, with no space
between words. The first word is lowercase, while the first letter of second
and subsequent words should be capitalized (for example, camelCase [the
name of this convention] or geneTitle).

° Associations:

--Set the role name to the name of the associated class and begin it with a
lower-case alphabetic character. If the multiplicity at that end of the associa-
tion is greater than 1, append the word “Collection” to the role name.

In addition to enhancing readability, the camel case convention enhances the
interoperability process. The Semantic Connector uses capitalization and
underscores to separate multi-word attributes. For more information, see Chap-
ter 7.

http://java.sun.com/products/javabeans/docs/spec.html

Chapter 5: Creating the UML Models

e To the extent possible and reasonable, avoid abbreviations and acronyms (for
example, use ‘DatabaseReference’ instead of ‘DbRef").

e Avoid the use of ‘jargon’ terms where standard terms exist (for example, use
‘microarray’ not ‘chip’).

e Do not repeat class names in attributes. For example, in the ‘Gene’ class use
attribute ‘name’ not ‘geneName’. Using the latter format causes the UML Loader
to unnecessarily repeat the concept code for ‘Gene’ twice in a single CDE, which
is semantically undesirable. For more information, see UML Loader on
page 139.

e Do not use Java reserved words as class or attribute names, as this prevents the
Code Generator from compiling the generated system code.

Creating Use-Case Artifacts

Producing use-case artifacts is an optional but recommended step in the software
development life cycle. The caCORE development team uses use-case analysis to
capture high-level system requirements. The first artifact created is the use-case docu-
ment. A use-case document provides structured textual descriptions of how an actor
will interact with the system. Figure 5.1 displays an example Use-case document.

Find Gene(s) for a given search criteria (keyword)
Usecase 1D:100300

Actor

o caBlO Application developer

Starting Condition
The actor establishes reference to the caBlO software

El fEven

1. The actor sets the search criteria (Use case 1D 101300) using one or more
keywords in the criteria

2. Invoke the search use case (Use case ID 105300) and pass the search cntenia
instantiated at step 1.

3. Aresult set (Use case |ID 110300} is retumed to the actor.

End Condition

The actor has obtained a collection of Genes needed for his application,

Figure 5.1 Example use-case document

Using the use-case document as a model, a use-case diagram is then created. A use-
case diagram, which is language independent and graphically descriptive, signifies

35

caCORE SDK 3.2.1 Programmer’s Guide

what a system does from the perspective of an external viewer. An example use-case
diagram created from the use-case document is illustrated in Figure 5.2.

Find Gene=s

Euild Gene Search
Criteria

Search Data Store

Euild Objects from

,L:-:: ------------- Resultsst
wextends

caBI0 Application
Deweloper

Figure 5.2 Example use-case diagram

See Use-Case Documents and Diagrams on page 194 for more information on use-
case artifacts. Step-by-step procedures are not included in this guide to produce use-
case artifacts because they are not required to use the SDK.

Creating a Class Diagram

Class diagrams are created to define the static attributes, functionalities, and relation-
ships that must be implemented in the software. Software developers who know UML
design the system's object models. When designing a class diagram, they use the
information from the use-cases while thinking about the code that must be generated.
For users interested in a caCORE-like infrastructure, class diagrams also form the
basis for creation and registration of semantically unambiguous caDSR metadata.

Note: If you are planning on saving your EA model in.eap format in Concurrent Versions
System (CVS), make sure you check your file into CVS as a binary file. Otherwise,
when you check it back out, your file will not load into EA. Alternatively, use of the built-
in version control capabilities of EA avoids this problem.

Opening the caBIO Example Model'

Perform the following steps to open the caBIO example model using EA.

1. Open Enterprise Architect and select Open a Model File. The Select Enterprise
Architect Project to Open dialog box displays.

1. As of SDK 3.2.1, there is now a second sample model, SDKTestModel.eap that illustrates most of the various
allowable class relationships supported by the SDK code generator. This includes uni- and bi-directional asso-
ciations (many-to-many, many-to-one, one-to-many, and one-to-one), and generalization (inheritance). Also
included in this model are examples of the supported data types, including Boolean, Date, Double, Float, Inte-
ger, and String. Finally, there are also examples of how to model Primary Keys using either Double, Float, Inte-
ger, or String ID’s.

36

Chapter 5: Creating the UML Models

2. Select the desired project name from the list (for the example, select mod-
els\cabio.EAP) and click Open. The Project View displays. (If the Project
View is not displayed, select View > Project Browser from the main menu bar.)

+ohremosomeCo

+Lason

3. In the Project View, navigate to the package Views > Logical View > Logical
Model, and double-click on the Logical Model class diagram. The class diagram
displays as shown in Figure 5.3. See Class Diagrams on page 196 for more
information about class diagrams.
darain: Gere
domabn:: 5 i !‘Of"" ; i chomnmn: Target
Chromosoma | ohremosome +geneCollection |- Wtla: String +geneCollection +targetCollection
- symbol: String « Id: Long
id: Long 0.1 0.l locuslirkSummarn: Sting |O0-" LR typa: Eting
A Stiing OMIMID: Sting namae: String
0= locuslinkld: String
i clusterd: Long

leotion

o." 0."

+geneCollection CsgeneCollection

+geneCollaction

+sequenceCollection '.\ 0."

domain:: Sequence

0.1 +ta=on 0.1

darain: Taxon

id: Long
lamgih: Long

id: Long

isReferénceSequence. Boolean

solgntificNama: String
ethnicityOrStrain: String
abbrawviation: String
commonMame: Sting
lsFmtaned, Boolean

degctiption: Sting

asoiiShing: String
accestionMumben String
acoessionMumbeiarsion: Sting
type: Lang

*librangCaollestion

#sequenoeCollection "'

domsin:Library #clone 0.1
A
jasii-ong dofnain: Clorne
tvpe: Shing
name: SHing id: Long

keyword: Stiing
deseriplion: Sihing
RSite1: String

REite2: String
unigenald: Long
oreationDate: Date
labHest: Sting
clonesTolrate: Long
sequencesToDate: Long

verified: Boolean
ingefSize: Long
agoessionMumber: String
name: Shing

wvarsion: String

strain: Stiing

+library
0.1

+eloneCollection |

o.x"

Figure 5.3 Example caBIO Class Diagram

The caBIO model shown in Figure 5.3 contains seven of the core objects, a subset of
the complete caCORE object model, from the gov.nih.nci.cabio.domain pack-
age. You must create a new project (for example, cabio.eap)as described in the fol-
lowing section to create your own project in EA or you can enhance the example caBIO
model by skipping the Creating a New Project section that follows this section and con-
tinuing with the rest of this chapter beginning with Creating a New Element (Class) on
page 39.

37

caCORE SDK 3.2.1 Programmer’s Guide

Creating a New Project

38

This section provides procedures to produce a new project using Enterprise Architect

(EA).

Perform the following steps to create a new model using EA.

1.

Open Enterprise Architect and select Create a New Model from the Model
Management window or File > New Project... from the main menu. The Create
New Enterprise Architect Project dialog box opens.

The Model Project field allows you to select a template from which your model
can be created. The caCORE SDK includes a model project,
{home_directory}\models\caCORESDKTemplate.EAP, that contains
Java primitive "wrapper" types for use in semantic integration and code genera-
tion. Enter the location and name of this file here (for example, c:\cacore-
toolkit\models\caCORESDKTemplate.EAP)

Enter the New Project name and directory (for example, C:\Program
Files\Sparx Systems\EA\cabio.eap) and click Create Project as shown
in Figure 5.4. Your model name appears under Recent Models on the EA Start
Page.

Create New Enterprise Architect Project

To create a new project, first select a model project (EABase . eap by default), then enter the name and directory
of the new project that will be created in the space provided.

NewProject | chcacaretoolkitmodelsivyhModelFile EAP
hModel Project; chcacoretoolkitimodels\caCORESDK Template. EAP

Feset Mew Project GUIDs

[Create Project I’ Cancel][Help

Figure 5.4 Create a New EA Model

4. Select View > Project Browser from the main menu bar of EA. The Project

View displays.

5. Click the Logical View plus sign. The Data Model and Logical Model folders

display.

Chapter 5: Creating the UML Models

6. Click the Data Model plus sign and Logical Model plus sign. The Project View
displays as shown in Figure 5.5.

Froject Wiew qx

S8 e b
= ([views
+ - [@] Use Case View
+ Crynamic View
= Logical Wiew
= 1 Data Model
3 Data Model
T8 Mapping Model
= 1 Logical Model
T8 Logical Madel
1 insert.your packages.here
=[] java
Componant View
Dreployment Yiew
Custom

¥

¥

¥

TE=Project Yiew | §EResorce View

Figure 5.5 Logical View in EA

Creating a New Element (Class)

Note:

Note:

The following sections provide step-by-step procedures to produce a class diagram
using Enterprise Architect (EA). You can enhance the example model provided or cre-
ate a new model.

For more information on class diagrams, see Class Diagrams on page 196.
Before creating a new element, you may want to review Modeling Constraints on
page 32.

Constraints 2 through 6 simply require that the model be complete. Furthermore,
these constraints apply only to those UML classes that are actually selected for code
generation and semantic connection purposes. The code generation transformer
places no constraints on model elements that are not selected.

Perform the following steps to create a new class and attributes using EA.
1. Inthe Project View, right-click Logical Model folder, select Add > Add Element.
The Insert New Element dialog box displays.

For the SDK code generation and semantic connector processes to work, it is very
important that you create your classes under the Logical Model package, since you can
also create classes under the Logical View in EA.

39

caCORE SDK 3.2.1 Programmer’s Guide

40

Note:

Note:

2. Enter the information shown in Figure 5.6 and listed in the bullets below Figure
5.6.

Insert New Element kﬂ

Type: Class v
Name: Chromosome
Stereatype: v

Open Properties Dialog on Creation
Close dialog on OK

| 0K %J{ Cancel]E Help]

Figure 5.6 Insert New EA Element

° Leave the Type selected as Class.

° Enter {Chromosome} (or the name of another class) as the Name to be con-
sistent with your model.

° Select both check boxes.
° Click OK.

Constraint 1 - UML Class Elements Only. Only UML Class elements may be used
when inserting a new element as shown in Figure 5.6. When creating UML class
diagrams to describe a particular domain of objects, it is common to use both class
elements and interface elements. Interface elements are used to describe the
behavior of a class of objects, and so they should contain only operations. Class
elements may contain both attributes and operations.

The purpose of this example is to produce a data access API, so we are mostly
concerned with the names and types of the attributes of each class. The behavior of
each class is the same: there are operations to retrieve and modify the value of
each attribute. Therefore, interfaces are not needed.

For more information about modeling constraints, see Modeling Constraints on
page 32.

3. From the Project View select the class just added (for example, Chromosome)
and select the Element > Tagged Values from the main menu bar. You can
also display the Tagged Values tab by using the shortcut key CTRL+SHIFT+6.
The Tagged Values dialog box displays.

4. From the Tagged Values dialog box, click the new tag icon and enter documen-
tation in one field and enter the UMLdescription for the class. If your description
is longer than 255 characters, enter additional documentation[n] tags where [n]
is 2 through 8; for example, documentation2. The caDSR limit for this informa-
tion is a maximum of 2000 characters.

Constraint 7 — A UMLdescription for the class must be entered in tagged values.
The "documentation” tagged value is used during semantic integration by the
Semantic Connector/UML Loader.

Chapter 5: Creating the UML Models

5. Right-click {your class} and select Properties to display the Class properties
window. Select the Detail tab and click Attributes as shown in Figure 5.7.

#5 Class : Chromsosome g x|

General Detai IF!equel Constraints | Link | Scenario | Fies |

: H—H Cancurrency
" Sequential
Wisibity: I vI
" Guarded
T Active

Altributes. . | " Spnchronous
Operations. .. |

Collection Classes.. I

7 Tomet

we [o]

| fidd I Edit I -r""'.g\"']
' [Paameter | Type [PTTT :

ooy | [0k] cowel | Hep
Figure 5.7 Class Detail Dialog

6. The {Class} Attributes dialog box displays with the General tab selected. Enter
the attribute information as shown in Figure 5.8 and listed in the bullets below
Figure 5.8.

gT Chromosome Attributes: name e x|

General | Detail | Constraints |

M arnie: |name

Twe [HEE =]l T Deived I staic

Scope: Protected = I~ Property | Const

Stereotype: =

Containment: (a0 -

Alias:

Initial _I

Notes: ;I
=

svibaes 4| F| New | save | Dciee |

Name | Type | scope]

id Long Private

name Sting Private

ok | Cancdl | Hep

Figure 5.8 Creating an Attribute

° Enter the Name of the attribute. Ensure that you adhere to naming conven-

tions described in Naming Best Practices on page 34.

41

caCORE SDK 3.2.1 Programmer’s Guide

42

Note:

Note:

° In the Type list, type your specified data type for primitive data types or click
the Browse button (_..]) to select data types as shown in Figure 5.9.

° In the Scope list, select the appropriate scope (Public, Protected, Private,
or Package).

° Enter any other pertinent information about the attribute such as an alias or
specific notes about the attribute.

° Click Save. The Name, Type, and Scope are displayed at the bottom of
{Class} Attributes dialog.

° Click New if you want to add more attributes; enter additional information as
described above.

° Click OK when you are finished adding attributes for the class.

° From the Project View, click the newly created class, and then click the plus
sign to display the newly added attributes.

Constraint 2 — Attribute Types. Attribute types must be classes defined within the
model or primitive data types. It is strongly recommended that you use data types
defined within your model rather than primitive data types. Primitive data types will
work, but you will need to refer to the Hibernate documentation for handling null val-
ues within your database. When creating an attribute as shown in Figure 5.8, you
must specify the attribute's name and its type. In most tools, the modeler has the
option of simply entering a string value or opening another dialog box in which
another class that is already defined in the model can be selected. The SDK used
by this example requires that object types be valid Java types and that primitive
data types be the names of Java primitive types. For example, to specify that an
attribute is an integer, use the object "java. lang. Integer" type or the primitive
"int" type. Figure 5.9 displays the added java.lang.* data type objects. You
must add data type objects for any Java types you use.

An updated file that defines the mapping between data types and Value Domains is
located here: http://cadsrsiw.nci.nih.gov/datatype-mapping.xmil.

For more information about modeling constraints, see Modeling Constraints on

page 32.
B-@-cEamep
= / Wigws ~f-J

il (@] Use Case View
& Crynamic Wiew
= Logical View
=] Data Model
=] Logical Model
‘Ig Logical Model
B2~ gov

Java.lang objects

1 [@] Component View
1 [5a] Deplovment View

E@Tagged Values | System I:ElPro]ecl Wigw |

http://cadsrsiw.nci.nih.gov/datatype-mapping.xml

Chapter 5: Creating the UML Models

Figure 5.9 Data Type Objects

7. From the Project View select the attribute just added (for example, Name) and
select Element > Tagged Values from the main menu bar. You can also display
the Tagged Values tab by using the shortcut key CTRL+SHIFT+6. The Tagged
Values dialog box displays.

8. From the Tagged Values dialog box, click the new tag icon and enter descrip-
tion in one field and enter the UMLDescription for the attribute. If your descrip-
tion is longer than 255 characters, enter additional description[n] tags where [n]
is between 2 and 8; for example, description2. The caDSR limit for this informa-
tion is a maximum of 2000 characters.

Notes: Constraint 7 — A UMLdescription for the attribute must be entered in Tagged Val-
ues. The "description" tagged value is used during semantic integration by the
Semantic Connector/UML Loader.

Valid values lists, if entered, are not supported by the Semantic Connector and
UML Loader at this time.

Creating Additional Classes

Create additional classes by following the procedures in the Creating a New Element
(Class) on page 39 until all of your classes and their corresponding attributes have
been added under the Logical Model in the Project View.

Creating a Logical Model Object Diagram
Perform the following steps to create a Logical Model object diagram.

1. From the Project View, double-click on the Logical Model icon and then select
the Logical Model tab at the bottom of the EA page.

2. Drag and drop each class from the Project View to the Logical Model diagram.
Paste the class to the diagram as a simple link as shown in Figure 5.10. Click
OK.

Paste Element into Diagram

@ as Simple Link

() as Instance of Element (Object)

() as Mew Child [Generalization)

Set Selection as Default for:

[T 4l Drag and Drop [] This Dialog

[] Only show this dialog when Ctri+Mouse drag is used

Figure 5.10 Paste Class as Simple Link

Creating Relationships between Classes!

For a detailed review of relationships between classes, see Relationships Between
Classes on page 198.

43

caCORE SDK 3.2.1 Programmer’s Guide

Perform the following steps to create relationships between classes.

1. From the menu bar, select Link > Association as shown in Figure 5.11.
| ok |

| Assocation h '

Aggregation

Generalization
Dependency
Creates

Realization

Sequence Message
State Transition
Object Flow

Communication Message

Use
Extend
Indude

Note Link

Figure 5.11 Types of Links

Note: The example uses the Association Link. For your own implementation,
choose the appropriate type of relationship between classes. Only associ-
ation and inheritance relationships are mapped to caDSR metadata. For
more information on relationships, see Relationships Between Classes on
page 198.

2. Your cursor becomes a hand in the Logical Model. Click and hold one class (this
is your source), then drag and drop to the second class (this is your target) to
create the desired link. The type of connector selected displays on the logical
model. An association is shown between Gene and Chromosome in Figure
5.12.

44

1. As of SDK 3.2.1, there is now a second sample model, SDKTestModel.eap that illustrates most of the various
allowable class relationships supported by the SDK code generator. This includes uni- and bi-directional asso-
ciations (many-to-many, many-to-one, one-to-many, and one-to-one), and generalization (inheritance). Also
included in this model are examples of the supported data types, including Boolean, Date, Double, Float, Inte-
ger, and String. Finally, there are also examples of how to model Primary Keys using either Double, Float, Inte-
ger, or String ID’s.

Chapter 5: Creating the UML Models

Chromosa e

name: Sting

Gene

name:; String
OmMindid: String
title: Stiing

Taxon

seientificName: String
ethnicityStrain: String
abbraviation: String

Figure 5.12 Association between Gene and Chromosome classes

3. Right-click on the link created and select Association Properties. The Associ-
ation Properties dialog box displays as shown in Figure 5.13. For general infor-
mation on associations, see Relationships Between Classes on page 198.

] Association Properties x|
General] Constraints Sowrce Role I Target HDIeI
Chromosome Fole: Access:
|ohr0mosume ;I |Public: ﬂ
Role Notes:
[~
J -
..Cmtaim. - -
[" Reference " Value & Mot Specified
Mulighci: [T =] [~ Mulliplicilyis Ordered
Aggregation [none] Changeable | =]
Constraint(s] |
Qualifierfs) |
Tanget Scope: | j
Stereotype: I
Member Type: | Help I
0K | cCancel | Hep |

Figure 5.13 Association Properties Window

4. Click the Source Role tab as shown in Figure 36. Enter the role name in the
{Class} Role field (for example, for the association between Chromosome and
Gene, the source role name is chromosome).

Note: Constraint 4—Association End Role Name. An association between two classes

indicates that objects of those classes are related, and the UML depiction must
describe the meaning of that relationship. Each association end must be given a

45

caCORE SDK 3.2.1 Programmer’s Guide

46

Note:

role name; it indicates the role that the object on the corresponding end plays in
relation to the object on the other end of the association.

(Naming conventions for role names are very important because the role names
are used to create method names. For more information, see Naming Best Prac-
tices on page 34.)

For example, a gene is usually found on a single chromosome. In the example
caBIO model as shown in Figure 5.14, the Chromosome-end of the association
between Gene and Chromosome has the name "chromosome" and the Gene-end
has the name "geneCollection”.

You can also add additional information about each association end and the associ-
ation as shown in Figure 5.13. If additional information is provided, it can be used
by the SDK to produce documentation in the generated source code. See Relation-
ships Between Classes on page 198 for more information on associations.

Example caBIO Class Diagram

diormain: Gene

id: Leng
aomein:: =
Chromosome |[foNiemoseme +geneCollaction |- title: String +gensCollection +targstCollaction | 2™ iTaraat
- symbol: Stiing N
id: Long -1 0.%|. locustinkSummary: Sting [0-" GE|" pe: SHing
hame: Sting . OMIMID: Sting il el
0.1 - locusLinkld: String
7 clusterid: Long
+chromosomeCollaction o Jor

-
+geneCollection T “sgeneCollection

+geneCollection

-uequencclﬁollndion\ 0"

d =
+tadon 0.1 +iaxen 0.1 el quUence

id: Long

langth: Long

isReferenceSequence: Boolean

deseniption: Sting

asciiShing: Shing

acceszionNumbernr String

accessionNumbeersion: Sting
- type: Long

dafiain: Taxon

id: Long
scientifichame; String
ethnisityOrStiain: Stiing
abbraviation: String
commonhame: Sting
P elaned: Boolean

#sequenoeCollection o."

+libraryCollection

domain Library +clene 0.1
2

. Ir: L°ff dommain: Clone
. pe: String
- hame: Shing - id: Long
= keyword: Sting & 1 - werified: Boolean
- deseription: String JERnary toloneCollection | jnrenSize: Long
= RSfioI' String 0.1 0,2|- acwessicnNumber Sting
- RSite2: Sting - name: Sting
- unigenald: Long - wamion: String
= orestionDate: Date - shain: Sting
- labHost: Sting

= clonesToDate: Long
- gequencesToDate: Long

Figure 5.14 Example caBIO Class Diagram

5. From the Multiplicity drop-down list in Figure 5.13, select the appropriate multi-
plicity (for example, chromosome has a multiplicity of 0..1). Click OK.

Constraint 5 — Association End Multiplicity. The multiplicity of each association
end must be specified. The concept of multiplicity is a component of the concept of
cardinality. The multiplicity of an association end indicates the number of objects of
that class type that may be associated with a single object of the class on the other
end of the relationship. See Multiplicity on page 198 for common multiplicity values.

Note:

Chapter 5: Creating the UML Models

6. Right-click on the link created and select Association Properties. The Associ-
ation Properties dialog box displays.

7. Select the Target Role tab. Enter the role name in the {Class} Role field (for
example, geneCollection). From the Multiplicity list, select the multiplicity of
choice as shown in Figure 5.13. Click OK.

Note: Follow the information and constraints included in step 4 on page 45 and
step 5 on page 46 as specified for the Source Role tab.

8. Right-click on the link created and select Association Properties. The Associ-
ation Properties dialog box displays with the General tab selected as shown in
Figure 5.15.

#5 Association Properties i _ 5'

General |Constlaints] Source Role | Target Role |

S ouce: Cheomosoms

Target: Clone:

Link Name: |

Direction: Destination -» Source | Sty IEUStU“‘ :_J

Stereotype: Unspecified ™ Object Flow

Notss |Desimaion s Souwce __Heb |
Al
.4

[ok] cocel | Heo |

Figure 5.15 Association Properties Dialog

9. Select the Direction to indicate the navigability as shown in Figure 5.15. Click
OK.

Constraint 6-Association End Navigability. The navigability of each association
end, which indicates the direction(s) in which an association may be traversed from
one object to another, must be specified at the association ends.

In the caBIO model as shown in Figure 5.14, the association between Gene and
Chromosome is navigable in both directions. For example, if one has a Gene
object, one can ask for the Chromosome on which it is found. And if one has a
Chromosome object, one can ask for all Gene objects that are found on it. See
Relationships Between Classes on page 198 for more information on navigability
(directionality).

It is possible for associations to have more than two ends (that is, they may be of
degree n, where n > 2). This document does not address such associations, as they
are not found in the SDK.

a7

caCORE SDK 3.2.1 Programmer’s Guide

10. Drag and move the role names and multiplicities to ensure readability.

11. Create associations between your other classes.

As a reminder, for a detailed review of relationships between classes, see Relation-
ships Between Classes on page 198.

Creating a Data Model

Extensions to UML to model relational databases are collectively known as the UML
Data Modeling Profile. The UML Data Modeling Profile is not a ratified standard but is
widely accepted since it allows you to model database tables, columns, keys, triggers,
constraints, and other relational database features. Besides modeling database tables,
you can generate scripts to create the tables for your databases.

Creating a data model is optional, but it allows you to automatically create your
Object Relational Mapping (ORM). If you do not have an existing database, then
creating a data model is the recommended procedure.

If you have an existing database, it is sometimes possible to import your data-
base schema into the modeling tool you are using. This capability does exist in
EA and was used to import the caCORE database schema. Creating your data
model this way can save considerable development time.

If you do not create a data model, then you must create a manual ORM as
described in Using Custom OR Mappings on page 175.

ORM provides the mapping from an object to data. The benefits of ORM are as follows:

Exposes data as objects.

Facilitates the creation, restoration, persistence, and deletion of objects in a rela-
tional database.

Provides model driven data access.
Permits transformation of data to different formats (XML).

Allows for the development of code regardless of the data source (Oracle, SQL
Server, DB2, MySQL, and so forth).

ORM is an advanced topic and a thorough discussion of it is outside the scope of this
document. For more information, go to http://www.chimu.com/publications/objectRela-
tional/ or http://www.service-architecture.com/object-relational-mapping/. The caCORE

SDK uses Hibernate (http://hibernate.org) to provide the object relational mapping. The
object and its attributes are mapped to corresponding tables and fields in the database.

Opening an Example Data Model!

From the Enterprise Architect (EA) Project View, navigate to the package Views >
Logical View > Data Model, and double-click on the Data Model diagram. The dia-
gram shows the physical data model for the caBIO example as displayed in Figure

5.16.

48

1. As of SDK 3.2.1, there is now a second sample model, SDKTestModel.eap that illustrates most of the various
allowable class relationships supported by the SDK code generator. This includes uni- and bi-directional asso-
ciations (many-to-many, many-to-one, one-to-many, and one-to-one), and generalization (inheritance). Also
included in this model are examples of the supported data types, including Boolean, Date, Double, Float, Inte-
ger, and String. Finally, there are also examples of how to model Primary Keys using either Double, Float, Inte-
ger, or String ID’s.

http://www.chimu.com/publications/objectRelational/
http://www.chimu.com/publications/objectRelational/
http://hibernate.org
http://hibernate.org

Chapter 5: Creating the UML Models

[m
{HROROT0EE
u TP el GENE_ID: NUIRE RO
P o CHAOMOSOWE_© Wi Ao CLUSTER W0 AAB |
CHROMOSOME MUMBER VARTHARIT} TITLE: WAECH

i e HUMBERI [+ F_CHECARE O
P (IHROMOEOME IO » CHIDUOBOUE) | u
& FF FE_CHECANCS OIS _TANDMMIMBIR; ! et A CHACMAD A |
= wPHa PH_CHEOMOS DA R} o
T
¥w_sdni_tazom| §
+F_CHROMOTOMI_TARDN | 0.7 e '
0
e
o o
TADN_ID = TANDN_ID) - IR e_HIRE
o o P FE_EIREUHN b
(PR i » Tamios o) e
e - .
- iy prpyrey ~.
" £ \ NI = GENE D)
)/ \ -
.,
Py (0 EMI_jD = GENE_ID]
s \
4 III SFH_GENE_TARGET_SENE O "
CHEME_JD = HENE_)
] DENE_TARSET 1]
FE_LIBRARY_SENE_SIRE 5"
ra e HEHE_FIRE, FE soalemas SEND_I: NUMDDEN)
® Pl PH_TALDRNUMEIR) rd LMRLARY_GOND (1] Fil acalumas TARGEE_ID: UMM ROG)
/
I eoabminsn GENE_ SUMIBERCH o afKe FK_OBME_TARaET_NEmvAMER
FIC sprbamir LIRKARY IO MM R + wfbie PH_OEME_Eakal | _ Rk Anasind iy
+TH_DENE_SEQUINCE_SESE 07 — S ——
+ AT _SEHE_% EABatib Ry
BEE_SBOUERCE 1] 4 wFHa FE_LRART_CHNE_LSRAR TR e _ENE_TARGET_TAROET WII:- A
TH sreiemes QENE_M MULILRCH) |
Fi orsiemes GLCUENCE_ID: WUMBERCE) FE_URARY_OEHE_LBRART | 0.0 CPARGET_ID = TARGET K
| 1

i
ARy _e U RARY_iE) 1

20 TARGET_TARSE 'JD-lL'I

5 ks BN SENE_EDOUENCE_SERERUEBER)
K _OEME_SECUERCE_SICUENCE [+ oK P SRE_SEoulHEE_SEQUERCRNUMBER)

SEQUENCE

ECEEHEE D « SEOURNIE, JD) AP LIREART TARDET [1]
T

M vaREsARD)
PE; AR

. GARCHARED [*FE_SDOUERCE
WULEBER: GARCHARCIG) (270 -

f
TaESET

...... * P FE_TARGETHUMBEE)
1 emigese O TARBET TARMIT HNVARCHARD,

L SEGUENCE_CLONENULSER)
K FE_HGAE NE B R) +TH_16 QUBMCE_CLOWE
-

PE_LIBRART

-
(CLHE_ 5w Ll

o LAB_HORT VARCHARDED)

1
(LIBRARY_ID & LIBRARY I
#_ELONE LAY, o e P LD RARYINUMBER)

cuomE [|- rvcennn_wnany
P ade Cosal_it: mAILABE ROV 0.
g AT GON NUMBE g
u gl MG _PAME- VAR R
2l REICH: VARCHARNIOY

CESSI0N_NUMBER: VARCRARC LS
OME_STRAM. WARE HARITS)

e FH_CLONE_LIBRAE M F)
aFin FH_ CLOWRNUMBER)

Figure 5.16 Example caBIO Data Model

Data model diagrams are similar to class diagrams since they both show classes and
associations among classes. The difference is that the classes in data model diagrams
are of stereotype “table”, so EA displays them differently and supports different opera-
tions on them.

Note: The example caBIO model does not exhibit inheritance.
Creating a New Data Model

This section explains how to create a data model that specifies how objects should be
stored in a relational database. Such a specification is called object relational mapping
(ORM). This section describes a single approach that provides efficient access/persis-
tence for the majority of possible object models. For more involved relational systems,
designing the database separately and then mapping to the object model may result in
better system performance.

This approach requires mapping an object model to a data model. The following map-
pings must be constructed:

o Class-to-Table
e Attribute-to-Column

e Association-to-Relation(s)
Creating Class to Table Mappings

49

caCORE SDK 3.2.1 Programmer’s Guide

50

Perform the following two steps to create the Class-to-Table mappings.

1.
2.

Create a table in the data model diagram for each class in the class diagram.
Create dependencies from tables to classes.

Creating Data Models (Tables)

Create a table in the data model diagram for each class in the object model. Each table,
as shown in Figure 5.16 on page 49, has a name that is similar to the name of its corre-
sponding class, as shown in Figure 5.14 on page 46. For example, the Gene object
model class maps to the GENE data model table. Using a consistent naming strategy is
good practice because it makes the model easier to understand. Such a naming strat-
egy is not necessary, but using the same name that is in the object model with capital
letters for the data model is recommended by the caCORE team.

Perform the following steps to create a data model table using EA.

1.

Right-click the Data Model folder and select Insert > New Element. The Insert
New Element dialog box displays.

Enter the information as shown in Figure 5.17 and described in the bulleted
items below Figure 5.17.

X
Type: I Class ﬂ
Name: |GENE Autgl
Stereotype: [table |

[¥ Open Properties Dialog on Creation
I Close dialog on 0K %

ook] eweat || He

Figure 5.17 Insert Data Model

Leave the Type selected as Class.

Enter {GENE} (or another required name) as the Name to be consistent with your
model. The caCORE team recommends that you enter the same name that was
used in the object model, but capitalize all the letters for the data model.

In the Stereotype list, select table.
Select both check boxes.
Click OK.

The Class properties window displays since the Open Properties Dialog on
Creation was checked in Figure 5.17. (If it does not display, right-click {your
table} and select Properties).

From the General tab, select MySql from the Database list as shown in Figure
5.18. Click Apply.

Chapter 5: Creating the UML Models

B Class : GENE

x|

General] Table Detail | Require | Constraints | Link | Scenatio| Fies |

Name: |GENE

Stereotype: [table | .l Abswact T

Author, x| Status: | Propased ¥ I

Scope: Public 'I Complesity: IEa's-'"]'

Alias: [Database: | v|

Persistence Keywords: |DB2 =

I ﬂ o InterB ase

Phase: | Version: | MShcoess

Notes: Oracle:
PostareS0OL
SOL Server 2
SOLServer7 T

=
Aoy | [ok] cancel | Hep |

Figure 5.18 Select a Database

Creating Dependencies

Next, create dependencies from tables to classes. Mappings between tables and
classes need to be defined explicitly using dependency associations. Dependency
associations are another kind of association in UML and are represented graphically as
dashed arrows.

From the Enterprise Architect (EA) Project View, navigate to the mapping diagram from
the Views > Logical View > Data Model package. The mapping diagram displays
tables on the left and classes on the right as shown in Figure 5.19. Each table is con-
nected to a class by a dependency association. The dependency goes from table to
class because (in this approach) the structure of the database depends on the structure
of the object model.

51

caCORE SDK 3.2.1 Programmer’s Guide

52

CHROMOSOME m
EE scolumne CHROMOSOME_b: NURDE) a::"-"'_
=ealumne CHROMOSORME_NUMBER; WaRCHARIG L. __ P e —
Fi sealumnps TASOH_IB: MUSBER10) abrataBoiions - #d: Lang
a [Eain
* aF s FE_CHRADMOSOME _TAXOHNUMMBER)
+ alFiis PH_CHEQMOSOMEMUMEL
H
seone u ARG ey T e
P soslumne CLONE_ID: HUMBER10)
weplymnes IHNEERT _SLEE; NUMDER0) - B Lang
aidlumie GLONE_HWaME! Wik CH&RDm = wedifisd: Boolean
woslumne WERSION: WVARCHARZCWOOY e e EnEadZies: Leng
soplumne ACCEREIOMH_NUMBER: WARCHARIIS [~~~ "~ e R =i oyl o i ymn g i
stslumis CLONE_STRAM: WaRkcHais = mamal Bwing
FiE acslumns LIBRARY_ID: MUKDEBRZ) - wamion: String
wesiumps VERIFIER: HUMBER() = Ehan Bting
= elsningEne: Eking

+ =Fis FH_CLOME_LIBRARYVNUMBER)
+ ke R L O NECH U B E

GEHE m

P mcolumne GHNE_ID; HURBE R
apfumae CLUSTER_IB: HUMBER{1O0)
soolumne SENE_TITLE: Wfoaism)
agfimn e LOCUS_LINK_ID: Wisk CHA&RD5)
scolumnes GENE_Sv¥RBOL: WaRCHAR2E00

Figure 5.19 Table to Class Mapping diagram

-':DHI’.'I'G'I‘-

e "

String
symbol Sling
lesusLinkSsmmary: Siring

w g men e DRI WA RC HUATE - CREIMID; Sirng
staluimhes LOCUS_LINK_SUMBMARY: CLOB = lecuilinkid: Sting
FE scobumns CHROMOGOME_ID: NUSBDERDN) - cludarid: Lang
FE ssobumde TASKOHN_ID NUMBERTE)
- aF ke FE_GENE_CHROMOEOMEHUMBER)
= afke FE_GERE_ TAS RSB E
* wPe PE_GENEHUMBER)
e rnm e LDy
LIRRARY m
. id: Long
S o b ren e ILITBFCATY_IG: WU BB E RO + type; BRing
scolumne LIBRARY_TYFE: WARCHARINSHN . hama: Blrimg
asnlufn s LIBRARY_HAME! WikR CHaFCHS0) bwypsad: Steing
soslumne CESCRIPTION: WVARCHARISOH . dadedipbion: Blilng
=i i i e HEWWIOIRD) VARG HARDR) - PRSifsd: Sting
scolumns B_SITE_1: VARCHARNSG) b eccsossnsmmanemmmmmmmme e sesssssssnes . REAeE BWing
=gpnlumne K_SITE_I: WVARC i ab e S o ces - umigensid: Leng
weslumas SEQUENCES_TO_DATE: pUsWBER1O) ¢ cmationDade: Date
sgolumne CLONES _TO_DATE: MU GE R « labHoet: Stiimg
= b i m UINIPERE 16 P B E R 800 - clomsWecior Sheing
scolumnes CREEATE_DATE: DATE N omadTalxatle: Lahg
mpnlumne LAE_HODET: WaRTHARIS0) + meguencesTolate: Lang
+ olomeFreduoer SiEng
- =P ks PE_LIBRARVIHLMBEFR) - dlemsWadorType: Sikng
SEGUENCE n ol s Sacpuarcs
"PH scolemne SEQUENCE_ID: MUMBER10) iz Leng
asolamas ACCESTION_NUMBER: vaRkCHARNSO) Ay g Lo
soolamne 15_ROF_SEOUENCE: NUMDEOR1)=0 » ipRafarandsefequancs Boolesn
=valemas PEECRIFTION WARCHARIGE I ce-ipe® destriplion: Sting
asslamas ASCI_STRING: CLOD i it el * ascllFking: Strimg
i LEHGTH; s ascessionNumbar SiENG
acolamns SEGUENCE_TviFE: IILIM&!M!O: - accamisnNumbaffemizn: Sirng
soolamne VERSION: WARCHARICION « Wyibdl Lang
FE scolamas CLONE_ID: NUMBERZFE)
+ wFe= FH_SEQUENCE_CLOMNEMUMBER)
sPbis PR SEOUENE ECNUMBER) |
dormin Target
meakimiis TARGET TYPE! CHARISO) abiigeareen ©
- =Pis Pi_TARGE TERLWB ER) -'....-'.-‘.'-'.!."Jw.'i.‘-"..'.‘.i.
- --nlau-u.uﬁ- FTARGET TaRdET IMM
—a i
TaXOM m| hin il
: 4 Leng
“PH msnlumne TASGH_ID HUMBERZE) - mcdentifichlama: Siing
mon b e SEIEMTIFIE_MAME - Wt HaREsn e [T . ARl DaRIrEIn: BWEnG
wcolume s STRAIN_OF_ETHHICITY: VARCHARZISON == == =" =" == """~ g iai, 0 - abbrawiaion: Sking
asnlumn s CORBION_HWAME ! ViR CHAR00) . cemmanbama: Siing
scolumnes PREFERRED: MUSDERA) =0 . P satedred: Bosiaan
mgnbumn e ABBREVIATION VaRCHARISOD |
5 wPe PECTANDMHLMBE R

Chapter 5: Creating the UML Models

Notice that each dependency has a <<Data Source>> label. This kind of label is called
a stereotype in UML. Stereotypes provide a way of extending UML to include non-stan-
dard type constructs. The DataSource stereotype, in effect, creates a special class of
dependencies. Each dependency labeled with <<DataSource>> belongs to that class.
Most important is that the SDK transformers used in this example need the dependen-
cies that map between tables and classes to be stereotyped this way so that they can
be differentiated from other dependencies that could exist in the model.

Perform the following steps to create dependencies from atable to a class.

1.

From Project View > Logical View, right-click Data Model and select New Dia-
gram. The New Diagram dialog displays.

In the New Diagram dialog, enter the Name for the new mapping diagram,
leave the Structural Type selected as Class and click OK.

Select the {mapping diagram} tab just created from the bottom of the EA page.

Drag and drop a domain object from the Project View > Logical View > Logi-
cal Model and its corresponding data model object from Project View > Logi-
cal View > Data Model into the diagram.

Select Link > Dependency from the EA tools bar, then drag and drop from the
table to the object to create a dependency link.

Right-click on the dependency link and select Dependency Properties to dis-
play the Dependency Properties dialog box.

Leave the Source, Target, and Direction fields as is and enter DataSource in
the Stereotype field as shown in Figure 5.20. Click OK.

Dependency Properties g x|
General |Cumlraintsi Source Flde] Target Hnlel
Source; | CHROMOSOME
Target: | Chromosome
Link Name: |
Direction: iS-:-urce-) Destination j Shyle: |Eu3h3m 'f
Stereotype: [DataSource | [~ Object Flow
Motes: Help
=l
I
=l
[ok]| cocel | Heo |

Figure 5.20 Dependency Properties Dialog

8. Create dependency links for each table and class pair.

53

caCORE SDK 3.2.1 Programmer’s Guide

Create Attribute to Column Mapping
This section describes how to map logical model class attributes to data model table
columns.

Perform the following steps to map an attribute to a column.
1. From Project View in EA, right-click on a {table} and select Attributes. The
{table} Attributes dialog box displays.

2. From the General tab in the {table} Attributes dialog box, click New. Enter the
attribute information as shown in Figure 5.21 and described in a bulleted list
below Figure 5.21.

7 CHROMOSOME Attributes: CHF x|

General |Detai | Constraints |

Name: CHROMOSOME_MNUMBER
Data Type: |VARCHAR j I~ Primary Key
Length: |D [~ NotNul
Stereotype: |column j [~ Unigue
Ikick _Column Propertes. |
Access: Public j Alias:]
Notes: :‘
Colurnns ﬁl_lg e ” I i |
PK_| Name | Type | Not Null | Unique |
PK. CHROMOSOME_ID Yes No
CHROMOSOME_N.. VARCHAR No
T&XON_ID NUMERIC No

0K | Cancel Help

Figure 5.21 Table Attributes Dialog Box

° Enter the Name of the attribute. Naming conventions for the attribute names
dictate all capitalized letters and an underscore between names.

° Select the appropriate Data Type from the list. Note that you must select the
type of database as shown in Figure 5.18 to populate the data type list.

° Select the Primary Key, Not Null, and Unigue check boxes as appropriate.
° Click Save. The attribute information displays as shown in Figure 5.21.

3. From the Project View select the attribute just added (for example, GENE_ID)
and select the Tagged Values tab from the bottom of the dialog box. You can
also display the Tagged Values tab by using the shortcut key CTRL+SHIFT+6.

Note: Once the column is created, you must explicitly indicate what class attribute maps to it.
You must label the column with the fully qualified nhame of the associated class
attribute. A UML tagged value is used for this purpose. A tagged value is a UML con-

1. While it would be convenient if the same approach could be used to map attributes to columns as
was used to map classes to tables, most UML modeling tools do not support creating dependen-
cies (or any other associations) among attributes. Therefore, mapped-attributes tags are used.

54

Chapter 5: Creating the UML Models

struct that represents a name-value pair and can be attached to anything in a UML
model. Tagged values provide a way of adding arbitrary (non-standard) information to a
UML model.! The SDK transformers in this example use tagged values to map
attributes to columns.?

4. Enter the tag/value pairs as shown in Figure 5.22 by clicking the new tag icon
and described in a bulleted list below Figure 5.22.

= X ?

B GENE_ID () |
type NUMERIC
ordered 1
precision 38
scale 0
stereotype column
collection false
position 0
lowerB ound 1
upperBound 1
duplicates 1 |
ea_guid {AACD4172-39C3-4d16-B565- DE?C?SdBEBCB}
mapped-attributes gov.nih.nci.cabio.domain. Gene.id

X

mapped.a“"bu[eg_

c'@T.ai;lged'u.'aluesl System l‘i@j:]project View |

Figure 5.22 Mapped-attributes Tagged Value

° Enter mapped-attributes in the first field.

° Enter the fully-qualified name of the associated class attribute in the second
field. For example, the gov.nih.nci.cabio.domain.Gene. id attribute
maps to the GENE_ID column in the caBIO model as shown in Figure 5.22.

Note: The name "mapped-attributes" (notice the plural) is used because it is
possible that more than one attribute, possibly from different classes,
could be mapped to the same column. In such a case, the value of the
mapped-attributes tagged value should be a semi-colon separated list of
fully qualified attribute names.

5. Repeat the above steps to add additional columns and map the column to its
corresponding attribute.

6. When all the information has been added click OK.

1. Atagged value is often used by UML modeling tools to store tool-specific information.
2. Database columns of datatype CLOB in a data model can only be mapped to attributes of datatype
jJava.lang.String in an object model.

55

caCORE SDK 3.2.1 Programmer’s Guide

Creating Association to Relation(s) Mapping?

This section describes how to map associations that are defined in the object model to
relations that need to be defined in the data model (relational model).

As previously discussed in Creating Relationships between Classes in Step 5 on
page 46, a multiplicity must be specified for each end of an association in a class dia-
gram. An association should be classified by the multiplicity that is specified at each
association end. This classification is referred to as the cardinality of the association.
The following cardinalities are possible in an object model:

e one-to-one - the upper bound of multiplicity range on both ends is one

e oOne-to-many - the upper bound on one side is one and the other end is
unbounded

e many-to-many - neither end is bounded

Physical relational models (data models) support only the one-to-one and one-to-many
cardinalities. Therefore, many-to-many associations must be mapped to two one-to-
many associations (relations).

In a relational model, a relation between two records exists when the value of a field in
one record matches the value of a field in another record. These matching fields are
called keys. When designing a database schema where relations will exist between
tables, the designer usually explicitly defines which columns represent key fields.

The most common (and best) way to define a relation from one record to another is to
specify that the field of one record will contain a key value that is the unique identifier of
another record. A column that contains such values is called a foreign key column. A
column that contains unique identifier values is called a primary key column.

To map an object model to a relational model, you must specify how the associations
between classes are mapped to the foreign key/primary key relations between tables.
This process is straightforward and is described by cardinality.

Creating One-to-One Mappings
Perform the following steps to create a one-to-one mapping between tables.

1. Define primary keys in both tables (follow the step-by-step procedures in Creat-
ing Unique Primary Keys on page 58).

2. Define a foreign key in one of the tables (follow the step-by-step procedures in
Creating Foreign Keys on page 59).

3. Place a unigue constraint on the value of the foreign key column.

If the association is mandatory (that is, if the lower bound of the multiplicity
range on one or both sides is one), then a NOT NULL constraint should be
placed on the foreign key column.

56

1. As of SDK 3.2.1, there is now a second sample model, SDKTestModel.eap that illustrates most of the various
allowable class relationships supported by the SDK code generator. This includes uni- and bi-directional asso-
ciations (many-to-many, many-to-one, one-to-many, and one-to-one), and generalization (inheritance). Also
included in this model are examples of the supported data types, including Boolean, Date, Double, Float, Inte-
ger, and String. Finally, there are also examples of how to model Primary Keys using either Double, Float, Inte-
ger, or String ID’s.

Chapter 5: Creating the UML Models

Note: You could implement one-to-one associations using a primary key relation, where the
primary key of one record matches the primary key of another record. However, the
approach used here is what is expected by the SDK transformers used in this example.

Creating One-to-Many Mappings
Perform the following steps to create a one-to-many mapping between tables.

1.

Define primary keys in both tables (follow the step-by-step procedures in Creat-
ing Unique Primary Keys on page 58).

Define a foreign key in the table that represents the class on the many-side of
the association (follow the step-by-step procedures in Creating Foreign Keys on
page 59).

Creating Many-to-Many Mappings
Perform the following steps to create a many-to-many mapping between tables.

1.

Define primary keys in both tables (follow the step-by-step procedures in Creat-
ing Unique Primary Keys on page 58).

Define a third table (this is called the correlation table).

Define two foreign keys, one for each primary key (follow the step-by-step pro-
cedures in Creating Foreign Keys on page 59).

Creating Inheritance Mappings
Perform the following steps to implement inheritance mappings between tables.

1.

Create one Class element for the Parent (super-class) (follow the step-by-step
procedures in Creating a New Element (Class) on page 39).

Create one Class element for each of the Child (sub-class) classes (follow the
step-by-step procedures in Creating a New Element (Class) on page 39). Note:
Do not create an "id" attribute in any of the Child classes.

Create one table for the Parent (super-class) class (follow the step-by-step pro-
cedures in Creating Data Models (Tables) on page 50).

Create one table for each of the Child (sub-class) classes (follow the step-by-
step procedures in Creating Data Models (Tables) on page 50).

Follow the step-by-step procedures in Creating Data Models (Tables) on
page 50.

Define a primary key (PK) in the Parent (super-class) table (follow the step-by-
step procedures in Creating Unique Primary Keys on page 58).

Define a primary key (PK) in the Child (sub-class) table (follow the step-by-step
procedures in Creating Unique Primary Keys on page 58).

The primary key of the child table should also be the foreign key to the parent
table.

Note: This implies that all children have the same primary and foreign key defi-
nition and relationship. However, the value of the primary key should never be
duplicated in any of the child tables.

57

caCORE SDK 3.2.1 Programmer’s Guide

9. Add a "mapped-attributes" tagged value to the primary key defined in the Child
table, such as fully.qualified.name.Child.id (e.q.,
gov.nih.nci.cabio.domain.Gene.id).

Note: This step must be performed even though the Child table does not have
an "id" attribute.

Creating Unique Primary Keys
Perform the following steps to create a unique primary key for your table.
1. From the Property View menu, right-click your {table} and select Properties.
2. Select the Table Detail tab and click Columns/Attributes as shown in Figure

5.23.

#5 Class : Gene @
Genesal | Table Detal | Require | Conslraints | Link Scenano| T. 4 *
Table Space: ||

Columns/dtiributes.. k
(2eov] [ox_J[conel][Heo]

Figure 5.23 Table Detail Dialog Box

3. The {table} Columns dialog box displays as shown in Figure 5.24. Select the
{attribute name} to be your primary key (for example, GENE_ID). Because pri-
mary keys are meant to uniquely and unambiguously identify rows, they must
be both unique and non-null. Click the Primary Key, Not Null, and Unique
check boxes and click Save.

58

& GENE Attributes: GENE_ID &)

Genesal | Detail | Constraints | Tags

Marne: GEME_ID

Dala Type: | NUMERIC v | [¥]Primary Key

Precision: |10 Scale: [#] Mot Mul

Stereotype: | column v Urique

Access: Public v Alias

Notes:

Calumns ﬂ New

PK Mame Type Mot ... Unigue
P GEME_ID MUMERIC Yes Yes
CLUSTER_ID NUMERIC Mo No
GEMNE_TITLE WARCHAR Mo No
LOCUS_LINE_ID WARCHAR Mo Mo
GEME_SYMEBEOL VaRCHAR Mo Mo
OMIM_ID YARCHAR Mo Mo
LOCUS_LIME_SUM... TEXT Mo Mo
CHROMOSOME_ID MUMERIC ez Mo
TAXOM_ID NUMERIC MNa No
Lok J[Coca J[Heo]

Figure 5.24 Table Column Dialog Box

Chapter 5: Creating the UML Models

Note: Each table must contain a unique primary key that should be annotated
with the database specific data type (for example, NUMERIC, VARCHAR,
TEXT, and so forth).

4. Click OK to set your selections.

Creating Foreign Keys

A foreign key (FK) is a collection of columns (attributes) that enforce a relationship to a
Primary Key in another table.

Perform the following steps to create foreign keys for your table.

1. From the Data Model diagram, right-click on the link between two tables (for
example, GENE and TAXON) and select Foreign Keys.

2. The Foreign Key Constraint dialog box displays similar to Figure 5.25. The
Name (of the foreign key) is automatically created. Edit this name as required.

3. Click on the column of the source table and the column of the target table that
you want to link. In the example shown in Figure 48, click TAXON_ID from the
source and click TAXON _ID from the target and click Save.

59

caCORE SDK 3.2.1 Programmer’s Guide

60

Note:

A Foreign Key is created between the source and target tables as shown by the
pointer in Figure 5.25.

Foreign Key Constraint @

Name |FK_GEME_TAXON

Sourcer GENE Target: TAXDN

Key Calumn Type Fey Colurmn Tupe:

FK GENE_ID NUMERIC PE. TAXON_ID HUMERIC
CLUSTER_... MUMERIC SCIEMTIFL.. WaRCHAR
GEME_TITLE WARCHAR STRAIN_D.. WARCHAR
LOCUS_LI.. VARCHAR COMMOMN_... VARCHAR
GEME_SY.. WARCHAR PERFERED BOOL
OMIM_ID VARCHAR ABBREVIA.. WARCHAR

LOCUS_LI.. TEXT
CHROMODS... MUMERIC
T&XON_ID MUMERIC

Referential Integnty

GENE TaXON
TAXDMN_ID :NUMERIC Q TAXDN_ID :MUMERIC

< >

[0K] E Cancel]

Figure 5.25 Foreign Key Constraint Dialog Box

4. Click OK.
5. Repeat the above steps for each required foreign key.

When establishing an associative link between two tables, the table from where the link
is drawn is labeled as the source and the table to which the link is drawn is labeled as
the target. When creating a foreign key, if the column you are using as the foreign key is
not the primary key of the target table you will receive an error. If this happens, you
need to delete and redraw the association in the reverse direction. Also, be aware that
DB2 will not allow key names to be longer than 18 characters.

Creating Correlation Tables

A correlation table is required when there is a many-to-many relationship between two
tables. There are two types of tables in a typical data model: 1) an object table and 2) a
correlation table linking two object tables. An object table corresponds directly to an
object in the object model. In our example, the Gene object requires a GENE table (as
shown in Figure 5.26) and the Sequence object requires a corresponding SEQUENCE
table (as shown in Figure 5.27).

Chapter 5: Creating the UML Models

domain::GENE domain:SEQUENCE I
"PIK «columns GENE_ID: NUMERIC(10) *PK scolumne SEQUENCE_ID: NUMERIC(10)
«columns CLUSTER_ID: NUMERIC(10) «columns ACCESSION_NUMBER: VARCHAR(50)
«column» GENE_TITLE: VARCHAR(S0) * weolumns IS_REF_SEQUENCE: BOOL=0
acolumne LOCUS_LINK_ID: YARCHARSD) wcolumns DESCRIPTION: VARCHAR(E)

wcolumne GENE_SYMBOL: VARCHAR(S0)

weolumne OMIM_ID: VARCHAR(SO)

«columns LOCUS_LINK_SUMMARY: TEXT
"FK «columne CHROMOSOME_ID: NUMERIC(10)
FK acolumne TAXON_ID: NUMERIC(10)

«columne ASCII_STRING: TEXT
acolumne LENGTH: NUMERIC(10)
acolumne SEQUENCE_TYPE: NUMERIC(10)
acolumns VERSION: WVARCHAR(ID)

FK «columns CLONE_ID: HUMERIC{10)

+ «FK» FK_GENE_CHROMOSOME(NUMERIC)

+ «FK» FK_GENE_TAXON(NUMERIC) + «FK» FK_SEQUENCE_CLONE(NUMERIC)

+ «FK» geneCollection(NUMERIC) + «PK» PK_SEQUENCE(NUMERIC)

+ «PK» PK_GENE(NUMERIC) + «uniques UQ_SEQUENCE_SEQUENCE_IDQ

+ xuniques UQ_GENE_GENE_ID(NUMERIC)
Figure 5.26 GENE data model object Figure 5.27 SEQUENCE data model object
table table

A correlation table is required when where there is a many-to-many relationship
between two tables. In our example, GENE and SEQUENCE have a many-to-many
relationship, so a correlation table GENE_SEQUENCE is required as shown in Figure
5.28

hdumain::GENE_SEQUENCE

"pfK «columnes GENE_ID: NUMERIC(10)
*ptK acolumne SEQUENCE_ID: NUMERIC(10)

+ «FK» FK_GENE_SEQUENCE_GENE(NUMERIC)
+ «FKs FK_GENE_SEQUENCE_SEQUENCE(NUMERIC)
+ «PKs PK_GENE_SEQUENCE(NUMERIC, NUMERIC)

Figure 5.28 GENE_SEQUENCE correlation table

Perform the following steps to create correlation tables.

1. Create a correlation table and name it with the name of the two tables you will
be linking (for example, create GENE_SEQUENCE as shown in Figure 5.28).

2. Add two columns, one for each primary key you need to link (for example, add
GENE_ID and SEQUENCE_ID as shown in Figure 5.28).

3. Create two foreign keys linking the correlation table to the primary tables as
described in Creating Foreign Keys on page 59.

Explicitly Mapping Associations to Relations

Once the primary keys, foreign keys, and correlation tables have been created, you
must create the following four tagged values to explicitly map associations to relations
(each is described below):

implements-association

2. correlation-table
3. implements-association
4. inverse-of

61

caCORE SDK 3.2.1 Programmer’s Guide

Adding Tagged Value implements-association

First, an "implements-association" tagged value must be added to each foreign key col-
umn.

Perform the following steps to enter the tagged values.

1. From the Project View, select the required field (for example, the foreign key
column) and display the Tagged Values dialog box by using the shortcut key
CTRL+SHIFT+6.

2. Enter the tag/value pairs by clicking the new tag icon and entering the following
information:

° Enter implements-association in the first field.

° Enter the fully qualified name of the association end that is implemented by
the foreign key in the second field. For example, in the caBIO object model as
shown in Figure 5.14, there is a one-to-many association from Taxon to Chro-
mosome. Therefore, the CHROMOSOME table contains a TAXON_ID foreign
key column. The "implements-association" tagged value for that column is
gov.nih.nci.cabio.domain.Chromosome.taxon.

Adding Tagged Value correlation-table
Second, a "correlation-table" tagged value must be added to each many-to-many asso-
ciation that is defined in the object model.
Perform the following steps to enter the tagged values.

1. In the class diagram, select the link between two objects that have a many-to-
many relationship and display the Tagged Values dialog box by using the short-
cut key CTRL+SHIFT+6.

2. Enter the tag/value pairs by clicking the new tag icon and entering the following
information.
° Enter correlation-table in the first field.

° Enter the fully qualified name of the correlation table that was used to decom-
pose the association. For example, in the caBIO object model, there is a
many-to-many association between Gene and Sequence. That association
has a "correlation-table" tagged value which is "GENE_SEQUENCE", the
name of the correlation table.

Adding Tagged Value implements-association

Third, each foreign key in each correlation table must be given an "implements-associ-
ation" tagged value that indicates what association end it implements.

Perform the following steps to enter the tagged values.

1. From the Project View, select the required field and display the Tagged Values
dialog box by using the shortcut key CTRL+SHIFT+6.

2. Enter the tag/value pairs by clicking the new tag icon and entering the following
information.

° Enter implements-association in the first field.

62

Chapter 5: Creating the UML Models

° Enter what association end it implements. For example, the GENE_ID col-
umn in GENE_SEQUENCE has an "implements-association" tagged value
which is "gov.nih.nci.cabio.domain.Sequence.geneCollection”.

Adding Tagged Value inverse-of
Finally, for each bi-directional, many-to-many association, one association end must be
specified as the "inverse-of" end. To do this, simply create an "inverse-of" tagged value
on one of the foreign key columns of each of the correlation tables and set its value to
the fully qualified name of the other association end.

Perform the following steps to enter the tagged values.

1. From the Project View, select the required field and display the Tagged Values
dialog box by using the shortcut key CTRL+SHIFT+6.

2. Enter the tag/value pairs by clicking the new tag icon and entering the following
information.
° Enter inverse-of in the first field for one of the foreign key columns.

° Enter the fully qualified name of the other association end. For example, the
GENE_ID column in GENE_SEQUENCE has the value
gov.nih.nci.cabio.domain.Gene.sequenceCollection.

Creating a Sequence Diagram

Creating sequence diagrams is an optional step in creating a caCORE-like system
since they are not used for code generation. A sequence diagram displays object inter-
actions in terms of an exchange of messages arranged in a time sequence. It models
the flow of logic within your system visually, validating the logic of a usage scenario.
Using a sequence diagram, bottlenecks can be detected within your object-oriented
design and complex classes can be identified. See Sequence Diagrams on page 202
for more information. Step-by-step procedures are not included in this guide to produce
seqguence diagrams because they are not required to use the SDK.

Generating XMI

The caCORE SDK uses a UML version 1.3 model as a basis for generating source
code and other artifacts®. To use a UML model, the model must be stored in an XML
Meta-data Interchange (XMI) format. XMl is a standard interchange format for UML
models, and many UML modeling tools (including EA), can export models as (more or
less) valid XMI2. This is accomplished by using the Export options in the modeling tool
which take the UML Model and serialize it into XMI. In caCORE 3.2, the XMI format
used for the code generation step is different than the format used by caAdapter and
SIW. For instructions on how to generate both XMI formats, see Chapter 6. The instruc-
tions on how to generate the XMI format used by the SIW are also in Chapter 7.

1. In actual practice, the code generator can use any instance of a Meta-Object Facility (MOF) model.
2. The XMl file must be stored in a format that the NetBeans Metadata Repository (MDR) XMI reader
can parse.

63

caCORE SDK 3.2.1 Programmer’s Guide

Generating Data Definition Language

Data Definition Language (DDL) produces Structured Query Language (SQL) com-
mands that can be used to build the underlying database. It hides the implementation
details of the database schemes from the users. Many UML modeling tools, including
EA, can create DDL scripts from their models. If you did not create a data model, then
you do not perform this step (because not creating a data model implies that you
already have a database).

Perform the following steps to create Data Definition Language (DDL) scripts
using EA.

1. From Project View, right-click on the directory containing the data model, select
Code Engineering > Generate DDL. The Generate DDL dialog box displays
similar to Figure 5.29.

2. Enter the information as shown in Figure 5.29 and listed in the bullets below
Figure 5.29.

Fioot Package: [Data Model Geneidle |
Ok - Carcel |
Commentlevel [None ~| Use[and[ascomment

[Create Primary/Foreign Key Consliaints
[~ Generate Index/Constraints
™ Generate Triggers
[~ Generate Stored Procedures:
[~ CreateDiopSOL Use [2:5OL Seperator
" Use I— and|[around names
™ Generate Table Dwner
Use Database |
File Germiation
& Single File [CADocuments and Sellngshconnelm D esklopvcabio.d ﬂ Views I
™ Individual file for each table
Select Dbjects 1o Generale [Inchade al Chid Packages Hep |
Olbj T File

SelectAl | Select None | Delete Target Files |

Figure 5.29 DDL Generation Dialog

° Under Options, select Create Primary/Foreign Key Constraints.
° Select Single File, and specify the filename and output directory.
° Select all objects to generate by clicking Select All.
° Click Generate.
3. The Batch generation dialog indicates Generation complete. Click Close.

64

CHAPTER

CAADAPTER MODEL MAPPING SERVICE

This chapter describes how to install and use the caAdapter Model Mapping Service, a
tool that facilitates object to database mapping.

Topics in this chapter include:

e Overview on this page

e caAdapter Minimal System Requirements on this page
e Using caAdapter on page 70

e User Interface Legend on page 86

Overview

The caAdapter 3.2 Model Mapping Service for the caCORE 3.2 SDK takes advantage
of the caAdapter mapping infrastructure to facilitate object to database mapping. The
current version as of May 2007 is 3.2.0.1. The Model Mapping Service requires an XMl
file (with full Enterprise Architect [EA] roundtrip capability) that includes a data model
and an object model as inputs. The service loads both models. Object to database
mapping is done by dragging object model elements and dropping them onto target
data model elements. Once mapping is complete, caAdapter adds SDK-required val-
ues as Tagged Values to the original XMl file (and also creates a .map file for back-
wards compatibility). After importing the newly tagged XMl file into EA and exporting an
XMl 1.1-compatible file, the caCORE SDK can perform all code generation tasks.

caAdapter Minimal System Requirements

Minimal system requirements for the caAdapter 3.2 Model Mapping Service consist of:

e Internet connection
e Tested platforms

65

caCORE SDK 3.2.1 Programmer’s Guide

caAdapter has been tested on the platforms shown in Table 6.1.

Windows Server Linux Server
Model DELL Optiplex GX270 HP Proliant ML 330
CPU 1 x Intel® Pentium™ 1 x Intel® Xeon™ Processor
2.8 GHz 2.80 GHz

Memory 1.3GB 4 GB
Local Disk System = 40 GB System = 2 x 36 GB (RAID 1)

Data = 2 x 146 (RAID 1)
Network 100mb / full duplex 100mb / full duplex
oS Windows 2000 Professional Red Hat Linux ES 3
Resolution 1280 x 1024 1600x1200
(Recommended) 1024 x 768 1400x1050

1280x960

1280x864
Resolution 800 x 600 800 x 600
(NOT 640 x 480 640 x 480
Recommended)

Table 6.1 Platform testing environment for caAdapter

Java is not included with caAdapter and must be downloaded and installed. If you are
installing source code, you must also download and install Ant, which is not included
with caAdapter. Table 6.2 contains information for downloading the versions of java and
Ant that conform with the NCICB technology stack.

Software Name Version Description/URL Example Directory
Java 2 Platform 1.5.0_06 The J2SE Soft- If your root directory in Win-
Enterprise Edition ware Development | dows is C:\, then install to
(J2EE) or Stan- Kit (SDK) supports | the C:\jdk1.5.0_06 Java
dard Edition (J2SE) creating J2SE home directory

applications
http://java.sun.com/
j2sel
Ant 1.6.2 Apache Ant is a If your root directory in Win-
Java-based build dows is C:\, then install to
tool C:\apache-ant-1.6.2 Ant
home directory
http://
ant.apache.org/

Table 6.2 Required software for all caAdapter distributions

Perform the following steps in Windows to verify the JAVA_ HOME and ANT_HOME
environment variables are set and add them to your PATH. Right click on My Com-
puter, select Properties, select the Advanced tab, and click Environmental Vari-

ables.

66

http://ant.apache.org/
http://java.sun.com/j2se/

Chapter 6: caAdapter Model Mapping Service

1. JAVA HOME and ANT_HOME must be listed in the User variables or System
variables list box. To add either, click New below one of the boxes.

2. In the New Variable dialog box, add the Variable name and Variable value for
your home directory.

Examples:
Variable = JAVA HOME; Variable Value = C:\jdkl1.5.0 06
Variable = ANT_HOME; Variable Value = C:\apache-ant-1.6.2

3. Find the PATH environment variable, double click it or click the Edit button and
add %JAVA_HOME%\bin to the end of its value. Add %ANT_HOME%\bin to the
end of its value. Click OK.

4. To verify that the PATH statement listed in the Environment Variables box
includes JAVA_HOME and ANT_HOME, open a command window (Start >
Command Prompt). Enter path at the prompt and press ENTER to display your
path. For example, C:\jdk1.5.0 06 and C:\apache-ant-1.6.2\bin
should be at the end of your path. If you were successful, you can run java and
ant anywhere in your system.

Downloading caAdapter

To use caAdapter, download the package provided on the NCICB web site (Figure 6.1).

2} NCICB: Home - Microsoft Internet Explorer X
File Edit View Favorites Tools Help ﬂ.'

eBack - J @ @ ::j pSearch *Favorites Q‘} [22' :__9,. I_f)_.»‘-l - _J ;&r ﬂ @ '3
Address @ \tkp: fincich, nci. nib.gosey

v| Search [+ | 4 @y & B~ EWvelowpPages + B a0L.com @ Maps ~ =

MNational Cancer Institute U.S. National Institutes of Health | www.cancer.gov [

hdap
. -\‘I HOME : ABOUT MCICE INFREASTRUCTURE TOO FROJECTS TRAIMNIN FFPORT
il H H H H

Center
for
Bicinformatics

Welcome to the NCI Center for Bioinformatics

The MCI Center for Bioinformatics (MCICH) helps speed scientific
discavery and facilitates translational research by building many
types oftools and resources that enable information to be shared
along the continuum from the scientific bench to the clinical

Open Development Inttiative
Help shape the next frontier for
MCICE software. Participate in our

pedside and hack, Open Development Initiative.
MCICH offers critical open-source infrastructure components that Learn More About This Site

others can use to develop valuable databases and software tools
to meet specific research needs. MCICB's expanding suite of toals
ig built from these foundational companents. Qur projects bring
toals and partners together to tackle key challenges.

Powerful resources available on the NCICB site:

~ v

Click here to visit the site mini-guidea.

K ar
AL GIICH LINKS

o and

Infrastructure Tools Projects
Build research infarmation systems Review toolz and services built to Digcover cancer research
with open-source softvware faciltate your clinical and lak communities crested using our tools
development kit research activities and infrastructure components
1 Pt w
@ hktp: f fuwa, cancer.gaw) B Internet

Figure 6.1 Downloads section on the NCICB website

1. Open your browser and go to http://ncicb.nci.nih.gov.

67

http://ncicb.nci.nih.gov

caCORE SDK 3.2.1 Programmer’s Guide

Click the Download link on the menu bar.
Scroll down to the section titled caBlO and click on the Download link.

In the provided form, enter your name, email address and institution name and
click to enter the Download Area.

Accept the license agreement.

6. Select caAdapter and extract the contents of the downloadable archive to a
directory on your hard drive (for example, c:\caAdapter on Windows or /
usr/local/caAdapter on Linux). Select the appropriate distribution as listed
below and save it to a temporary directory on your computer (for example,
C:\temp in Windows). Each type of distribution has files with (w) or without (wo)
Hierarchical Message Definition (HMD) files. The extracted directories and files

are listed in Table 6.3.

Directories and N
Files Description Component
Binary The caAdapter binary distribution file caadapterv3.2.0.1_hin
Distribution contains the binary code for caAdapter | _w.zip: Binary file with
and HL7 JavaSIG software, Javadocs | HL7 MIF files
for caAdapter and HL7 JavaSIG code, Caadapterv3.2.0.1_bin
Release Notes, HL7 message sche- . ,
| dli _wo.zip: Binary file
mas, example messages, and licenses. | ©.o o L7 MIE files
Source The caAdapter source distribution file | caadapterv3.2.0.1_src
Distribution contains the source java code for _w.zip: Source file with
caAdapter and HL7 JavaSIG software, | HL7 MIF files
Javadocs for caAdapter and HL7 Jav- caadapterv3.2.0.1_src
aSIG code, Release Notes, readme.txt, L .
HL7 h | _wo.zip: Source file
message schemas, example mes- | “.. 0 L 2 MIE files
sages, and licenses.
Windows The caAdapter windows distribution file | caadapterv3.2.0.1_
Distribution contains binary code for caAdapter and | w.msi: Windows file
HL7 JavaSIG software, Javadocs for with HL7 MIF files
;a,?daptehrl af[nd HL7 dJavatStI GHcI:_c;de, caadapterv3.2.0.1
€ easeh Oles, rea m?' XL, mes- wo.msi: Windows file
sage schemas, example messages, without HL7 MIE files
and licenses.

Table 6.3 Extracted directories and files in the caAdapter package

Installing caAdapter

To install caAdapter, complete the appropriate steps for your distribution.

Installing the Source and Binary Distributions

Extract the contents of the caAdapter source or binary distribution zip file to your root
directory. For example, if your root directory in Windows is C:\, then your caAdapter
home directory becomes C:\caadapter. Table 6.4 contains the directory structure after

installation.

68

Chapter 6: caAdapter Model Mapping Service

Note: The caadapter directory is created for you.

Installing the Windows Distribution

Double-click on the .msi file and follow the instructions provided to complete installa-
tion. Table 6.4 contains the directory structure after installation.

Directory Contents

build Binaries (.class files) (only for source distribution and is created at
runtime)

etc Important supplementary files

images Images used by the GUI

lib Java libraries and dependencies

license License and legal information

schema HL7 v3 Schema files

src Source code (.java files) (only for source distribution)

workingspace Default directory where you can save project files. It contains log files
and HL7 v3 XML instances. It also contains an examples directory with
sample data.

Table 6.4 Directory structure of caAdapter

Veritying Installation

Perform the appropriate processes for your distribution to ensure the installation was
successful.

Verifying Binary Installation
Perform the following steps to launch the caAdapter Mapping Service.

1. In a Command Prompt window, enter cd {home_directory} to go to your
home directory (for example, in Windows C:\caadapter).

Enter java -jar caadapter_ui.jar.
The interface for the caAdapter Mapping Service displays (Figure 6.2).

69

caCORE SDK 3.2.1 Programmer’s Guide

£3 caAdapter
File Report Help

NCFR
INSTITUTE

|z|alv|z|@]

samplel_taggedxmi |

= | = ||:e1.sample1_tagged.xmi ‘ Open xMifile.. i)l Generate HBM Files | | = |IC:1.Prujectslhl?sdk—nemﬂwurkin
4 Ohject Model /{29 Data Madel
=4 gov 54 CHROMOSOME

B-23 hif

- ACCESSION_MUMBER
i CLOME_ID

o CHROMOSOME_ID
=24 e @ CHROMOSOME_NUMEER
B4 cabio o i TRKON_ID
=-_4 damain =4 CLOME
El-_4 Chramosome
"% ganaCallsction anyto 1y

oy CLOME_MAME
- name (&) i CLOME_STRAIM
-4 taxon (1 to Many) -4 |NSERT_SIZE

Figure 6.2 caAdapter Mapping Service interface

Verifying Source Installation
Perform the following steps to launch the caAdapter Mapping Service.

1. In a Command Prompt window, enter cd {home_directory} to go to your
home directory (for example, in Windows C:\caadapter).

Enter ant compile.
Enter ant launchui.

The interface for the caAdapter Mapping Service displays (Figure 6.2).

Verifying Windows Installation
Perform the following steps to launch the caAdapter Mapping Service.
1. Navigate to the caAdapter shortcut from the Start menu and click caAdapter.
2. The interface for the caAdapter Mapping Service displays (Figure 6.2).

Using caAdapter

The caAdapter Model Mapping Service provides the following functionalities:
e Parses and loads a data model and an object model from an XMl file.
e Provides drag and drop mapping between an object model and a data model.
e Adds SDK required tags and tag values into an XMl file.
e Generates a Hibernate mapping file.

Figure 6.3 provides a process overview of how the caAdapter Model Mapping Service
is integrated with other components.

e First, an object model and a data model must be developed in Enterprise Archi-
tect (EA).

70

Chapter 6: caAdapter Model Mapping Service

e Next, an XMl file is exported from EA and is loaded into the caAdapter Model
Mapping Service.

e Objects from the object model are mapped to tables in the data model by drag-
ging and dropping. Attributes and associations are mapped to columns.

e Once mapping is complete, caAdapter can directly generate a set of Hibernate
HBM mapping files. Alternatively, the original XMl file to which caAdapter has
added caCORE compliant tag values can be saved for later use. The tagged
XMI file can be reimported into EA to generate an XMl file that can be used by
the caCORE SDK.

—— m)
v2.0 - | Object Model
4 ENTERPRISE
ARCHITECT

. 1 Data Model
Object Model Object Model
caAdapter with Tags
Data Model Data Model no diagrams

wio Tags wi Tags

rourie | rorte

Hiberbate ObjecthabIe
Fil Mapping
fles Specifications

Figure 6.3 caAdapter process overview

The following sections describe the steps in the mapping process in more detail.
Exporting an XMI File from EA

Before beginning to map between an object model and a data model through the
caAdapter Model Mapping Service, an XMl file must be generated with Enterprise
Architect (EA) by using the following steps.

1. In EA, open the .eap file (the file containing the object and data models) and
right click on Logical View. Select Import/Export > Export package to XMl
file from the pop-up menu (Figure 6.4).

71

caCORE SDK 3.2.1 Programmer’s Guide

ow Help

=10l =

ActionScripk

Ak~ | [1H

TR

| el
search I E = @ Yiews
- [@] Use Case view
- . Drynamic View
. D Propetties. .,
Architect. ; ; Cl:l Set Yiew Ican...
) . Dep Package Control 4
Recent Prajects - (=] Cus Add N
cabia Documentation 4
caCORES-2 Code Engineering [
CORES-0
= i Build and Run 4
A
cad Import package from %MI file, ., Chrl+AlE+T | Import/Export 4
caf E Expart package to XMI file. .. Ctrl+alt+E | Transform Current Package Cerl+Shift+H
dat
best 5% ImportExpart. .. Conkents »
Ora
Bookmarks
cabi Impart MET %ML File moRmar
EL ook Teas rhALEhiFFLE

Figure 6.4 Export XMI file from EA

2. Inthe Export Package to XMI window, check the Format XMI Output and the
Enable Full EA Roundtrip boxes. Specify the output file name of the XMl file
and click Export. The generated XMI file can be parsed by caAdapter (Figure
6.5).

x|
Fook
Package

Filenarmne: IE:'xF'ru:uiec:ts'xhl?sdkhwnrkingspaceﬂ2‘asam|:|le.:-:mi

L

Styleshest I

j [Optional stylesheet to post process 2M| content]

— General Options

W | Erport Diagrams
orrnat #h 1 Output
Wwirite Log file
[~ UseDTD
[Generate Diagram Images

Farmat:

I jv

— Far E=port to Other Tools

able full EA R oundtrip
KMl Type: JUML 1.3 (<M1 1.1)

i

[T Urisyz/Faze Format
[T Exclude E& Tiagged Yalues

Whaming: These options are for exporting
EA model elements to other tools only.

Wiew 2l

| Export I

Cloze | Help

Progresz

Figure 6.5 Options to export XMI file from EA

72

Chapter 6: caAdapter Model Mapping Service

Creating an Object Model to Data Model Map Specification

Perform the following steps to create a new map specification.

1. Select File > New > Model Mapping Service > Object Model to Data Model
Map Specification to open a new mapping tab with empty source and destina-
tion panels (Figure 6.6).

Adapter
Report Help

CEY To HLT w3 Mapping and Transformation Serice » gmze
HLT v2 to HLT v3 Corversion Service

\Save Crl+S SOTM Mapping and Transformation Service

Save As model Mapping Service Object Model to Data Model Map Specification Cirl+O
| validate

Cloze Cirl+F 4

Close All

Exit Alt+F4

Figure 6.6 Creating an object model to data model map specification

2. Click Open XMl File... to display the Open XMl file ... dialog box (Figure 6.7).
Select the XMl file to start mapping an object model to a data model.

File Report Help

ER. Center : e
[@1[TiEU TE for e

Bioinformatics |

SHVRE

Untitled_1.map

HE [_open it

3 cenerate HEM Files

™ Open XMl file ...

Lookin: | == workingspace

v 2 o@E

= examples

Figure 6.7 Open XMI file

3. After the XMl file is loaded, the object model displays in the left panel and the
data model displays in the right panel. Objects and attributes can be mapped to

tables and columns.
Opening an Existing Object to Database Map Specification

Perform the following steps to open an existing map specification.

1. Select File > Open > Object to DB Map Specification. The Open Map File
dialog box displays.

73

caCORE SDK 3.2.1 Programmer’s Guide

2. Select either the XMl file or the map specification file and click Open. (For back-
wards compatibility, caAdapter 3.2.0.1 saves the mappings in the .map file as
well as the XMl file, so either may be used to open the map specification.)

3. If you select a .map file and the XMI associated with the mapping cannot be
found, the Select XMl file dialog box opens. Browse to the correct XMl file and
click Open.

Creating a Basic Mapping Line

Perform the following steps to create an object to database map specification with one
or more mapping lines. Basic mapping lines include dependency mapping, attribute
mapping, and association mapping, each of which is further described in subsequent
sections.

1. Select a source element (object, attribute, or association) from the object model
in the right panel and drag it to the appropriate target element (table, column, or
foreign key) in the data model in the left panel. The cursor indicates whether the
source element is, or is not, allowed to be mapped to the target element (Figure
6.8). Drop the source on the target element.

=k _4 onetoone = ,x-*.u;r-.j[;ur.,qEr-.jT
i - ﬂ‘ﬂ.
PROTOCOL_ID
| ~ ® TYPE
% protocol (110 1) -] ASSESSMENT
oW P (A) -] ASSESSMENT_OBSE!

Figure 6.8 Cursor indicates whether mapping is allowed

2. Once a source element is mapped to a target element, a mapping line appears
between them in the mapping panel. Figure 6.9 shows a mapping line between
Amendment in the object model, on the left, and AMENDMENT in the data
model, on the right.

=/-_4 hidirectional . =4 AMENDMENT
SR | Amendment — e D
® id(A) #® PROTOCOL_ID
@ protocol (110 1) @ TYPE
® type (&) +-__ | ASSESSMENT

Figure 6.9 Mapping line between a source field and a target element

Creating a Dependency Mapping Line

Perform the following steps to create a dependency mapping line, which is a mapping
between an object and a table.

1. Select a source element from the object model on the right as in the example in
Figure 6.10 showing HealthcareSite. Click and drag HealthcareSite to
HEALTHCARE_SITE in the data model.

74

Chapter 6: caAdapter Model Mapping Service

2. A mapping line between HealthcareSite and HEALTHCARE_SITE should now

be visible. Dependency mapping lines are color-coded green.
T /AUTESS T DTROTNOUOTO

SRR |HealthcareSite | -4 HEALTHCARE_SITE
® address (110 1) @ ADDRESS_ID
® idA) @ |D
® name (A) -~ NAME

e T LHNOTADATLIAL ANV

Figure 6.10 Dependency mapping line (green)

Creating an Attribute Mapping Line

An attribute mapping line is a mapping between an attribute in the object model and a
column in the data model. Before any attribute mapping can be done, dependency
mapping must be completed. Perform the following steps to create an attribute map-
ping line.

1. The example in Figure 6.11 shows the attribute id (A) for the class HealthcareS-
ite and the column ID for the table HEALTHCARE_SITE. Select id (A) in the
object model and drag it to ID in the data model.

2. A mapping line should be visible between the attribute and column. Attribute
mapping lines are color-coded blue. Repeat this from name (A) to NAME.

X __ T AUUTESS T __J UIRONUDIIO

=4 HealthcareSite =4 HEALTHCARE_SITE
® address (110 1) @ ADDRESS_ID
® id®) @ ID

g name (&) - ® NAME

ST LHNDOTADATLIAL AN

Figure 6.11 Attribute mapping line (blue)

3. If the object has not already been mapped to the table, an attempt to map the
object's attributes to the table's columns will result in an error message (Figure
6.12).

Mapping Error

@ Parent object and table are not dependency mapped.

Lok]

Figure 6.12 Dependency mapping error message

Creating an Association Mapping Line

An association mapping line is a mapping between one end of an association listed
under an object in the object model and a foreign key column in a table in the data
model. Perform the following steps to create an association mapping line.

1. First create a dependency mapping between the object model and the data
model. For example, in Figure 6.13 the green line shows a dependency
between HealthcareSite and HEALTHCARE_SITE.

2. Drag and drop id (A) to ID and name (A) to NAME.

75

caCORE SDK 3.2.1 Programmer’s Guide

3. Drag and drop address (1 to 1) to ADDRESS_ID. When complete, the final
result should look like that in Figure 6.13. Association mapping lines are color-

coded red.

X] AUUTESS

=4 HealthcareSite

X] UIROTNUOTO

= _4 HEALTHCARE_SITE

L address (110 1)

® ADDRESS_ID

® id(A) e D
® name (&) ® NAME
+. 1 HISTARPATHN NGBY

Figure 6.13 Association mapping line (red)

Deleting Mapping Lines

Perform the following steps to delete a mapping line.

1. Select the mapping line by left clicking on it in the mapping panel. The line is

highlighted.

2. Right click on the highlighted mapping line and select Delete from the pop-up
menu.(Figure 6.14). The line is removed from the mapping panel.

Note: When a dependency mapping line is deleted, the corresponding attribute mapping lines
are not deleted in the current session. However, when the mapping file is saved and
reopened, the attribute mapping lines will not display.

3 NTUIMTELTIoTTar

SR | mendment]
- id (A)
@ protocol (1to 1)
® type (A)
=14 Protocol
#® amendment(1to1)
& id(A)

l‘ b d TTT o

ELAMENDMENT
Delete

-_ID

([® TYPE

Figure 6.14 Deleting mapping lines

Validating Mapping Specifications

Validating a mapping specification identifies mappings that do not follow the constraints
of the tool and indicates any changes that need to be made. Perform the following
steps to validate the object to database mapping specification.

1. Click the Validate button (top of Figure 6.16) to display the message "Validation
process completed successfully with no message received". If there are errors
in the validation process, the following message displays: "Validation process
completed but received <some number> ERRORS".

76

Chapter 6: caAdapter Model Mapping Service

L

- caAdapter

by

File Report Help

FREYRE

caAdapter Model Mapping Sewvice Examples Fully Mappedxmi |

I 1
- - impleicaAdapter Model Mapping Service Examgles_] Open A
_4 Object Model

Message

\!r) Walidation process completed, but received 1 ERRORs and 1 INFOs,

(k]

Figure 6.15 Validation message

2. |If there are errors, a dialog box (Figure 6.16) opens to allow examination of any
messages, errors, or warnings. Error messages identify what actions to perform
to correct errors. Information messages are for notification purposes and
require no change. All objects, attributes and associations must be mapped and
generate errors when not mapped, except inherited attributes which generate
an information message when not mapped. When changes are made to correct
an error, it is recommended that mappings are validated again.

77

caCORE SDK 3.2.1 Programmer’s Guide

™ Message Dialog R g

Yalidation Messages

Message Level: [EaeR] v| [save | [Prnt |

Confirmation Message: Validation process completed, bul received 1 ERRORs and 1 INFOs

Message |
IAftribute Logical View Logical Model.gov.nih.nei.cacoresdk domain.inheritance onechild Activity.id is not mapped! |

Figure 6.16 Message dialog displaying errors on validation

Saving Mapping Specifications
To save a mapping specification, select File > Save. caAdapter saves the mappings to
the XMl file and to the .map file (for backward compatibility). The Save Complete dialog

displays when completed. During the mapping and saving process, tagged values are
automatically added to the XMl file. The caCORE SDK defines the following tags:

e correlation-table

e inverse-of

e implements-association
e mapped-attributes

e Stereotype

e ea_type

e direction

e style
For more information on tagged values, see Chapter 5, Creating the UML Models.

Generating XMI for caCORE SDK Integration

Reimporting an XMI Document into EA

After the mapping is completed and saved, the tagged XMl file can be reimported into
EA and then reexported for caCORE SDK integration. The reimported XMl file contains

78

Chapter 6: caAdapter Model Mapping Service

the UML diagrams but the reexported version does not (as the caCORE SDK process
requires.) The process can be done by using the following steps.

1. In EA, create an empty project without selecting any models by selecting File >
New Project.

2. Click on the new model and select Import Model from XMlI... from the pop-up
menu (Figure 6.17).

ol Project View
B-8- a5 d P
Search: | 3 @
Package Control 2
le... Rename Project Roat, ..
bl Optians. .. §71 Mew Project Root Node...
b Enterprise Archite New Yiew. ..
Add Model From Pattern
Ret -
4 : Eﬁ Search Trae Ckrl+Shift+F
ca Collapse Al
ca -
sa e || ImportModelfrom xMI.., Ctr+al+l |

Figure 6.17 Create new model in EA for reimport

3. Inthe Import Package from XMI window, select the tagged XMl file (that is, the
file that contains the mapping specification) and click Import. The model is re-
imported into EA (Figure 6.18).

Note: Checking the Import Diagrams and Write Log file boxes is optional.

Import Package from XMI i x|

Foot
Package Mol
el - Program FileshS paix SystemshEA M odelP sthermsclm. xml

W Import Diagrams

I Suip GUID's [V ‘wiite Log file
Treat Imported D atatypes a5 | j
View XM Import Close | Help |

=M Import Progress

Figure 6.18 Import xmi file dialog

79

caCORE SDK 3.2.1 Programmer’s Guide

Exporting an XMI File from EA for caCORE SDK Integration
Use the following steps to export the XMl file from EA for caCORE SDK integration.

1. Once the reimport is complete, right click on Logical View and select Import/
Export > Export Package to XMl file from the pop-up menu.

2. Onthe Export Package to XMI window, uncheck the boxes for Enable Full EA
Roundtrip and Export Diagrams. Check the boxes for Unisys/Rose Format
and Exclude EA Tagged Values.

Note: The Export Diagrams and Write Log file boxes are optional.

Specify the filename for the XMI file (this is the output XMl file) and then click
Export (Figure 6.19). The generated XMI file can be used for caCORE SDK

integration.
Export Package bo XMI x|
Fook . -
bk s ILu:ugau:a] Wigw
Filenarme: II::"xPrniecta\f‘d?sdk\wuﬂmgspme‘ﬁz‘waml&:Hmi |
Stylesheet | | [Dptional styeshest to post process XMl content)
—General Options———— [~ For Expoet tbo Other Tooks
t Diagrams full E4& Roundtrip

IV Format XMI Output 2l Type: [UML13pMITT) =]

¥ wiite Log file

™ UseDTD nisys/Rose Format

[T Generate Diagram Images wclude EA Tagged Values

Frimat | ﬁ_ iy These options are for exporting
E4 model elementz to other toolz onlhy,
ViewiMl | [Ewot | Close | Help

Progress

Figure 6.19 Exporting xmi file for ctCORE SDK integration

Generating Hibernate Mappings

An alternative to creating caCORE SDK APIs is to generate Hibernate files and use
those files in an application to access data from a database. Perform the following
steps to generate Hibernate files from the current object to database mapping.

1. Click the Generate HBM Files button; the Open dialog box displays (Figure
6.20).

2. Select a directory to save the HBM file(s) and click Open.
3. The HBM files are saved to the directory specified.

80

Chapter 6: caAdapter Model Mapping Service

File Report Help

'E ?ﬁ XC\ E.RJ“
INSTITUTE

SEYRE

caAdapter Model Mapping Service Examples Fully Mapped.mi |

' . ‘[impleuaAdapterMndelMapping Service Examplesr[Open XMl file...]1[Generate HBM Files J . - |D:Icandapterv3‘2.0‘1 - QA Build -

4 Object Madel Al " | |24 Data Model |

=29 gov
=4 nih

Figure 6.20 Generate HBM Files

caAdapter Mapping Scenarios

This section describes seven mapping scenarios. Before performing any of the follow-
ing mapping scenarios, all dependency mapping between objects and tables must be
complete.

One-to-One Bidirectional Mapping

To map one-to-one bi-directional relationships, the rule is to map the association from
the object whose corresponding table has the foreign key (source) to the foreign key in
the corresponding table (target). In the example (Protocol and Amendment) in Figure
6.21, drag the association (Amendment.protocol (1 to 1)) and drop it onto the foreign
key (PROTOCOL _ID) of the corresponding table (AMENDMENT). For one-to-one bi-
directional mapping, only one end of the relationship needs to be mapped; the other
end (Protocol.amendment (1 to 1)) does not need to be mapped.

81

caCORE SDK 3.2.1 Programmer’s Guide

82

#-__] unidirectional

] TAnyIornany —® TYPE
-] manytoone =4 AMENDMENT
+-[] onetomany ® D
=4 onetoone ® PROTOCOL_ID
=1 bidirectional ® TYPE
=4 Amendment - | ASSESSMENT
® idA) #-__] ASSESSMENT_OBSEF
-~ protocol {1t01) #-_]| CANCER_STAGE
® type (A) #-_] DIAGNOSIS
=-_4 Protocol #-__) HEALTHCARE_SITE
® amendment{1to 1) #- | HISTOPATHOLOGY
@& idA) #-_] HISTOPATHOLOGY_G
L _Mtitle (A) #-__] OBSERVATION

&+

L1 PARTICIPANT
_4PROTOCOL
® D

& TITLE
£ STIINY SITE

i

Figure 6.21 One-to-one bidirectional mapping

One-to-One Unidirectional Mapping

To map one-to-one unidirectional relationships, the rule is to map the association from
the object whose corresponding table has the foreign key (source) to the foreign key in
the corresponding table (target). In the example (HealthcareSite and Address) in Figure
7-21, drag the association (HealthcareSite.address (1 to 1)) and drop it onto the foreign
key (ADDRESS_ID) of the corresponding table (HEALTHCARE_SITE) (Figure 6.22).

| cacoresdk
_4 domain
+-[_] inheritance
+-_] manytomany
#-__] manytoone
+] onetomany
=4 onetoone
*-__] bidirectional
=-_4 unidirectional
=4 Address
& idA
® zZip(A)
=-_q HealthcareSite
@ address (110 1)
& id A
.

w

+

&

+

&

@] HISTOPATHOLOGY

I

_4 ADDRESS
® D
® ZIP
i) ADVERSE_EVENT
__) ADVERSE_EVYENT_THEH!
__) AMENDMENT
__] ASSESSMENT
__) ASSESSMENT_OBSERV|
__| CANCER_STAGE
| DIAGNOSIS
4 HEALTHCARE_SITE
® ADDRESS_ID
¢ D
® NAME

-+

12}

5

i

__J HISTOPATHOLOGY_GR

N g g ey sy s

Figure 6.22 One-to-one unidirectional mapping

One-to-Many Bi-Directional Mapping

To map one-to-many bi-directional relationships, the rule is to map the association from
the object whose corresponding table has the foreign key (source) to the foreign key in
the corresponding table (target). In the example (AdverseEvent and AdverseEvent-

Therapy) in Figure 6.23, drag the association (AdverseEventTherapy.adverseEvent (1
to Many)) and drop it onto the foreign key (ADVERSE_EVENT_ID) of the correspond-

ing table (ADVERSE_EVENT_THERAPTY). For one-to-many bi-directional mapping,
the other end of the association will be rendered by a dark blue element, and is not

required to be mapped through caAdapter.

I~] manytomany
I-__] manytoone
4 onetomany
=4 bidirectional
=4 AdverseEvent

BB

C® ype (A)
= _4 AdverseEventTherapy
#® adverseEvent (1 to Many)
® id(A)
L ltype (A)

Figure 6.23 One-to-many bidirectional mapping

One-to-Many Unidirectional Mapping

11

4 ADVERSE_EVENT

® D
TYPE

]

4 ADVERSE_EVENT_THERAPY

® ADVERSE_EVENT_ID
@ D
#® TYPE

CIR:

*

1 AMENDMENT
[1 ASSESSMENT
1 ASSESSMENT_OBSERVATION

#-_) CANCER_STAGE
4] DIAGNOSIS

To map one-to-many unidirectional relationships, the rule is to map the association from
the object whose corresponding table has the foreign key (source) to the foreign key in
the corresponding table (target). In the example (CancerStage and Diagnosis) in Figure
6.24, drag the association (CancerStage.diagnosis (1 to Many)) and drop it onto the for-
eign key (DIAGNOSIS_ID) of the corresponding table (CANCER_STAGE). For one-to-
many unidirectional mapping, the other end of the association will be rendered by a
dark blue element, and is not required to be mapped through caAdapter. The pink
color-coded association end is added by the system to support mapping and should be
mapped, but the dark blue association end should not be mapped.

=14 unidirectional
= _4 CancerStage
& diagnosis (1 to Many)

% id (&)
& name (&)
=14 Diagnosis
~® cancerStageCollection (Manyto 1)

® id(8)
R name (4) |

Figure 6.24 One-to-many unidirectional mapping

=+

+

__J ASSESSMENT_OBS
_4 CANCER_STAGE
® DIAGNOSIS_ID
¢ ID
® NAME
_4 DIAGNOSIS
ID
® NAME
__ | HEALTHCARE_SITE

83

caCORE SDK 3.2.1 Programmer’s Guide

Many-to-One Unidirectional Mapping

To map many-to-one unidirectional relationships, the rule is to map the association from
the object whose corresponding table has the foreign key (source) to the foreign key in
the corresponding table (target). In the example (HistopathologyGrade and Histopathol-
ogy) in Figure 6.25, mapping is done in a similar fashion as the one-to-many unidirec-
tional relationship. Drag the association (HistopathologyGrade.histopathCollection (1 to
Many)) and drop it onto the foreign key (HISTOPATHOLOGY_ID) of the corresponding
table (HISTOPATHOLOGY_GRADE).

= _4 unidirectional @®-__) DIAGNOSIS
=23 =7 £-) HEALTHCARE_SITE
- o ——— = 4 HISTOPATHOLOGY
@ ID
® name (A) ® NAME
= _14 HistopathologyGrade = 4§ HISTOPATHOLOGY_GRADE
® grade (A) ® GRADE
histopathCollection (1 to Many) @ HISTOPATHOLOGY_ID
© e D

Figure 6.25 Many-to-one unidirectional mapping

Many-to-Many Bidirectional Mapping

To map a many-to-many bi-directional association, first identify an intersection table. In
the example in Figure 6.26, STUDY_SITE_PARTICIPANT is the intersection table (typ-
ically the name of the intersection table is a concatenation of the two tables that corre-
spond to the two objects). Then, drag both ends of the associations and drop them onto
the two corresponding columns in the mapping table.

Figure 6.26 Many-to-many bidirectional mapping

84

=4 hidirectional [+) OBSERVATION
=~ _1 Participant =4 PARTICIPANT
® id (A) o@D
® name (&) & NAME
L WstudySiteCollection {(Many to Many) #-_] PROTOCOL
=4 StudySite =3 STUDY_SITE
® id(A) ® ID
® name (A) & NAME
@ paricipantCollection {Many to Many) =4 STUDY_SITE_PARTICIPANT
-] unidirectional @ PARTICIPANT_ID
__1 manvtoone Y ® STUDY_SITE_ID

Many-to-Many Unidirectional Mapping

Chapter 6: caAdapter Model Mapping Service

To map a many-to-many unidirectional association, first identify an intersection table. In
the example in Figure 6.27, ASSESSMENT_OBSERVATION is the intersection table
(typically the name of the intersection table is a concatenation of the two tables that cor-
respond to the two objects). Then, drag both ends of the associations and drop them
onto the two corresponding columns in the intersection table (just like for a bi-direc-

tional association).

~ 4 manytomany

| bidirectional

4 unidirectional

=4 Assessment
® idA)
® observationCollection (Many to Many)
® type (A)

= _4 Ohservation
@ assessmentCollection (Many to Many)
® idA
L Brame (A)

__ | marvtoone

__] onetomany

() onetoone

L=~] OTicLImu

i+

= -~ @& OBSERVATION_ID

] AT TNO TV
=4 ASSESSMENT
@ D
® TYPE
4 ASSESSMENT_OBSERVATION
- @ ASSESSMENT_ID

1]

*

I-_) CANCER_STAGE
I-__] DIAGNOSIS
I-__J HEALTHCARE_SITE
-1 HISTOPATHOLOGY
1 HISTOPATHOLOGY_GRADE
_1 OBSERVATION
® D
® NAME

A P eTIAIN AR IT

B

Figure 6.27 Many-to-many unidirectional mapping

85

caCORE SDK 3.2.1 Programmer’s Guide

Mapping Inheritance

To map inheritance through the caAdapter Model Mapping Service, follow the above
steps to map each child class or attribute to its corresponding table or column, and the
tool will automatically mark inherited attributes as (A - Derived). Those attributes do not
need to be mapped, and during the validation, an information level message is dis-
played (Figure 6.28).

— 4y cacoresdk
=~ _§ domain
=4 inheritance
=14 onechild
=4 Activity
® date (&)
® id®A)

@ id (A- Derived)

& type (A)
=4 manvinmany
Figure 6.28 Inheritance mapping

User Interface Legend

This section lists the colors and associated meanings used to represent nodes and
mapping lines in caAdapter.

Node Colors

e Light Gray - Cosmetic only, every other line

e Blue - Indicates the node represents a many-to-one association and cannot be
mapped.

e Pink - Indicates the association does not exist in the object model and will be
used only for mapping purposes.

86

Chapter 6: caAdapter Model Mapping Service

e Dark Blue - Indicates the currently selected item.

Node Details
o (A

=4 manytoone

=4 unidirectional

Cosmetic

=4 Histopathology <=

- @ histopathGrade {(Many tc
® id (&)

® name (&)

=-_4 HistopathologyGrade

@ grade (A)

~# histopathCollection (1 to Many)

@ id (A)

=4 onetomany

=4 bidirectional
=4 AdverseEvent
- ® adverseEventTherap
® id (&)
©® type (A)
[=-"_1 AdverseEventTherapy
L adverseEvent (1 to Many) B
e id(A)

~Can’t Be Mapped

~Created for
Mapping Purposes

= Current Item

oW type (A)

- Indicates the node is an attribute.

e (A - Derived) -Indicates the node is an inherited attribute.

e (1to 1) - Indicates the node is a one-to-one association.

¢ (1to Many) - Indicates the node is a one-to-many association.

e (Many to 1) -Indicates the node is a many-to-one association.

¢ (Many to Many) - Indicates the node is a many-to-many association.

Mapping Line Colors

e Green - Dependency Mapping.
e Blue - Attribute Mapping.
e Red - Association Mapping.

T TAUUTESS

=4 HealthcareSite
L Baddress (1101)

il (A
® name (&)

Figure 6.29 Mapping line colors

[} | DTROTIUSTo

=- _1 HEALTHCARE_SITE

® ADDRESS_ID
@ |ID

_ ® NAME

D LIOTADATUAL Anv

87

caCORE SDK 3.2.1 Programmer’s Guide

88

CHAPTER

PERFORMING SEMANTIC INTEGRATION

This chapter describes the necessary procedures to prepare UML Models for loading
into the caDSR using the Semantic Integration Workbench (SIW).

Topics in this chapter include:

Introduction on page 90

Generating the XMl File for the SIW on page 91
Semantic Integration Workbench on page 92
Suggested Workflow for the SIW on page 96

Using the XMI Roundtrip Mode on page 98

Running the Semantic Connector on page 100

Curating XMI Files on page 103

Reviewing an Annotated Model on page 115

Setting Preferences on page 118

Setting UML Loader Run-Time Parameters on page 122
Updating UML Model Definitions on page 123

Errors and Log Tabs on page 124

Mapping UML Attributes on page 125

Validating Concept Mappings Against EVS on page 132
Creating Value Domains on page 133

Troubleshooting on page 136

89

caCORE SDK 3.2.1 Programmer’s Guide

Introduction

Semantic integration refers to the aspect of the caCORE architecture that addresses
mapping of data element metadata to controlled vocabularies using immutable concept
codes. For a UML model, proper semantic integration requires that each UML class
and class attribute gets mapped to appropriate metadata that are based on a set of
concepts in a controlled vocabulary. At NCICB, the preferred vocabulary is the NCI
Thesaurus, maintained by the Enterprise Vocabulary Services (EVS) staff. It is the
association with concept codes that permits unambiguous interpretation of UML model
objects and mapping between objects in different domains. The resulting data elements
are more sharable and interoperable.

There are two methods for accomplishing semantic integration:

1. Using the Semantic Integration Workbench (SIW)!, which is the preferred
method. The SIW facilitates and streamlines the process of semantic integra-
tion.

2. Manual annotation of the UML model using a modeling tool such as Enterprise
Architect (EA) by inserting the required concept tags. For semantic integration
tags and an example of the Semantic Connector report, contact NCICB applica-
tion support at nciappsupport@mail.nih.gov. CAUTION: It is HIGHLY recom-
mended to use the SIW to facilitate the semantic integration process. Manual
annotation has the potential to introduce human errors that can cripple meta-
data registration using the UML Loader.

Once the EVS annotated version of the model has been approved by the model owner
and EVS, a UML model is exported in XMI and sent to the NCICB caDSR team to be
transformed into caDSR metadata via the UML Loader. The export process from the EA
modeling tool is described in Generating XMI on page 63 and Generating XMl for
caCORE SDK Integration on page 78. The caDSR metadata registry, based upon the
ISO/IEC 11179 standard, registers the descriptive information needed to render cancer
research data reusable and interoperable. For more information about the ISO/IEC
11179 standard, see http://isotc.iso.ch/livelink/livelink/fetch/2000/2489/Ittf Home/Pub-
liclyAvailableStandards.htm??Redirect=1.

1. The use of the SIW replaces the use of Excel spreadsheets previously described
in Performing Semantic Integration in previous versions of the caCORE Software
Development Kit Programmer’s Guide.

90

http://isotc.iso.ch/livelink/livelink/fetch/2000/2489/Ittf_Home/PubliclyAvailableStandards.htm??Redirect=1
http://isotc.iso.ch/livelink/livelink/fetch/2000/2489/Ittf_Home/PubliclyAvailableStandards.htm??Redirect=1

Chapter 7: Performing Semantic Integration

Generating the XMI File for the SIW

The SIW uses a pre-processor called the XMI Handler to extract the XML tags needed
to perform semantic annotation of UML Classes, attributes and associations from the
UML Model. It also extracts various other model features and any caCORE specific
tagged values that were entered by the model owner to create caCORE Silver Level
Compatible systems.

Perform the following steps to export the UML model into XMI using EA.

1. From Project View, right-click Views > Logical View > EA Model > Logical
View package, and select Import/Export > Export package to XML file. The
Export Package to XML dialog box displays.

2. Enter the following information as shown in Figure 7.1. Fields are described
below the figure.

Export Package to XMI E]
Roat g ii
Bl ae -L_u:ugu:al Wig |
Filename: :u:al:uiu:-EHampleDnmainMDdel.Hmi | D
Stylesheet w | [Optional styleshest to post process XM cortent]

Feneral Options For Export to Other Tools

Proaress

wpart Dliagram Enable full E& Roundtrip
Format #k| Output Ml Type:

Wiite Log file

[UseDTD

[| Generate Diagram Images

Warning: These aphionz are for exparting

Fi t:
S E& model elements to other taolz ol

igw #h|] [E=port] [Cloze] [Help]

L]

Figure 7.1 Export Package to XML Options

(o]

(0]

Filename — Enter the filename for the XMl file. This file must contain no
spaces and must be located in {home_directory}/models/xmi directory.
An example filename in Windows is C:\cacoretoolkit\mod-
els\xmi\cabioExampleModel .xmi.

General Options — Accept the default values, Export Diagrams, Format
XML Output, and Write Log File.

For Export to Other Tools — Select Enable full EA Roundtrip.

3. Click Export. The status displays in the Progress window while processing with

a completion message when done.

91

caCORE SDK 3.2.1 Programmer’s Guide

Notes:

For caCORE 3.2, the caCORE SDK code generation process requires the model to be
exported in a different format than that used for exporting to caAdapter and SIW. This is
also described in detail in Generating XMl for caCORE SDK Integration on page 78.
The code generator still uses the format used in 3.1, therefore when exporting the file
as input to the caCORE SDK code generation step, under General Options, select For-
mat XML Output and Write Log File (uncheck Export Diagrams). Under Export to
Other Tools, select Unisys/Rose Format. All other export options are the same.
caAdapter and SIW use the native EA Roundtrip file export, making it easier to work
with the model in these two tools and enabling reimport into EA for modifications. This
is accomplished with a new tool, the XMI Handler. Its architecture allows it to accept
‘plug-ins’ so that additional XMl file formats can be accepted. In the next release, the
code generator will make use of this new capability, eliminating the need to export the
model twice if using caCORE SDK to generate code.

Also note, the XMI produced by EA is not a valid NetBeans Metadata Repository MDR
XMl file since it contains some specific EA characteristics. The SDK includes an XMI
preprocessor which can be invoked by calling an Ant task, fix-xmi, to make some minor
modifications to the structure of a given XMl file before semantic connection and code
generation begin. If you use a modeling tool other than EA, you will have to make sure
you have a valid MDR XMl file.

Semantic Integration Workbench

92

The Semantic Integration Workbench (SIW) is designed to facilitate the semantic anno-
tation process and to remove, whenever possible, the requirement that users should
understand ISO/IEC 11179, the relationship between UML Models and ISO 11179, the
specific implementation of ISO 11179 objects in caDSR, or the more complicated
details of the Semantic Connector implementation used in previous versions of the
caCORE SDK. The SIW includes the following features:

e \Validates against accepted datatypes.

e Automates searching and matching to potentially matching terms from the
vocabulary system. The Semantic Connector acts to facilitate the matching of
UML elements to controlled vocabulary.

e Ensures that files loaded into the caDSR have been checked for missing infor-
mation and validated using Silver Level compatibility rules.

e Streamlines semantic annotation by offering direct queries to the NCI Thesau-
rus. Inserts the concept information from the search into the user’s file in the
SIW, creating the appropriate tag names automatically. Syntax errors in the final
XMl file are no longer possible.

¢ Allows review of the final XMl file before it is loaded; allows individual review
and acceptance of each entry.

o Allows viewing the XMl file after concept curation and allows better understand-
ing of which concepts will be associated to the model when it is loaded. (Cura-
tion is performed by NCICB personnel.)

e Annotated XMI files contain the concepts, data elements, or value domains to
which classes and attributes are mapped.

e Allows setting UML Loader defaults.

https://cabig.nci.nih.gov/guidelines_documentation/Silver_Review/
https://cabig.nci.nih.gov/guidelines_documentation/Silver_Review/

Chapter 7: Performing Semantic Integration

e Allows entering new EVS concepts (not yet in NCI Thesaurus) to associate with
classes and attributes.

Launching the SIW

1. To launch the SIW, enter the following URL in your browser:
http://cadsrsiw.nci.nih.gov/.

2. If Java Web Start is installed on your computer, follow the prompts to launch the
SIW. The SIW always checks to ensure you are executing the most current ver-
sion and, if not, it automatically updates itself. If you have the latest copy, it will
proceed to the SIW menu.

a. The Java Web Start dialog box displays (Figure 7.2). You will see the
Semantic Integration Workbench start-up executing. This will take a few
minutes.

< Java Web Start |:| |§| [z|

4, Semantic Integration Workbench 3.2
Jva- NCI

Loading hibernate3.jar from cadsrsivw-stage. nci,nib, gow
Read 4.2M of 11.3M (37%)
Estimated time left: 00:00:25

nnmnmm | concel |

Figure 7.2 Java Web Start dialog box

b. At the Security Warning prompt, click Yes.

c. At the next prompt, click Install.

The portions of the application are downloaded to cache, but the entire
application itself is not downloaded.

3. If you get a File Download dialog box (Figure 7.3), you do not have Java Web
Start installed. Click Cancel, and go to the Sun website to download it: http://

java.sun.com.
File Download El

Do you want to save this file?

Mame: uml-loader.jnip
Type: Unknown File Type, 1.86 KB
From: cadsr-dev.nci.nib.gowv

[Save] I Cancel

“While files from the Internet can be useful, some files can potentially
harm your computer, If you do not trust the source, do not save this
file. ‘what's th

Figure 7.3 File Download dialog box that opens if you do not have Java Web Start installed
on your computer.

93

http://cadsrsiw.nci.nih.gov/

caCORE SDK 3.2.1 Programmer’s Guide

4. Open a browser and enter http://cadsrsiw.nci.nih.gov/.

SIW User Modes

94

When the SIW is running, the viewer displays the Welcome panel that includes the five
modes listed in the order of their use in the SIW workflow (Figure 7.4).

Semantic Integration Workbench

Welcome bo the Semantic Integration Warkbench

Choose from the Following SIWw Options:

) Review un-annotated ¥MI File

"y Perfarm ¥MI Foundtrip
"y Run Semantic Connector
{7y Curate #MI File

(&) Review Annotated Model

The private AP 15 offered as an alternative to the caCORE pubhe AFT.
It requires that the user be mside the NCI network oruse VEPH.

[< Back] [Mext =]

Figure 7.4 User modes of the Semantic Integration Workbench

[] Use Private 4PI

Each mode of the SIW is described below. The use of each mode is then described in
Suggested Workflow for the SIW on page 96.

Review Unannotated XMI File

Note:

This mode allows you to view the XMI representation of the UML Model exported by
Enterprise Architect and is performed by the model owner. It should be used before
running other SIW steps. This is an easy way to check for missing description or docu-
mentation tags for classes and attributes. These are flagged as missing in the Errors
tab in the SIW. The caCORE 3.2 release allows a model to be exported using the
default settings instead of having to select specific options.

The "Fix XMI" task is no longer needed to prepare the file for use with SIW or
caAdapter. Therefore the XMl file can be imported and exported from your modeling
tool to make changes without losing SIW concept annotations.

http://cadsrsiw.nci.nih.gov/.

Chapter 7: Performing Semantic Integration

Input: The original UML model in XMI format, exported from Enterprise Archi-
tect (EA). From EA, the XMl file is named with a user-defined name: ${file-
name}.xmi.

Example: myModel . xmi

Output: ${Filename}.xmi: Any changes you make to the XMl file can be
saved and you may name the file anything you wish. We recommend that you
use the naming conventions established in prior releases. The output file can be
saved with any name the model owner chooses by clicking Save from the SIW
File option, and then Exit.

Perform XMI Roundtrip

This optional step in the semantic integration process is performed by the model owner
in an attempt to automatically annotate his or her model with existing data from caDSR.
Running the XMI roundtrip can save time in the following two situations:

1. A prior version of this model was previously loaded and parts of the model have
not changed, specifically when no changes have been made to the names of
the classes and attributes.

2. The model shares classes and attributes with another, previously loaded model,
using the same names for the matching classes and attributes.

Input: The XMl file: ${Filename}.xmi

Output: roundtrip_S${filename}.xmi. A partially annotated XMl file. The
file is annotated with caDSR public IDs rather than EVS concepts. After per-
forming this step, the model owner should review the mapping in the XMl
Review mode (mode five)

Run Semantic Connector

This mode launches the Semantic Connector from the SIW and is performed by the
model owner. This mode provides model owners with the option to selectively include
only certain packages in this step by entering the package names into a user interface.
If no package names are included in the filter, all packages are processed by the
Semantic Connector. This mode performs an EVS search for each element in the UML
Model and attaches one or more EVS concepts per element to produce the Semantic
Connector Report (XMI). Although the Semantic Connector will add concepts to any-
thing not marked as "reviewed", even those mapped to a CDE, when validating and
loading the model later, the concepts are ignored in favor of the mapped CDE.

Input: The un-annotated or roundtrip xmi file: roundtrip_${filename}.xmi
or ${filename}.xmi.

Output: The output file from this step is appended with FirstPass__ in XMl for-
mat: FirstPass_$(Ffilename}.xmi, referred to as the "Semantic Connector
Report". This file is sent to the EVS curation team for review and insertion of
new concepts to match the UML class and attribute entities.

The Semantic Connector Report is the input to the Curate XMI File step.

95

caCORE SDK 3.2.1 Programmer’s Guide

Curate XMI File

This mode is performed by the EVS Concept Curation team. During this step, the EVS
team adds and removes concepts and indicates recommended semantic mappings. In
this mode, new or existing EVS concepts can be used to annotate the model.

Input: The First Pass XMl File: FirstPass ${filename}.xmi or
FirstPass_roundtrip_${filename}.xmi.

Output: The resulting updated XMl file, still named the same as the input file,
FirstPass_${filename}.xmi or FirstPass_roundtrip_${file-
name}.xmi. This is referred to as the Curated XMI File, which is the input to
the mode, Review Annotated Model.

Review Annotated Model

Note:

This option is performed by the model owner or reviewer. The SIW performs a number
of validation checks to ensure that the XMl file will be correctly transformed into caDSR
metadata. In this mode, users can search EVS for concepts to change the mapping
between a specific class or attribute and EVS concept. Users may also choose to map
UML attributes to existing caDSR value domains or data elements.

If an attribute is mapped to a CDE, its Object Class is used as the basis for the contain-
ing class, regardless of whether or not the Class is mapped to concepts. When this
occurs, a warning message displays.

Input: The Curated XMl file, FirstPass_${filename}.xmi or
FirstPass_roundtrip_${filename}.xmi.

Output: The reviewed and completed XMl file is saved; it is recommended that
the name be saved as Annotated_FirstPass_ ${filename}.xmi. This file
is used as input to the UML Loader. This file is referred to as the Reviewed
Annotated XMl file.

To proceed with using the SIW, read the following suggested workflow. Each mode in
the SIW is then described in more detail in the sections following the suggested work-
flow.

Suggested Workflow for the SIW

96

The semantic integration process using the SIW is illustrated in Figure 7.5 and is
divided into four phases:

1. In Phase One of the process, the model owner creates an XMI file from the
UML model constructed in Enterprise Architect (EA) and prepares it for submis-
sion to NCICB. This optionally includes running SIW Roundtrip to match the
model to a previously loaded version.

2. In Phase Two, the names of entities (class, attribute) in the UML Model are
semantically annotated by EVS in an iterative process with the model owner.
The model owner reviews the Annotated XMl file and, if accepted, completes
the submission template and sends a request to NCICB.

3. In Phase Three, the UML model is loaded to the caDSR Sandbox. If the model
loads successfully, it is submitted to load to caDSR Production for final curation
and a compatibility review.

Chapter 7: Performing Semantic Integration

4. Phase Four is the last part of semantic integration. Once the model has passed
the compatibility review, the model owner can use the SIW to run RoundTrip,
which will insert the caDSR metadata identifiers for the model into the XMI as
tagged values and ready the model for reuse or the next version. Model owners
can also produce the final public APIs using the SDK code generator.

O =
EVS R,
:
@ :
:
i [
H
L]
:
Create/Edit {:X%} :
umML b
Model sP] :
SR - - - Terminology Services--- "
Integration gy f
(Sw) :
-} ==-=-caDSR Sewices-u---!
1
‘
using SDK :
il Verlfied -
o YE ST Annatated UML -
: ——~ Model | pad to Sandboxi
-
Input !
For Mext ¥
Varsion err==— b UML E
“ Loader !
1._ Rourdtrip E
UML Moded h
L]
‘
L]
(4 :
@_ :
1
SIwW '
1 L}
RoundTrip No :
Approved :
Annotated E
XMI :
Final caCORE =
SDK Code Load to PROD -
Generation 1 ;
Compatibility E
Review e Prod E
L}
:
jetadata | _______. Revie :
etrieval Production

Figure 7.5 Overview of the semantic integration process; caCORE infrastructure compo-
nents = light blue, ciCORE SDK components = white; artifacts (documents) = yellow; gen-
erated software system = green

97

caCORE SDK 3.2.1 Programmer’s Guide

See the GForge UML Model Project site and click the Docs tab for a detailed Standard
Operating Procedure (SOP) and for a cross functional view of the above process
depicting who performs each phase of the process.

Using the XMI Roundtrip Mode

98

Running the XMI Roundtrip mode can save model owners a considerable amount of
time by automatically annotating models based on other previously loaded models. The
roundtrip task maps UML classes and attributes to existing caDSR Common Data Ele-
ments (CDE). Use the following steps with this mode. The automated matching is
based upon the new model having used exactly the same class and attribute names
within their unannotated model.

1. Enter the Classification Scheme Long Name of a project that was previously
loaded. The Classification Scheme Long Names of projects are displayed in the
CDE Browser tree structure under “Classifications”. Enter the Classification
Scheme Version of the project you are referring to as it was previously loaded.
For example, a PIR project name would be entered as “Grid-enablement of Pro-
tein Information Resource (PIR)". For version 1, enter the version as “1.0". The
Next button is not available until a valid project is typed and verified by clicking
the Verify button. If the SIW cannot find the project, a window opens with the
message "Project Not Found".

In Figure 7.6, the model owner wants to automatically annotate version 2 of his
model, he chooses a project name with version 1. In order to enable the Next
button, the SIW must verify that the supplied project name / version combination
exists in caDSR.

http://gforge.nci.nih.gov/projects/registrymodels/

Chapter 7: Performing Semantic Integration

£ Semantic Integration Workbench

Please select a project ko stark From
Yersion musk be a number

Project Mame | arid-enablerment of Prokein Inform. |

Project Yersion | 1.0 |

Figure 7.6 Selecting a Project Name and Version

2. Click Next to trigger the UML roundtrip task.
3. Use one of the following options to select your XMl file (Figure 7.7):

° Click the Browse button. In the file that opens, navigate to the appropriate
directory. Select the file and click Open.

° Enter the full path of a file into the text box. Example: C:/XM1/test.xmi .
Select the XMl file exported from EA.

° Select a file from the Recent Files list that is located below the text box. (The
five most recently selected files display. Files other than those listed must be
selected using one of the other options.)

99

caCORE SDK 3.2.1 Programmer’s Guide

£ Semantic Integration Workbench

Please choose a file to parse
The Ffile must be in XMI Format

Click. browse ko search For an ¥MI File

Browse

Recent Files:

test.xrni doc

Figure 7.7 SIW retrieves CDE public ID and version for each attribute

4.

For each UML Attribute in the XMl file, the SIW attempts to find a CDE with an
alternate name matching the fully qualified attribute name. If that alternate
name is classified with the supplied project name / version, the CDE selected
for the UML attribute is annotated with the CDE public ID / Version. The model
owner should then open the SIW in XMl Review mode and review the map-

pings.

Running the Semantic Connector

100

1.

To initiate the Semantic Connector, select Run Semantic Connector in the
SIW Welcome screen and click Next.

Set the package filter to select only specific UML entities and exclude the rest.
Enter text in the Package field, then click Add to add the name of packages to
include in the Semantic Connector step. Click X to remove a package’s name. If
no names are specified, all packages are included in the semantic connector
run (Figure 7.8).

Chapter 7: Performing Semantic Integration

£ Semantic Integration Workbench

Enter the packages that wou would like to filker by, Explain this

Package MName

|

Person

e 2R
il |

< Back] [Mext =] [Zancel

Figure 7.8 Filter for selecting a package

3. Use one of the following options to select your XMl file (Figure 7.9):

° Click the Browse button. In the file that opens, navigate to the appropriate
directory. Select the file and click Open.

° Enter the full path of a file into the text box. Example: C:/XM1/test.xmi .
Select the XMl file exported from EA.

° Select afile from the Recent Files list that is located below the text box. (The
five most recently selected files display. Files other than those listed must be
selected using one of the other options.)

Click Next to launch the Semantic Connector process.

101

caCORE SDK 3.2.1 Programmer’s Guide

102

Semantic Integration Workbench

Please choose a file to parse
The File musk be in XMI Format

Click browwse ta search For an ¥MI File

Browse

Recent Files:

test.arnidoc

Figure 7.9 Select an XMI file to parse

4.

5.

The SIW displays a task monitor and the message, Parsing XMI File, during
the process.

If successful, the Semantic Connector generates tagged values and inserts
them into the XMl file. A new panel displays a confirmation of the process and
the location of the newly generated file.

The generated EVS report in XMI is placed in the same root directory as the
input file. For example, if the input file was in C:/TEST/mydirectory/pro-
tein.xmi, then the output file is C:/Test/mydirectory/
FirstPass_protein.xmi.

If the Semantic Connector process was not successful, an error message dis-
plays, or it simply may not complete. The most likely cause of your error is that
your XMl file is not in the expected format and should be corrected before re-
running the Semantic Connector. Check to ensure that the file was exported
from EA with the correct settings as shown in Figure 7.10.

Chapter 7: Performing Semantic Integration

Note: For performing semantic annotation, the file should be exported using the
default EA setting for all options. Note that the required export settings have
changed from 3.1.
Export Package to XMI E'
Hl:":lt oqical Wiew
Package L':"'dl HIE |
Filename: |I::"~D|:u:uments and Settings'warzeld\My DocumentshDenize Work\caCORESLIM | D
Stylesheet | v| [Optional styleshest to post process M| content]
General Options For Export to Other Toolz
Enable full E4 B oundtrip
Forrnat k| Output il Type:
Wwirite Log file
[JUse DTD
[] Generate Diagram Images
Farmiat: Warning: These options are for exporting
’ Ea model elements to ather toolz only.
e b |] [Esport] [Cloze] [Help]
Frogress
Figure 7.10 The Export Package dialog box from Enterprise Architect for defining XMI file
export settings
Exiting the SIW
To exit the SIW from all modes, select File > Exit.
Curating XMI Files

1.

The Curate XMI File option on the SIW Welcome screen is used by EVS concept cura-
tors before it is submitted to the model owner for review.

Once you select the Curate XMI File option, navigate to and open the report in
XMI format you want to review and modify.

The SIW viewer window opens, displaying the Navigation Tree in the left-hand
pane, and the Errors and Log tabs at the bottom of the viewer (Figure 7.11).

103

caCORE SDK 3.2.1 Programmer’s Guide

Semantic Integration Workbench, - annotated_test?.xmi
File Edit Element Run Help

= Classes 1
=-=] Person I
..... l;—-l id
..... =| name
----- | weight
== Patient
----- ,3 email
..... =) lastvisited
[—j---@ Address
----- .;—] skreet
..... ';_'l ity
EIQ MaternityP atient
“| 2 dueDate
= Yalue Domains
=] Personweight
EIQ Hospital
| =) Maya Clinic
Fairfa:x
“| =) Commanwealth

-

Errars |Fg|
=3 Classes ~
EIQ Person =
-+~ Class Person has no description,
E'.El id =

Figure 7.11 SIW viewer window

Browsing the Navigation Tree

The Navigation Tree displays the structure of your model as indicated in your XMl file.
All elements of the open file are listed in the tree. You can browse the tree and quickly
see by the checkmarks which elements in a file have been reviewed and completed
(Figure 7.12).

104

Chapter 7: Performing Semantic Integration

The Navigation Tree is initially completely expanded to display all internal nodes, but it
can be expanded and collapsed by clicking on the individual nodes.
=T Classes

=-=] Persan
..... __l id
..... _—i namE
.....] weight
== Patient
.....] ermail
..... =) lastvisited
-Q fddress
----- '_l skreet
..... __l ity
-9 MaternityPatient
“o 2] dueDate
= Yalue Domains
=] Personweight
== Hospital
----- '_l Mayo Clinic
|2 Fairfax
L =) Commaormealth

Figure 7.12 Navigation Tree

When you click on a node, the concept information of that node displays in the UML
Concept Code Summary pane to the right hand side of the tree, along with the UML
model definitions. If you select a node and the UML Concept Code Summary pane
remains empty, or no UML documentation or description field displays, this indicates
that the element is not yet annotated and also that it did not have a UML definition (Fig-
ure 7.13). UML definitions are recommended, because they help EVS curators under-
stand the purpose and intent of the model owner, but are not mandatory unless you are
striving to meet caBIG Silver-level compatibility guidelines. If you do not supply a defini-
tion, one will be supplied.

105

https://cabig.nci.nih.gov/guidelines_documentation/Silver_Review/

caCORE SDK 3.2.1 Programmer’s Guide

File Edit Element Run Help

o @ Classes

9 9
=lid
[=) name
Q Frotein
B ¥MLExpant
¢ [Assaciations

Q genesil. ™

B proteinCollection

Gene [|

UML Concept Code Summary:

UML Concept Name Summary:

ML Class Documentation

Description of Gene Class provided by the modeler,

1] I [

Human "
| Add H Remove H Apply | D\-ferified Previous H Mext |
Al Errors | Log |
¢ @ Classes =
i ? Q Gene
@ Class: gov.nih.nci.anwar. domain. Gene has no concept code. 3
¢ B 1
@ Aftribute; id has no concept code,
? El name]
@ Aftribute; name has no concept cocde, |
? Q Protein -

DE

Gene

Figure 7.13 A UML Concept Code Summary pane displaying a selected class with no con-
cept information.

If the class or attribute is annotated, the UML Concept Code Summary pane displays
the information, including the concepts when they are available (Figure 7.14). In this

case, the list is positioned in semantic order, with one 'Primary Concept’ and one or

more 'Qualifier' concepts, with the highest numbered Qualifier listed first in the Review
panel, the Primary Concept last: QualifierN Qualifierl PrimaryConcept. The concept
names are also ordered so you can compare the name that will be created in caDSR
with the name of the UML Element. This order is consistent with the naming conven-
tions explained in Chapter 5 and reflect how the concept names will be positioned when
forming the name of the item in caDSR.

106

Chapter 7: Performing Semantic Integration

ip, Caisis=l 3 for-3-2xmi

File Edit Element Run Help

3 Cglasses |4 PatientbirthPlace [|
String :
Q Integer UML Concept Code Summary: C25341 C25155 C25319

Boolean

=] Floar

Q Long Qualifier Concept #1

7 [Classes Concept Code 25155
Q Diate 2

o @ Classes

e Q Fatient 3
5] addressl | | The event of being born. sl]
= address2 H
(=) alias
(=) birthDate
=) hirthDateT
=) birthPlace | |- -
=) businessci| | ¢

=) businessst Concept Definition Source |NCI

UML Concept Name Summary: Location Birth Place

| »

Concept Preferred Name [Birth |

Concept Definition

1]

=) city

=) compary :
=) contartagd |-

(2 conactady | Concept Code 25318

(=) contactcit :

3 contactPho Concept Preferred Mame |Place |
(=) contactpos| |
3 cantactstat

Primary Concept

1]

=) contactStat | Add || Apply |Drc‘:\?u?1‘:elr | Previous || Next || Map to DE
2] country Verified

=) deathcaus| |-
[Z) deathDate e
() deathDate ‘| Errors | Log |

=] deathT =

é ean;il e i|| &= B Classes

él o Al o= @ Classes

] ethnicity : [Classes

ElfirstName 3 T "1‘ Q .

'E! igﬂender z o |=1 address1 |
] DK Il | [v]

Figure 7.14 A UML Concept Code Summary pane displays concepts when they are avail-
able

Once a node has been selected, a set of buttons below the concept information dis-
plays (Figure 7.14). These include buttons that govern browsing, as well as other fea-
tures.

e Previous selects the node in the tree previous to the current node.

¢ Next selects the next node in the tree after the current node.

The other buttons apply to editing annotations and are discussed in Editing Annotation
Details on page 110.

Note: The Previous and Next buttons are not available if an Association Node is selected.
Annotation Basics
Each UML element, classes as well as attributes, must be annotated with at least one
concept. The target and source ends of associations may also be annotated, although

this is not a requirement. In all cases, a concept is made up of the fields described in
Table 7.1.

107

caCORE SDK 3.2.1 Programmer’s Guide

Concept Fields Example
Code C16612
Name Gene
Definition The physical and functional unit of ...
Definition Source NCI-GLOSS

Table 7.1 UML element concepts

Additionally, elements can have UML Descriptions. Those are provided by the model
owners as tagged values in the UML; ‘documentation’ for classes and ‘description’ for
attributes. They can be used by the EVS concept curators to understand the model
owner’s intended meaning of an attribute or class. If the caCORE SDK is used to create
the public APIs for your software system, these tags become part of the JavaDaocs. The
description tag for attributes should be within the specific context of the containing
class, as opposed to a generic description of the attribute. For example, the description
tag for the attribute 'name' in a class 'Gene' might be 'The name of the Gene' as
opposed to just "the words by which something is known".

Identifying Errors in the Source File

One valuable feature of the SIW is the ability to quickly isolate and identify errors in the
source files, primarily missing or inaccurate information. Errors in a file display in the
Errors tab at the bottom of the browser window (Figure 7.15). A description of the error
identifies the source of the error.

e Errors relevant to a Class are shown as a child node to that Class's node.

e Errors relevant to an Attribute display with the full path of the attribute, for exam-
ple, Package/Class/Attribute/Error.

Erraors | ng'
- Classes A

=5 string
¢ @ Class: Classes.String has no concept code.
== Boolean
i @ Class: Classes.Boolean has no concept code,
=5 Gene
=-{Z) symbal
i @ atiribute: symbol has no concept code.
) locusLinkSummary
“-d Attribute: locusLinkSummary has no concept code.
=) oMIMID
i ew atiribute: OMIMID has no concept code,
= IncusLinktd
| @ atribute: locusLinkId has no concept code,
== clusterld ﬂ

Figure 7.15 An Errors tab displays errors in a source file

All errors must be corrected before a model can be loaded to the caDSR.

108

Chapter 7: Performing Semantic Integration

Note: The errors are generated when you open a file; it does not update while you are editing.
To regenerate the Errors tab, save your work and then exit the SIW. Re-open the SIW
and review the newly generated errors.

Table 7.2 displays a list of possible errors that the SIW can report, along with a more
detailed explanation and possible reasons which can correct the error.

Error Interpretation Reasons

“XYZ" has no con- | This error means the Seman- | ¢ The EVS curation process was not
cept code. tic Connector was not able to completed.

attach concept information to
this particular node.

Datatype "ABC" is | The model owner hasuseda | ¢ The modeler has chosen to model

invalid for attribute | datatype for his model that associations as attributes. For
"XYZ" does not conform to the example, if the model contains two
caCORE SDK Toolkit conven- classes, 'Person' and 'Car' and a
tion. person 'has' cars, this should be

modeled as an association rather
than an attribute. There should not
be an ‘'ownedCars' attribute to
class 'Person’. The SIW in this
case would report that the
Datatype 'Car' for attribute 'owned-
Cars' is invalid.

e The modeler is using a synonym
for a primitive type that is not rec-
ognized by the UML Loader. If this
datatype is indeed valid, this
should be reported back to the
UML Loader maintainer so he can
ensure this synonym will be recog-
nized.

e The modeler used a datatype that
is not currently in caDSR. This
should be carefully reviewed to
determine whether this datatype
should be added to caDSR.

Table 7.2 Possible SIW errors and their interpretations

Verifying the Curated XMI File

Once you have selected a node in the Navigation Tree, you can click the Human Veri-
fied checkbox that is located next to the Previous and Next buttons. (After the EVS
curators have reviewed the XMl file, the XMl version should have all Human Verified
checkboxes marked with a check mark.)

Notes: e The checkbox is unavailable if any of the concept information is missing. This
prevents anyone from verifying the review of an incomplete element.

o If the item you verified is an attribute, the node associated with the reviewed
attribute in the Navigation Tree displays the Reviewed icon (), and the next
node in the tree becomes selected for your review.

109

caCORE SDK 3.2.1 Programmer’s Guide

Warning!

*This feature allows you to quickly review items without having to click the Next
button repeatedly.

e If the verified item is a class, the Reviewed icon () displays only after all
attributes under that class have been Human Verified.

Any item without a checked Human Verified will not be inserted into the XMl file.

Editing Annotation Details

110

Note:

EVS Curators have the authority to independently change any concept field, and they
can use concepts that may not be in the NCI Thesaurus. On the other hand, model
owners should only change concept information by picking an EVS Concept from the
Thesaurus or entering one supplied by EVS. New EVS concepts cannot be verified
using the EVS Link feature, so preferably those are only used by EVS curators during
the Curate XMl File step, however, they can be added during the Review Annotated
Model step.

Since EA tagged values are limited to 255 characters, the SIW will create multiple
tagged values for concept definitions exceeding 255 characters. The format for the
name of the additional tag name is suffixed with an underscore and a number from 2 to
8; for example, ObjectClassConceptDefinition[_n], ObjectClassQualifierConceptDefini-
tionN[_n], etc. An example of an additional tag name for an Object Class Qualifier defi-
nition exceeding 255 characters is ObjectClassQualifierConceptDefinitonl_2.

Editing While Leaving the Concept Code Unchanged

Within a model, two concepts with the same concept code must have the same concept
name, definition and definition source, as well. This means that when you change any
of the properties of a concept, while leaving the concept code unchanged, the SIW will
apply the property changes to all other UML Elements within the model that use the
same concept code. For example, two classes 'Person’ and 'Animal’ have an attribute
in common, for example 'Name', and that attribute is annotated with the following Con-
cept:

e conceptCode: C25192
e conceptName: Name

e conceptDefinition: A word or group of words indicating the
identity of a person usually consisting of ...
e conceptDefinitionSource: NCI

Changing the definition but not the code for the Attribute '‘Person.name’ applies the
changed definition to 'Animal .name'. The concept code remains unchanged.

Editing While Changing the Concept Code

If the concept code is changed, only the edited element is modified. Other UML Ele-
ments that point to the initial concept code are not modified. Using the previous exam-
ple, if a user selects a different concept for Animal . name, it does not affect the
mapping for Person . name. To force the change to apply to all concepts with the same
name, see Applying Changes to All Similar Nodes on page 113.

Chapter 7: Performing Semantic Integration

Adding and Removing Concepts Mapped to an Element

Concepts can be added to an element and removed from an element. When a node is
selected, the Add and Apply buttons located below the Viewer panel do the following:

Notes:

Add—adds an empty concept to the element.

Apply—applies all changes that have been made so far.

Remove—removes a concept regardless of where it is in the Summary panel. Select
the X from the Concept Summary panel.

To add a concept, use the following steps.

1.
2.

Select an element, which enables the Add button.

Click the Add button.

Once the Add button is clicked, an empty concept is added below the first con-
cept. Additionally, the Add button and Apply button become unavailable. The
Apply button remains unavailable until the new concept has all four concept
fields filled out.

Enter the appropriate information for all four text fields, either through text entry
or by finding an EVS concept to populate the field. See Filling in Annotations
from EVS on page 113 for more information. Once the fields are filled, the
Apply button is enabled.

Click the Apply button. This saves the element with the new concept. (The new
concept code will not be added to the view until Apply is clicked.)

After clicking the Apply button, the Add button once again is enabled. Click the
Add button to add another empty concept.

Once an element has more than one concept, up and down arrows display next

to each concept. Click the arrow buttons to move a concept up or down in the
list (Figure 7.16).

111

caCORE SDK 3.2.1 Programmer’s Guide

e No changes are saved unless Apply is clicked.

SemanticIntegration Workbenchl-roundtrip, Caisis-1_ 3, for-3-2.xmi
File Edit Element Run Help

¢ @ Classes '~ |4/ Patient birthPlace [|
3 string £
Q Integer UML Concept Code Summary:

Boalean
= Floar :
= Long i Primary Concept

¢ @ Classes B
9 Date Concept Code 25155
o @ Classes i
+ 3 ie_t;ient

=) address1 :

) acdress2 | | The event of belng born.

[=) alias : (3]

'E] hirthDate Concept Definition -

[Z) birthDateT| |

|Z) kirthPlace | |:

|Z) businessCi :

3 husinesssif | ; Concept Definition Source [NCI

= city :

|=) company :
|Z) contactand |F ML Attribute Description
=) contactad Patient's place of hirth.

.3 contactCit 2

[=) contactPho
|Z) comactPos
|Z) contactstar

UML Concept Name Summary:

[»

Concept Preferred Name [Birth |

| »

1]

1]

= Model

3 Egztr;laftat : Apply | [] Owner Previous || Next || Map to DE

= : Verified

|Z) deatncaus| |-

|Z) deathDate T o
%deathDate A Errors | Log |

= deathTypg | -
=) email w o o @ Classes -
|Z) ethnicity AT @ Classes

=) firstiame | |2 ¥ @%&SPSEI.S .

Doender |7 TR -

Figure 7.16 An attribute element with multiple concepts. The up and down arrows move
the concept up and down in the concept list; the “X" removes it.

To remove a concept from the element, click the X located in the Concept Summary
panel. This removes the concept listed.

Notes: e The X button is always available.

e If you accidentally remove a concept you did not intend to remove, you can click
Previous or Next without clicking Apply and you will be prompted regarding
whether or not to save the change. Click No and the removed item will be
restored.

Editing Text Fields

If any of the details in the concept fields are incorrect, you (curators only, please) can
edit any text field. You can also modify concepts by performing a search in EVS. For
more information, see Filling in Annotations from EVS on page 113.

Applying Changes to the Selected Node

Click the Apply button or select Element > Apply to apply the changes to a single
selected element. Applied changes are not saved to the file. Use the Save functionality
to save all applied changes to the file. See Saving Changes to a File on page 115.

112

Chapter 7: Performing Semantic Integration

Applying Changes to All Similar Nodes
In some cases, an attribute is reused several times across the model. A common
example is the attribute 1d. Typically, you may want to modify the mapping for all
attributes called id because it is likely that the modeler used this name with consis-
tency and with a single meaning within the model. Once you have made changes,
select Element > Apply to All. Changes are applied to all attributes with the same

name.
Example:

If the attribute 1d is used 25 times across the model, and always means ‘'Identifier’,
except once, where it means 'ldentified’, select Identifier, then Apply to All, then mod-
ify the one term that is the exception.

Use the Save functionality to save all applied changes to the file. See Saving Changes
to a File on page 115.

Filling in Annotations from EVS

From the Main Annotation panel, EVS Curators and model owners can modify a map-
ping by querying the NCI Thesaurus. They can either enter newly created concepts or
select existing concepts from the NCI Thesaurus concepts using the EVS Link.

To begin the process, launch an EVS search by using the following steps.
1. Click the EVS Link button in the browser (Figure 7.17).

Concept Definition

Concept Definition Source |(Evs Link)

UML Class Documentation
Description of Sene Class provided by the modeler.

Figure 7.17 EVS Link button
2. This opens the Search Thesaurus dialog box (Figure 7.18). If the EVS link is

selected with an existing concept, a search is performed automatically by
default. This can be changed from the preferences, which are described in Set-

113

caCORE SDK 3.2.1 Programmer’s Guide

ting Preferences on page 118. For a new concept search, enter the search term
in the Search text box.

Search: |I|:u:ati|3n| |Searl:h By |Synonyms |v| []Include Retired?

Code |Concep.. [Preferr.. |Synony... Definition Source

Location [Mamed locations of ar within the body.

C13717 |Anato... |anatp,.. [Anatomic NI
Location
Anatamic
Location [& position, site, or paint in space where something can

C25241 |Location |Location be found. o

[Previous |0-2 of 2! Mt || Close |Results Per Page |5 -

Figure 7.18 The EVS Search dialog box

3. In the Search By drop-down menu, select the method to be used for the
search, Synonym or Concept Code As an example, a search for 'Location’ will
return the 'Location' concept because 'Location’ is one of its synonyms.

4. Check the Include Retired box if you would like to include Retired items in your
search. (Retired concepts are excluded by default.)

5. Click the Search button to launch the search that you have specified.
The results display in table format below the search options (Figure 7.18). If the
concept name is not fully visible, hover your pointer over the item.

6. To select a search result, double click the appropriate line. This closes the dia-
log box and, in the SIW UML Concept Codes Summary, replaces the informa-
tion for that class or attribute with the information from the EVS search.

Notes: ¢ If no matching terms are discovered in the search, then no Search Results dis-
plays and you will have to change the search to find matching items.

e Searches perform an exact match. The asterisk (*) can be used as a wildcard.
Because the results are generally more inclusive, using a wildcard usually
causes a search to take longer.

Viewing Search Results

The search result list is limited to 100 terms, with only five results shown per page by
default. Change the default by selecting a value from the drop down next to the Results

114

Chapter 7: Performing Semantic Integration

per page option at the bottom of the Search Results table. If more results are returned,
the Next button is enabled, allowing you to easily walk through the results. Use the
Next and Previous buttons to navigate through the search results.

Saving Changes to a File

Note:

Select File > Save As to specify a different name (not recommended) or location for
the file.

Save the file with the same name as the input file, in the same directory (that is,
Reviewed_${filename}.csv). This file is referred to as the Curated XMl file.

The Status Bar informs you that the file was successfully saved.
The second run of the Semantic Connector is no longer necessary starting with
caCORE 3.2.

The Curated XMl file is used as input to the last step, Reviewing an Annotated Model.

Reviewing an Annotated Model

During this review step in the semantic integration process, corrections can be made
and/or verified in the Annotated Model XMl file. To view the completely annotated XMl
file after this step, you must exit the SIW and relaunch the application from the URL.

After this review process is completed, the file is passed on to NCICB for logging into
CVS and loading to caDSR.

To proceed through the review process:
1. Select File > Exit.

2. Launch the SIW again. Follow the steps described in Running the Semantic
Connector on page 100.

3. Select the Review Annotated Model mode, and then click the Next button.

Select the appropriate annotated model XMl file. This must be the XMl file that
is output after the Curate XMl file has been completed.

5. Click the Next button to continue. The next dialog box will inform you that the
XMl file is being parsed.

For each UML class and attribute, the SIW checks for the presence of at least
one:

° Concept code

° Concept hame

° Concept definition

° Concept definition source

° Valid datatype
The SIW permits value meanings to be loaded without associated concepts. After this
is completed, the SIW’s Main panel displays. This panel looks and works in a very sim-
ilar manner to the Main panel described in the section, Curating XMl Files that begins
on page 103.

115

caCORE SDK 3

Errors Tab

.2.1 Programmer’s Guide

e The Navigation Tree displays model information on the left-hand side of the
application. When you click a node in the tree, the concept information displays
on the Concept Code Summary panel.

e The main difference between this viewer and that of the Curate mode is that the
editor is working here using the final annotated XMl file, not the file created by
EVS. This XMl file represents all the tag names and items from the UML Model
that are needed to load into caDSR. Additional validation can be performed
using this XMI, such as validating datatypes and viewing Associations, which
was not possible using the Curate XMl mode. The annotated XMl file is the file
that will be used for loading into caDSR.

e Adding concepts using the Add button works in the way described in Adding
and Removing Concepts Mapped to an Element on page 111. The Remove and
Apply button work in the same way as described in the same cross reference.

e Each item in the Annotated XMI Model will again be set to Not Human Verified.
You (the Model Reviewer) can mark Human Verified by clicking the Human Ver-
ified checkbox as each item is reviewed.

The Errors tab in the Review mode displays a tree structure similar to the main tree. It
identifies where in the tree errors occur. If there are no errors, the tree does not display.
As mentioned previously, the errors do not update until the file is saved and reopened.
The errors file can be printed by right clicking on the Errors tab and selecting Export
Errors.

Viewing Associations

116

In the Review mode, Associations display at the bottom of the tree. Association infor-
mation displays in the Main panel as well when an Association is selected in the Navi-
gation Tree.

Chapter 7: Performing Semantic Integration

semantic Integration VWoerkbench - roundtrip

File Edit Element Run Help

 Gaisis-1_3 for-3-2 xmi

=) response|~ |

? Q Comaorhbidity

| Patient.birthPlace Association |

.3 clata~our

Detail rRuIe |/Suur|:e rTargEt |

=) date
.3 dateText
= icocode
= i
=) name
=) notes
=) patientd
=) system
.3 cquality

o = socialHistor
.3 alcohol
| carcinoge
|=) children
.3 datasour
|Z) maritalst

Direction
Source Class
Source Role

Source Multiplicity
Target Class
Target Role

Target Multiplicity

Bi-Directional
Patient
patient

1.1
Therapy
comorbidityCollection

0.-1

[Z) notes

=) accupatid | Errors

Log |

=) other

.3 tobaccoP
.3 tobaccaP
=) tobaccog
=) tobaccov| =

| == @ Classes
i &= [Classes
A ¢ @ Classes
¢ & patiem

Associations
Q patient{1y::al
9 ﬁatientilj::c 1
H patient(l): =] -

¢ EI address1
@ aftribute: address1 has no concept code.
@ Existing DE mapping for attribute caisiz. domain. commaon. Patient. addre
% [Z) address?
@ Attribute; address2 has no concept code.

[N

! : Fimsi Ll —]

a1 ol |

| L *]

Changes Applied

Figure 7.19 In Review mode, associations display at the bottom of the Navigation Tree.

e Click on the node in the Associations part of the tree and an Associations tab
displays in the Main Viewer panel describing all of the details of the selected

association.

e The information in the Associations tab can be modified to add optional con-
cepts at the role, source, or target level.

e To close the Associations tab, click on the red X at the top of the tab. This
returns the display to the previous tab, if applicable.

e Associations can also be viewed as part of the model tree by selecting Edit >
Preferences. In the Preferences dialog box, the first option allows you to view
associations in class tree. Click this option and then click OK. This closes the
Preferences dialog box and displays associations as part of the tree.

117

caCORE SDK 3.2.1 Programmer’s Guide

Setting Preferences

Select Edit > Preferences to open a Preferences dialog box, where you can review or
change the Preferences settings. Preferences are persistent across sessions, although
the Preferences options vary slightly depending on the SIW mode that is activated.

& Preferences [=
[| View Associations in Class Tree
Display UML Description Last
[] Automatically Search EVS on EVS link
[] Use Private Api
[] Display Primary Concept First
[] Display Inherited Attributes
[]Sort Elements by Name

IUse Pre-Thesaurus to VYalidate Concepts

| OK || Cancel H Apply ‘

Figure 7.20 Preferences dialog box in SIW Review mode

Several preferences can be set in the SIW. Depending on which mode you are in, not
all options are available in all modes, but when present they function the same way.
Preferences are:

View Associations in the Class Tree

Display UML Description Last

Automatically Search EVS on EVS Link (in Review Annotated Model mode)
Use Private API

Display Primary Concept First

Display Inherited Attributes

Sort Element by Name

© N o g b~ wDd

Use Pre-Thesaurus to Validate Concepts
Viewing Association

When viewing associations, four tabs display in the Association View panel: Role,
Source, Target, and Detail. Associations can also be annotated with concepts. Their
annotation can be independently done at three different levels.

1. Role Annotation

This step may be completed to annotate the nature of the association itself.
Select the Role tab to annotate the association.

118

Chapter 7: Performing Semantic Integration

2. Source Annotation

This step may be completed to annotate the nature of the source end of the
association. Select the Source tab to annotate the source end.

3. Target Annotation

This step may be completed to annotate the nature of the target end of the
association. Select the Target tab to annotate the target end.

4. Select the Detail tab to get back to the detail view of the association.

Like all other concept annotations, there can be a primary concept plus qualifiers. For
reference, the following tagged values are used:

1. To annotate the role:

° AssociationRoleConceptCode

° AssociationRoleConceptName

o AssociationRoleConceptDefinition[_n]

° AssociationRoleConceptDefinitionSource

° AssociationRoleQualifierConceptCodeN

° AssociationRoleQualifierConceptPreferredNameN

° AssociationRoleQualifierConceptDefinitionN[_n]

° AssociationRoleQualifierConceptDefinitionSourceN
2. To annotate the source:

° AssociationSourceConceptCode

° AssociationSourceConceptPreferredName

° AssociationSourceConceptDefintion[_n]

° AssociationSourceConceptDefinitionSource

° AssociationSourceQualifierConceptCodeN

° AssociationSourceQualifierConceptPreferredNameN

° AssociationSourceQualifierConceptDefintionN[_n]

° AssociationSourceQualifierConceptDefinitionSourceN
3. To annotate the role:

° AssociationTargetConceptCode

° AssociationTargetConceptPreferredName

° AssociationTargetConceptDefintion[n]

° AssociationTargetConceptDefinitionSource

° AssociationTargetQualifierConceptCodeN

° AssociationTargetQualifierConceptPreferredNameN

° AssociationTargetQualifierConceptDefintionN[_n]

° AssociationTargetQualifierConceptDefinitionSourceN

119

caCORE SDK 3.2.1 Programmer’s Guide

The Assaociation View Preferences option is available only in the Review Annotated

Model mode (Figure 7.21). See Viewing Associations on page 116 for more information
about this view.

semantic IntegrationVWorkbench = roundtrip, Caisis-1. 3' for=3-2xmi
File Edit Element Run Help

¢ @ Classes J|[PatientbirthPlace [| Association [|
String 3
= Integer A Detail |/Rule |/Suur|:e |/Tar|_:|et |
Boolean :
9 Float
E Long Direction Ei- Directional
o [Classes :
Diate 4 Source Class Patient
¢ & Classeg : Source Role patient
o Q Patient B
=] allergy : Source Multiplicity 1.1
o~ & Comorbidity | - i
N Q SociaHistory §§ Target Class caisis.domain.common.Allergy
o @ aAssociations g@ Target Role allergyCollection
9 patient{1):alled = L
Q patientf 1 c o) 55 Target Multiplicity 0.-1
B patient(11 soci :

e e T e o e e T T T T T T e .

Errors Log

o [Classes
o [Classes
o [Classes
¢ & Patiern
T .3 address1
@ Artribute: address1 has no concept code.

@ Existing DE mapping for attribute caisis. domain. commaon. Patient. addre
¢ .3 address2
@ Atribute; address2 has no concept code,

O] ok K i | O
Association

ME

Figure 7.21 In Review mode, associations display at the bottom of the Navigation Tree.

Association information displays in the Main panel as well, when an association is selected
in the Navigation Tree.

Domain object associations display on the Navigation Tree in two ways:

e With the default setting, each Association displays as a separate node at the

bottom of the Navigation Tree. This allows you to review annotations more effi-
ciently.

e To view associations as children to classes, check the View Association in the

Class Tree option of the Preferences dialog box. This is useful when trying to
identify associations for a particular class.

UML Description

The SIW displays UML model descriptions whenever they exist. These are the Docu-
mentation and Description tagged values described in this guide and are mandatory.

120

Chapter 7: Performing Semantic Integration

The Display UML Description Last option in the Preferences dialog box allows you to
display a description either preceding or following the concept mapping information.

e The default setting is to display UML Descriptions preceding the concept map-
ping.

e To view UML Descriptions following the concept mapping information, clear the
the Display UML Description Last option in the Preferences dialog box.

Search EVS

By default, when you click on the EVS Link for an existing mapped concept, the SIW
automatically executes an EVS search using the Concept Preferred Name. If the con-
cept is new, using the Add feature, a search term must be entered in the EVS Search
panel that displays after clicking the EVS Link.

When this preference is not available, the search dialog box opens, but no search will
be run without user input.

e To change this setting, clear the Automatically Search EVS on EVS Link
option in the Preferences dialog box.

Use Private API

This API performs slightly faster than the public API, but you must be connected via
VPN or behind the firewall on the local NCI LAN to use it.

Display Primary Concept First

The default behavior is to display the primary concept last so that the string of terms
mimics the way the name will be created in caDSR. This option will change the order of
the concatenated concept codes so that the Primary concept is displayed first.

Display Inherited Attributes

This option displays the inherited attributes in the SIW Navigation panel for any class
that inherits from a super class. The attributes are displayed in a node entitled "Inher-
ited Attributes”. These attributes should be annotated in the parent/super class, not in
the "Inherited Attributes” node.

Sort Element by Name

This option sorts the classes in the Navigation panel by name. Deselecting this feature
resets the display of classes to their order in the XMl file.

Use Pre-Production Thesaurus to Validate Concepts

By default, SIW searches NCI Production Thesaurus. This option causes the SIW to
use the Pre-Production NCI Thesaurus, which is an early preview of the next release of
the NCI Thesaurus, publicly accessible from the DTS server. The Pre-Production The-
saurus is more recent than the Production version and thus newer concepts will be
found, less 'not found' errors produced when the "Validate EVS Concept" step is per-
formed.

121

caCORE SDK 3.2.1 Programmer’s Guide

Setting UML Loader Run-Time Parameters

122

This option is only available in Review Annotated Model mode.

e Several run-time parameters can be set. Those parameters are later used to
load the model to caDSR.

e You can enter data relevant to the model you are loading. This information is
also provided as part of the submission document.

e The package filter field is used if you want the SIW to only parse certain pack-
ages. If this field is left blank, all packages will be parsed. This may be an issue
if your XMI file contains objects that are not part of your domain model, such as
data model elements.

The format for the package filter field is as follows:

<My Alias One>my.package.one, <My Alias Two>my.package.two

In the above example, only my . package.one and my . package . two will be parsed.
Other packages will be ignored.

To set the run-time parameters, follow these steps:
1. Select Run > Defaults.
2. Fillin all fields from the model submission template (Figure 7.22).

a. Project Name is the Classification Scheme Preferred Name specified in the
model submission template.

b. Project Long Name is the Classification Scheme Long Name specified in
the model submission template.

c. Entries for Package Filter, as described above, should be separated by
brackets and commas. If no names are entered, all packages will be
assigned one Classification Scheme Item equal to the Project name. The
format for the package filter field is as follows:

<MyAliasOne>my.package.one, <MyAliasTwo>my.package.two

UML Loader Defaults @

Project Mame
Project Yersion
Context Name
‘ersion
Whorkflow Status

Froject Long Mame

Project Description

Concepual Domain
D Context Name

Package Filter

[lassificationSchemePref erredhla
1.0

TEST

1.0

DRAFT MEW

ClassificationSchernel onghame

Please Describe your
projectc

UML_DEFALLT_CD
caCORE

<Alashlame =fullyQualifedPackag

-y

Figure 7.22 UML Loader default settings

Updating UML Model Definitions

Chapter 7: Performing Semantic Integration

One problem frequently encountered in the semantic integration process is the discov-
ery that the documentation and description tags from the UML Model are not present,

or that they need to be updated. Prior to the SIW, there was no way to conveniently get
these changes into the XMl file for loading to caDSR. Since these tags are mandatory,
this process must be used to create or update these tags.

With the SIW and careful planning, you can change or update the UML documentation
or description tags in the UML model in Enterprise Architect, export them to XMI, and

go back through the process, while preserving the EVS concept curation before loading
the model into caDSR.

Updating UML Model Definitions Workflow

In summary, the workflow is as follows:

1. The new UML documentation and description tagged values have to be added
using EA. Simply import the XMl file you have been working with in SIW, add
the needed information, and then the export the model as XMl again.

2. The SIW makes changes directly to the Annotated XMl file that is used to load

to caDSR.

123

caCORE SDK 3.2.1 Programmer’s Guide

3. Launch the SIW and select Review Annotated Model. You will now see the
updated UML documentation and description tags associated with each class
and attribute.

Errors and Log Tabs

The Errors Tab

Validation Errors

There are several validation rules that are applied to each model. Any violations of the
rules are displayed in the tree that appears in the Errors tab and can be exported by
right clicking on the Errors tab and selecting Export Errors.

Duplicate Errors

If two Object Classes have the same Public Id or Preferred Name then a duplicate
mapping error will occur. If two Data Elements belonging to the same Object Class
have the same Preferred Name then a duplicate mapping error will occur.

Association Errors

For associations, a missing Source Role or Target Role causes an error. A missing
Source Role name or Target Role hame also causes an error.

Value Domain Errors

If definition, Vdtype, datatype, Public Id, or Version are either missing or invalid then an
error will be displayed. If a VD is in the model but is not used by a DE in the model then
this causes a warning message to be displayed. Finally, if two VDs are mapped to the
same concepts this causes an error as well.

The Log Tab

The Log tab is a new feature of the SIW and displays detailed parsing and runtime
information. Each log event is represented as a line in the Log tab. Log events are
organized into four categories:

e Errors: Errors either in the SIW or in the model being parsed.

e Warnings: Warnings of validations that may be incorrect and should be
reviewed.

e Info: Events that may be helpful to users
e Debug: Information that is most useful for developers.

124

Chapter 7: Performing Semantic Integration

Select or deselect any checkbox to view or ignore any event category (Figure 7.23).

| 'F.rn:lr_é_ "Log

-

Class: comludethe. domain, Organization

Attribute: comoludeLhrdomain Organizationname
Artribute comuludeLhrdomaindrganizationdirecuordame
Class: comuludeLhrdomain Engineering Consultant

(Class: comuudethr.domainSalesConsultant

Class: comuludethe domalnSkill

Artribute comludethedomalnSkill categony | Infa
Fackage: Logical Model.com ludeLhr.common

Class: comuludeLhr.common,DomainObject

Attribute: comuudet.hr.commaon.DomainObjec.id |

Fackage: Logical Model.comdudethr.Value Domains | ¥ Warnings
Value Domain: Technical Skill |
(Value Meaning: Java

Value Meaning: php

Value Meaning: System Analyst
Walue Meaning: Project Manager |
[Value Domain: Billing Rate -

Debug

| I+] Errors

Figure 7.23 The Log tab displays detailed parsing and runtime information

Mapping UML Attributes

Mapping a UML Attribute to an Existing Common Data Element

After opening a model in the mode Review Annotated Model, you can map any attribute
to an existing Common Data Element (CDE) with the following steps.

1. Begin by clicking on any attribute in the tree (Figure 7.24). This displays the
concept information in the View panel to the right of the tree.

125

caCORE SDK 3.2.1 Programmer’s Guide

Semantic Integration
File Edit Element Run Help

Workbench - annotated_test2.xmi

Address
.az skreet
ciby
BQ MaternityPatient
g dueDate
—]ﬁ Yalue Domains

PersonWeight
- Haspital

B.

.3 Mavya Clinic
‘B; Fairfax
fg# Commonwealth
(=[] Associations

Q workaddress(n, . ¥
: E com.cooper.mary.d
Q com.cooper.mary.d

S | ¥

Q homesddrass(1):ire

4 .
J| Person.id (3 ‘
UML Concept Code Summary: C25364
UML Concept Mame Summary: Identifier
~
Primary Concepk
Concept Code 25364
Concept Preferred Name | Identifier |
One or maore characters used to ideniify, nams, or s>
characterize the nature, properiies, or contents of a thing. &3
Concept Definition __
v
Concept Definition Source | NCI | [Evs Link l
w
: Model
apply Owiner [Previous] [et ’ Map to DE]
‘erified
Etrors | Log
= dasses ~
= Q Person
. Class Person has no description, —
=g id
-0 Aktribute Personid has no description,
=gl name
¢ Ll Attribute Personiname has no description,
]
< b3

i_hanges Applied

Fig

2.

126

ure 7.24 Displaying an attribute for mapping to a CDE

Directly below the View panel is a row of buttons that includes the Map to DE
button. Click this button to change the View panel to display Data Element infor-
mation. Instead of showing which concepts the attribute is mapped to, it dis-
plays which DE the attribute is mapped to (Figure 7.25).

Chapter 7: Performing Semantic Integration

Semantic Integration Workbench - annotated_test2.xmi

File Edit Element Run Help

E,....%ﬂsses : { Persan.id @l

Map to CDE

afrie
,ﬂ wieight
=I-lgh Patient

ﬂ email
- lastyisited
—]9 Address Data Element Long Mame

.!g sFreet Public ID | Version
_‘ﬂ city

BQ‘ [MakernityPatient Daka Element Context
o |l dueDate

) Value Domain Long Mame
—jﬂ Yalue Domains
i [g Persortieight -Clear Search Data Element
Bg Hospital ’]

a Mayo Clinic
: Fairfax
a Commonwealth
(=} Associations
L] homeaddressi1)::re

9 workAddress(0..) Model
9 com.cooper.mary.d Owner ’ Previous] ’ Mexk (] [Map to Concepts l
9 com.cooper.mary.d verified

Figure 7.25 Mapping an attribute to a CDE

3. Since the attribute is not mapped initially to a Data Element, all of the fields are
empty. The buttons also change to reflect the options that are available when
mapping to a DE. Mapping to a DE is not available if the attribute uses a local
Value Domain. See Pointing a UML Attribute to a Value Domain on page 136.

4. Select a CDE by clicking the Search for Data Element button, which opens the
Search for Data Element dialog box (Figure 7.26). This search can take advan-
tage of the Freestyle search engine which performs a search on the caDSR
(http://freestyle.nci.nih.gov/freestyle/do/search). Enter a term in the Search field
and click Freestyle Search. You can also click Suggest.

£ Search for Data Flement

Search: || | [Freestyle Search l [Suggest

Longhame Workflow 5... | Public Id Version Preferred Defi.., Context Ma... Registratio. ..

Figure 7.26 Search for Data Element dialog box

5. Results are returned in the table below the search term (Figure 7.27). Below the
table, use the Previous and Next buttons to flip to the next or previous pages if

127

http://freestyle.nci.nih.gov/freestyle/do/search
http://freestyle.nci.nih.gov/freestyle/do/search
http://freestyle.nci.nih.gov/freestyle/do/search

caCORE SDK 3.2.1 Programmer’s Guide

128

Note:

results are displayed over multiple pages. The numbers between the Previous
and Next buttons indicate which records are currently being viewed.

£ Search for Data Element

Search: | id | [Freestyle Search] [Suggesk]
Longhlame Workfow 5., Public Id Version Preferred Defi... | Context Ma... Reqistratio...

Pt ID RETIRED AR, ., (2001344 2.0 Ft. ID _TEF
Sample ID Mu... |RELEASED 2003504 4.0 Set of numbers u, .. [CCR Qualified
Specimen Ide... [RELEASED E4342 3.0 & unique identific, ., (CTEP Qualified
Sarnple ID Mu,,, [RETIRED ARC... (2003904 3.0 & unique sample, .., [CCR Qualified
Study Sike ID RELEASED 2178093 1.0 The 2-digit site I... [EDRN
Study Protoco.,, |[RELEASED 2173094 1.0 The 3-digit proto. .. ([ECRR
Study Particip. .. [RELEASED 2175185 1.0 The participart I... [ECRN

[Fartner-prefe. .. [DRAFT MEW 795 .31 This patient iden... |CTEP

IF‘atient Study ... [RETIRED ARC... 2269 2,31 Intergroup Regis, .. [CTEP

IF‘atient Study ... [RETIRED ARC... (2393 2.31 A unigue identifi... |CTEP

IF‘t. I RETIRED ARC. .. (2001344 1.0 Pt ID _TEP

IF‘athu:qu:ug\,-' Re... [RETIRED ARC... 64321 231 A unigue identific, . |CTEP

IF‘atient Study ... [RETIRED ARC... 732 2,31 Inique patient id. .. |ZTEP

INCI Instiktukio,.. |RETIRED ARC. .. 4328 2,31 & unique alpha-n, .. |CTEP

IECOG Patient ID |[RETIRED ARC. ., (2003734 3.0 The ECOG patien, .. |CTEP

ICF'.LGB Patien.., [RETIRED ARC. ., (2001452 3.0 ZALGE Patient ID |CTEP

IF‘t. D RETIRED AR, ., (2001344 3.0 Pt ID CTEP

ISpecimen Disk,., [RETIRED WIT,.. |2535 2031 The protocal IDF, ., |SPORES

IF‘rntcu:oI IDM... [RETIRED WIT... 5445 2.31 The unique proto, .. [SPORES

IF‘ru:utcu:DI IDM... [RETIRED WIT... [5444 2.31 The unique nume. ., [SPORES

M organization 1. |[RELEASED 2407007 1.0 the unique CTEP,., [CTEP Standard

W Treating Instit. .. |[RELEASED 2086 3.0 the alphanumeric...|CTEP ualified

WFresh Tissue ... |RELEASED 2231092 1.0 Mumeric identifie,., |SPORES Qualified

| Tissue Bank M. .. |RELEASED 2231089 1.0 Mumeric value us. ., [SPOREs Qualified
Main Tumor B... [RELEASED 2230139 1.0 Unique identifier ... |SPORES ualified

0-25 of 99 [ek] [Close] Results Per Page Search Preferences

Figure 7.27 Searching caDSR for existing CDEs

6. The Close button closes the dialog box without selecting any DE. By double-
clicking on one of the DEs the dialog box is closed and the information from that
DE is populated into the View panel (Figure 7.28).

You may receive an invalid selection error that informs you that the Data Ele-
ment that you have selected is not mapped to an Object Class or Property. This
data is not correct and cannot be used for this mapping. Another possible error
is that mapping this attribute to this DE might cause a duplicate mapping. A

Chapter 7: Performing Semantic Integration

duplicate mapping is where a different attribute has already been mapped to
this DE.

Semantic Integration Workbench - annotated_test2.xmi E]E|g|
File Edit Element Run Help

- @ Classes | Person.id 3| ‘
qg Person
Map ta CDE

nare

‘39 Address Data Element Long Mame Person Identifier jawva.lang.Long

o g ;T:Bt Public 1T { Yersion 2534606+1.0

B@ MaternityPatient Data Element: Context caBlG
[3 dueDate

—:I@ Value Dornains
g} Personweight Clear Search Data Element

Bg Hospital

a Maryo Clinic

ﬁ Fairfax

gl Commanwealth

(=[] Associations

Q homesddrass(1):ire

: Q workaddress(n, . ¥ fModel

Q Com.Cooper. mary, do Owner ’ Previous ” Mexk ” Map to Concepts l

=] com.cooper.mary. de Yerified

Walue Daomain Long Mame java.lang.Long

Figure 7.28 An attribute is now mapped to an existing CDE

If you select a Data Element that is valid, then all of the Data Element's information is
entered in the View panel. Options include:

e Click Clear to undo the choice of the DE. This removes the DE information from
the View panel.

e Click Apply after clicking the Clear button to undo the process of mapping to a
DE.

e Click Apply to complete the process of mapping the attribute to a DE. The Map
to Concepts button is not available after clicking Apply when a DE has been
selected. At all other times it is available. You can switch back to concept infor-
mation in all cases except when the attribute has been mapped to a DE. The
DE mapping overrides any concept information.

When an attribute is mapped to a DE, the class that the attribute belongs to is mapped
to the Object Class that the DE is mapped to. This is displayed in the View panel if the
user selects a class that has an attribute that is mapped to a DE. Instead of the concept
information the Object Class information is displayed in the View panel for that class
(Figure 7.29). A warning message displays when this occurs.

129

caCORE SDK 3.2.1 Programmer’s Guide

Semantic Integration Workbench - annotated_test2.xmi
File Edit Element Run Help

EI@ Classes : Persan ‘

EE=]

Map ko OiC

g lastuisited
—39 Address

gl street
L gl ity

Cbject Class L I, P
=-fgd MaternityPatient Ject tlass Lang fame - Hersan

o .é dueDate Public ID § Wersion 2236731 w1.0
=g value Domains

-l Personieight

= Hospital

: .ﬂ Mayo Clinic

a Fairfax

“| gl Commaonwealth
(=3 Associations

Q homedddrass(1)ire
B workaddress(n, #:: Model

Q com.Ccooper. mary.d Apply [] owner ’ Previous ” Mgk l
“.] com.cooper.mary.d verified

Figure 7.29 Mapping an attribute automatically maps its class

130

Chapter 7: Performing Semantic Integration

Mapping a UML Attribute to an Existing Value Domain

If an attribute is not mapped to a DE then the concept information is displayed in the
View panel. Below the concept information is a section for selecting a Value Domain
(Figure 7.30).

3 Semantic Integration Workbench - roundtrip. mary lab test.xmi
File Edit Element Run Help

7 @ Classes ~|¥| Person.initials [|
9 Q Stuchy i

Bid : UML Concept Code Summary:

= identifier | |

= name :

=) assigningal |}l UML Awribute Description o

& Performinglati= |l [The first letter of the first, middle, and last names of the patient registered on the clinical trial
9 Q Ferson 3

Hidg
=) dateorBin
=) initials
9 Centrallabora, |
+ 83 i_Lle\fSite Al walue Domain
=id g
=) ictentifier
=) name
9 9 Irvestigator
=) identifier | | : :
=) name ; | Search Value Domain |
= participant i
9 Q Subjectassign :
i : Modal
= tvpe | Add || Apply | [] owner Previous || Mext || Map to DE
=) studhsubie Verified
o & activiry i
Hid :
o identifier | | |[Errors [Log |
|-__] actualstart ¢ @ Classes
=) actualendg | o & sy
2 planneatif |- & i
d plannedTi §§ @ Aftribute: id has no concept code.
reason : ¢ =) identifier
plannedin §§ @ Attribute; identifier has no concept code,
typeModifil | ¢ ¢ [=) assigningauthority
e Q SpecimenCollg §§ o @ Artribute: assigningAuthority has no concept code,
T e || Il | O
Changes Applied

UML Concept Name Summary:

Long Mame java.lang.5tring

|

B o T T T,

[4]

Figure 7.30 The Map to existing Value Domain box is located below the concept annotation
area

By clicking the Search Value Domain button, the Search for Value Domain dialog

box opens (Figure 7.31). This dialog box is similar to the Data Element dialog box
except that it searches for Value Domains instead.

131

caCORE SDK 3.2.1 Programmer’s Guide

File

Sanlsnis lnisgratdon Weorlkneh - roundidy ey ke s

Edit Element Run Help

o @ Classes -
2 9 Studhy
2id
|2 identifier
IZ) name
=) assigninga

e 9 P.eqrsnn
Hid
|Z) dateOfBirt
=) initials

¢ 3 stucksite
Hid
|Z) identifier
=) name

e 9 Inyestigawr
|=) identifier
=) name

= rarticipant

e Q Sq‘bjectAssign
2 id
=) type
=) stuchSulkjg

o B Activiy
i
|Z) identifier
|Z) actualstart
|Z) actualEnoo
.__j plannedTi
|Z) plannedTi
|=) reason
.__j plannedin
|=) typeModifi

[»]

A]

8 perfarmingLal=| -

=] Centrallaboral |

? QprecimenCUIIE:
g K1

.
¥

e

| =

[Person.initials [|

Search:

ML Concept Code Summary:

ML Concept Name Summary:

search for Value Domain

wieight| Search By |Long Mame |v| | Search

Longhame

Workflow 51a...

Pulalic Id

Warsion

Freferred Defi. ..

Caontext Mame|...

ifeight

DEAFT MEW

2017060

PLEASE PROWI.., |CCR

eight

DFEAFT MEW

2261307

CDIsC

The wertical fo...

I Previous | 0-2 of 2 | Mext || Close ‘ Results Per Page

[»

1]

Changes Applied

Figure 7.31 Searching caDSR for existing Value Domains

After performing a search, select a Value Domain by double clicking it. This closes the
dialog box and places the Value Domain information in the View panel. The process is
not complete until you click the Apply button. Otherwise the new VD is not applied to
this attribute.

Validating Concept Mappings Against EVS

132

SIW provides the capability of validating the concepts against EVS by using the Vali-
date Concepts option, run by selecting Run > Validate Concepts. A dialog box opens
informing you that this process could take some time. It also asks if you want to con-
tinue. If you select No, the box closes and no validation occurs. If you select Yes, the
Validate Concepts dialog box opens (Figure 7.32). A progress bar opens on the bottom
of the dialog box indicating the progress of the validation. It also displays which concept
is being validated directly above the progress bar. When the process is complete, Done
displays below the progress bar. The left-hand side of the dialog box displays a list of

Chapter 7: Performing Semantic Integration

classes and attributes that are in the model but whose concepts are not exactly the

Attribute Primary Concept

Skill:category EVS Concept By Name

EVS Concept By Code it

Code: CZ5372
Preferred Name: Category | _

Definition: This term is
used informally to meana |

12 £ +himm

Element Concept

Code: 25372

Preferred Name: Categores
Definition: This term is used
informally to mean a class of
things.

Done

Figure 7.32 The EVS validation window displays discrepancies between the concepts in
EVS and those in the XMI file

When an item is selected, the three boxes on the right-hand side of the dialog box are
populated.

e The first box, EVS Concept By Name, searches EVS for a concept with the
same Preferred Name and displays the result.

e The second box, EVS Concept By Code, searches EVS for a concept with the
same code and displays the result.

e The third box, Element Concept, is the concept as it appears in the model.
The first two boxes can be empty, which means that no match was found. The informa-
tion displayed in these three boxes is the Code, Preferred Name, and Definition. These
three fields can be highlighted in the EVS Concept By Name and EVS Concept By
Code box. A highlighted field means that this part of the concept is different in EVS than
what you have in the Element Concept box. One final feature is that when a class or an
attribute is selected in the list, the tree in the main window also selects the node that
corresponds to it. This allows easy review of the concepts for that node.

Creating Value Domains

Besides being able to point a UML attribute to a specific caDSR Value Domain, model
owners have the ability to create a Value Domain from the UML modeling tool. For the
UML Loader to create a Value Domain, the model owner must first create a UML Class
and stereotype it as either a <<CADSR Value Domain>> or an <<enumeration>>.

133

caCORE SDK 3.2.1 Programmer’s Guide

When a UML Class is stereotyped in this way, the SIW considers it as a Value Domain
rather than an Object Class. The ‘Name’ of the stereotyped class will become the name
of the Value Domain in caDSR. caDSR naming conventions specify that the represen-
tation type should be the last term in the Value Domain name, such as “State Code”
where the representation term is “Code”. The following six tagged values must be
present in the <<enumeration>> or the <<CADSR Value Domain>> class in order to be
recognized as a valid Value Domain.

¢ CADSR_ValueDomainDefinition - Used as the Value Domain Preferred Defi-
nition.

¢ CADSR_ValueDomainDatatype - Used as the underlying datatype for the
value domain and must be one of the valid caDSR datatypes.

¢ CADSR_ValueDomainType - used as the underlying Value Domain type and
must be one of 'E' (for Enumerated Value Domains) or 'N' (for Non Enumerated
Value Domains)

¢ CADSR_ConceptualDomainPubliclD - The combination of conceptual
domain public id and version must point to an existing conceptual domain in the
caDSR.

e CADSR_ConceptualDomainVersion - The Conceptual Domain tagged value
for this class should be entered as either a whole number or a decimal e.g. 1 or
1.0 for “Version 1.0".

e CADSR_RepresentationPublicID - The Representation Public Id tagged value
for this class should be entered as the public id of an existing caDSR Represen-
tation Term.

e CADSR_RepresentationVersion - The Representation Version tagged value
for this class should be entered as either a whole number or a decimal e.g. 1 or
1.0.

The following tags are used to indicate a 'top level' concept for a Value Domain. This is
also referred to as a "referenced Value Domain". In a non-enumerated (N) Value
Domain, the reference to a top level concept indicates that the values are not explicitly
listed as attributes of the Value Domain class, but that data values for the attribute are
constrained to children of the top level concept. When a top level concept is present for
an enumerated domain (E), it indicates that the permitted data values are listed explic-
itly as attributes of the value domain class, and are children of the top level concept.

Value Domains may optionally contain the following annotation tagged values:

¢ ValueDomainConceptCode

e ValueDomainConceptDefinition[_n]

e ValueDomainConceptDefinitionSource

e ValueDomainConceptPreferredName

e ValueDomainQualifierConceptCodeN

¢ ValueDomainQualifierConceptDefinitionN[_n]

e ValueDomainQualifierConceptDefinitionSourceN

e ValueDomainQualifierConceptPreferredNameN

If these tagged values are present when editing the Value Domain Permissible Value
list using the caDSR Curation Tool, the list of permissible values is constrained such
that only children of the named NCIt concepts may be selected as Permissible values.

134

Chapter 7: Performing Semantic Integration

Although the SIW does not allow modifying a Value Domain tagged value, it can be
used to review them (Figure 7.33). Create local Value Domains in a separate package
from the regular domain objects.

Note: An updated file that defines the mapping between data types and Value Domains is
located here: http://cadsrsiw.nci.nih.gov/datatype-mapping.xml.

: Semantic Integration Workbench - emp kel
File Edit Element Run Help

¢ @ Classes ~1}(valueDomain [|
7 o Employee !
e firstiame | |
3 lasthame
? @ Manager
ﬂ budget
v d Cantractar
& hillingRate
? @ Comparny :
3 name : VD Preferred Definition
9 @ Organization i
& narne
8 directorna :
g EngineeringCo VD Datatype A PHAMNUMERIC
salesConsultan | -
o led Skl ; VD Type E
3 categary i
¢ @ Claszes
9 @ Domaindhbject |
3 id §§ VD CD Long Mame Bininformatics
¢ @ value Domains :

¢ &= Technical Skil
| First

Gkill S0MEONRe POSSESSES

VD CD Publicld / Yersion 2178532/ 1.0

nco
;ﬂSvstem An i
3 PrDjEET Ma B T T T T T T T T T R T e b i e e T T b B L b T T L L T i L Ty Ry i G Lt T R T G b Ty
S giling Rate | | |[Ewors [Log |
¢ @ Associations Mo @ Classes =
organization{l | o o8 Employvee t
& companyio. 1] | o e firstiarne I
Q skillCollection 5§ 0 Attribute Employeefirstiame has no description. |
& com udet hr.q | ¢ lg# lasthlame
com.ludet.fr, ; Artribute Employvee;lasthame has no description.
=] com.ludet.hr.o_| . ¢ o8 Manager
com. ludet.hr.g] '; Class corn ludet hr.damain. Manager has no description. |
ALl '|=\ | b|_ ¥ ﬁ LOmRa, =
YalueDomain

Figure 7.33 Reviewing Value Domain properties

Value Meanings

Each attribute within a <<CADSR Value Domain>> or <<enumeration>> class is con-
sidered a Value Meaning. Adding UML Attributes to a Value Domain class is the pre-
ferred way to create value meanings. Value Meanings must be annotated with EVS
concepts. Annotation for Value Meanings is done the same way as it is for attributes
with the exception that the tag names are different:

e ValueMeaningConceptCode

e ValueMeaningConceptDefinition[_n]

¢ ValueMeaningConceptDefinitionSource
¢ ValueMeaningConceptPreferredName

135

http://cadsrsiw.nci.nih.gov/datatype-mapping.xml

caCORE SDK 3.2.1 Programmer’s Guide

e ValueMeaningQualifierConceptCodeN

e ValueMeaningQualifierConceptDefinitionN[_n]

e ValueMeaningQualifierConceptDefinitionSourceN
e ValueMeaningQualifierConceptPreferredNameN

é-.-_'lmgmn'. InL_él;il,ailu_ﬁ 'l'_l'ﬂ_'l'l'l.lﬂ_.'-rl-'.:!l .1;:;,';]_1'_ |':-'|'i|p|u1,'u_-.=i'f_'_*.~'t5.;:|r||
File Eit Elemgmt Hum Help
§ W Classes = | valueDomain £ | java & | pop

§ Employes
o firsikiams L Cancept Code Summan: C_1T73I5R
o lasikams

¢ ' Manager
o budger

gl Contractor
ol bilirgRate Comcept Code C.1235E

§ 'wll Company
name Concepl Preferred kame |PHF

] i Ceganizarion
o name ChHriztophe's Definition of PHF =,
i directoriame

§ Ergineering ongidan Concept Definitian

Salesl onsulant

1

UL Cancepl Namee Summan; PHP

Prisary Coniegl

Sk]
o calegory -
| ¥ Classes
5 a Db Concept Defunition Soueee (M0 | Euvs Limk
d [=]) o
¢ B Walue Domains
» = Technical Sk q] '
__I lava
2 gl Mudel
=) Svstem Anakest Adld HETTHIEY: \jig Onasner Previows MKl
2 Froject Manager Verified
j Billp Rare
¢ BF Associgtions — —
=1 oroanizatanil = Emars | Log
= ernplnenCobectionil T | [y @b Classes
skibCollaciiond 1 .=} 1.4 v il Emipiores
= com |udel hr.dormain Class com hde ke domain Employes Bas no mescription

o lucler hr doman 7 & firsiblame
= com |udeti. hr domain

X m e

airibuie Employoe irsiame has no descrphon
= COiF (U B hF dorain. Clw ' _‘ lpEIresime -

Ll
|Changes Applied

-

Figure 7.34 Value meaning annotations are similar to attribute annotations

Pointing a UML Attribute to a Value Domain

In order to indicate that a UML Attribute should use a value domain defined within the
model, the model owner should add a tagged value of type 'CADSR Local Value
Domain' to the attribute in EA. The value is the name given to the local value domain.

Example: The model owner creates a class with stereotype <<CADSR Value
Domain>> or << enumeration>> with name 'My Value Domain'. For a UML attribute to
use this value domain, the model owner adds a tagged value: 'CADSR Local Value
Domain' / '‘My Value Domain'.

Troubleshooting

In addition to the troubleshooting tips listed below, the caDSR team maintains a list of
commonly asked questions and answers and tips about the SIW and UML Loader on

136

Chapter 7: Performing Semantic Integration

the UML Model Project page in GForge at http://gforge.nci.nih.gov/plugins/wiki/
index.php?id=64&type=q.

Beginning to Use the SIW “Midstream”

If you have already begun using the caCORE SDK semantic integration workflow
described in this guide to complete any of these steps prior to release 3.2, but you
would like to use the SIW to complete the process, contact the NCICB application sup-
port group for assistance.

The Status Bar

At the bottom of the main viewer window, the Status Bar displays confirmation and
informative messages. Use it to confirm that a file was saved, that changes were
applied or need to be applied.

The Tabs

Several tabs can be opened at the same time. Use the mouse middle button (or equiv-
alent) on an element to open its description in a new tab.

EVS Search Dialog

Within one session, the EVS Search dialog box remembers your previous search and
column widths preferences. You can resize the table to your liking.

137

http://gforge.nci.nih.gov/plugins/wiki/index.php?id=64&type=g
http://gforge.nci.nih.gov/plugins/wiki/index.php?id=64&type=g

caCORE SDK 3.2.1 Programmer’s Guide

138

CHAPTER

REGISTERING METADATA

This chapter describes the process of registering and mapping metadata using the
UML Loader.

Topics in this chapter include:

UML Loader

UML Loader on this page

Creating a Concept for Object Class and Property on page 148
Mapping a UML Class to an Object Class on page 151
Mapping a UML Attribute to a Property on page 153

Creating Data Element Concepts on page 154

Mapping a UML Class to a Value Domain on page 156
Creating Data Elements on page 158

Mapping UML Model Metadata to Classification Scheme and Classification
Scheme Items on page 161

Mapping UML Associations to Object Class Relationships on page 163
Mapping UML Inheritance on page 164

The UML Loader is a Java application that transforms UML object model class dia-
grams into caDSR metadata, creating or reusing existing caDSR administered compo-
nents as needed. This process is also referred to as registering the UML model CDEs
in caDSR. Specifically, UML classes, including inheritance and association links, and
their attributes are transformed into caDSR metadata. UML class operations and other
types of UML elements are not transformed. The UML Loader does not transform UML
data models.

Once the UML object model is annotated with EVS concepts, as described in Chapter
7, and the EVS annotated version of the model has been approved, the model owner
sends the XMI representation to the NCICB caDSR team for processing as described

139

caCORE SDK 3.2.1 Programmer’s Guide

140

Note:

in steps 1 and 2 on page 141. The EVS concept annotations form the basis for deter-
mining whether the caDSR component represented by the UML element is new, or
exists in caDSR.

The resulting caDSR metadata is organized into Classification Scheme and Classifica-
tion Scheme Items whose version corresponds to the version of the UML model. The
details for the names of the classifications are specified by the model owner. Upon sub-
mission of a model for processing, the NCICB staff provides model owners with a tem-
plate for specifying these and other required UML Loader run-time parameters.

The UML Loader will not load XMI from UML model class diagrams that do not contain
the mandatory EVS concept tags for all UML classes and attributes.

The mapping is summarized in Table 8.1. Details describing the formation of each type
of caDSR Administered Component, the methodology for comparing UML elements to
existing caDSR components and creating Classification Schemes is found in other sec-
tions in this chapter.

caDSR
Administered UML element Description
Component
Concept Class EVS Concept tagged values See Chapter 7 for a complete list of
Examples: EVS concept tag names.
ObjectClassConceptCode,
ObjectClassConceptPre-
ferredName
Object Class UML Class A caDSR Obiject Class is created for
each unique UML Class.
Property UML Attribute A caDSR Property is created for each
unique UML Attribute.
Data Element UML Class:UML Attribute A caDSR DEC is comprised of two
Concept (DEC) key components, the Object Class
and Property. Based on the Object
Class and Property corresponding to
the UML Class and UML Attribute, the
UML Loader creates or reuses a
DEC. One DEC is created for each
combination of a UML Class and one
of its Attributes. E.g. If UML Class
Chromosome has 4 Attributes, there
will be 4 DECs.

Table 8.1 caDSR Administered Component to UML Mapping

Chapter 8: Registering Metadata

caDSR
Administered
Component

UML element

Description

Data Element

UML Class:UML Attribute:UML
Attribute Datatype

Within a context, a caDSR Data Ele-
ment is based on the unique combina-
tion of a DEC and a Value Domain
(VD). To derive the Data Element, the
UML Loader uses the DEC corre-
sponding to a UML Class and one of
its Attributes, and an existing VD cor-
responding to the datatype of the UML
Attribute or to a VD defined in the
Model file. Based on an evaluation of
the uniqueness of these two compo-
nents, the DEC and the VD, the UML
Loader creates or reuses a Data Ele-
ment. One Data Element is created
for each DEC associated with the
Model. E.g. If Class Chromosome has
4 Attributes, there will be 4 DECs and
4 Data Elements.

Classification
Scheme

Project Full Name

Specified by the model owner in the
UML Loader run-time parameters.

Classification
Scheme ltem

Package name or user defined.

UML Loader detects the package
names in the XMl file and can use this
to create a Classification Scheme
Item, or the user can set a Classifica-
tion Scheme Item default at run time
for the UML Loader. The Classifica-
tion Scheme/Classification Scheme
Item is used to classify all the UML
model-derived caDSR components.

Table 8.1 caDSR Administered Component to UML Mapping (Continued)
Submitting a UML Model to caDSR

Perform the following steps to submit the UML model for loading into the caDSR:

1. Submit XMI File created by Semantic Integration steps to NCICB for process-

ing.

2. Send an email to the NCICB helpdesk at ncicb@pop.nci.nih.gov with the details
of your request. You will be contacted and given instructions for providing user
specified run-time parameters.

The process to access/verify caDSR Metadata UML Loader results using the CDE
Browser are as follows.

141

ncicb@pop.nci.nih.gov

caCORE SDK 3.2.1 Programmer’s Guide

142

Perform the following steps to use the Admin Tool to review UML Class transfor-
mations:

1. Tofind all transformed UML Classes, now represented as “Object Class” admin-
istered component in caDSR, sign on to the Admin tool using your caDSR User
account and select Object Class, as in Figure 8.1.

MTONAL 5 2
R

[[‘[U]"TFADTEH 1 d
[y i

Data Element

[ioda-Htemant Concept
Ohiect Class

YValug Darmain

Representation

Conceptual Daomain
Clazzification Scheme

Figure 8.1 caDSR Metadata Browsing

a. On the Search for Object Classes screen, select List and set Context =
caBIG (all object classes are loaded into caBIG regardless of which
Context the UML model itself belongs to). As illustrated in Figure 8.2,
using the Classification Scheme/Classification Scheme Item Filter,
set the search string to the name specified for each in the UML Loader
run-time parameters provided to NCICB when the model was loaded.
Click Search to launch the search.

Search for Object Classes Basic | Insert
Search Field(z): Preferred Name Definition Search: @ preferred © All Definitions
All Names
Long Name =]

Secarch For:

Context:]caBIG

Classificati

List Classification Scheme Item:]CEBIO
Definition: o,

Workflow Std

Version: + _all versions

Figure 8.2 Search for Object Classes

b. Review the list of Object Classes in the results list to be sure that all the
UML classes from your object model were transformed into an equiva-
lent Object Class as shown in Figure 8.3.

Preferred

I : :
Browse |Mulify Mame |1 TP of Long |Workflow
| Hame -

GENE [preferred |[GENE cter | ileene [pRAFTMEW [GENE

Mome | |
GENE CABIO 1 isene |RELEASED A functional unit of me
| "

Preferred
on aparticular

Figure 8.3 Object Class search results

Chapter 8: Registering Metadata

c. Click the Browse icon next to the class to view the object class details
displayed in Figure 8.4. Here you can check for alternate names, alter-
nate definitions and view EVS concept mapping.

aa"jobjm Class

CHEy GENE

l‘}/ Object Classes Information

£ .
E+Z>-|'_"|Al1s'r'rroic Hames d Nome: GENE
= ... L H Sene
== alternate Definitior
— cfinition: A functional unit of heredity which ¢
= 2 ¥
=] Admin Notes
; RS Definition Source:
_E Description Database:
—E] Detail Description *Context: CARTO
E] comments Effective Begin Date: 10/01/2002
J:*>‘|F'_| Documents Effective End Date:
E] Admin Infos Change Mote:
—[E] Classification Scher *Workflow Status: RELEASED
Public ID: 2978327
Version: 1
Latest Version: Yes

Figure 8.4 Object Class Details

Perform the following steps to use the Admin Tool to review UML Class/attribute
transformations:

1. Search for DECs associated with UML Class using the class name and a wild-
card. For example, to find all the DECs associated with the class hamed “Gene”
in the Admin Tool (Figure 8.5):

a. Select Long Name as the Search Field(s).
b. Enter gene% in Search For. (The % symbol is a wild card.)
INANAL 7 17 : :

I IL[P.Q

Search Field{s): | Preferred Name i’
All Names
v
Secarch For: @

Object Class: |5 List
Date Created: |% Daterte I% Dates
Created By: % List

Figure 8.5 caDSR Admin Tool

Alternatively, perform the following steps to use the Curation Tool to review UML
Class/attribute transformations:

1. Sign on to the Curation Tool and enter the following information as shown in Fig-
ure 8.6.

a. Select Data Element Concept from Search For.

143

caCORE SDK 3.2.1 Programmer’s Guide

b. Select Names & Definition from Search In.
c. Enter the UML Class name and wildcard in Enter Search Term.

A ea
HITUTH moaa

User Name : dwarzel

1) Search For:

Edit Selection

lData Element Concept 3 - =
2) Search In: Search Res
| Names & Definition ~| NoRecords Fou
3) Enter Search Term: 4 Da
|gene'1 —

use * as wildcard
4) Filter By: Advanced Filter
Context

All Contexts =
AACI :|

-

Version

@& Al C Latest f‘|

Figure 8.6 caDSR Curation Tool

Perform the following steps to use the CDE Browser:

1.

In order to see a Classification caDSR Browser tree, the workflow status of the
Classification must be set to Released. After doing so, using an Internet
Explorer web browser, visit the caCORE CDE Browser site at http://
ncicb.nci.nih.gov/CDEBrowser.

Using the various methods available in the browser search functions, search for
or drill down to the Classification Scheme/Classification Scheme item for
your model within your context. Figure 8.7 illustrates opening the caBIG Context
and the location of the Classifications leaf node.

g 1ES] (lest)

% Training (Training Context)

‘% caBIG (HCI cancer Biomedical Informatics Grid)
% Classifications
% Protocol Forms

% caCORE (HCI Cancer Bioinformtics Infrastructure)

Figure 8.7 CDE Browser, caBIG context

3.

4.

144

View the details of each CDE in the results panel by clicking on the CDE’s
name.

Download the data elements into Excel or XML by clicking on the appropriate
action button (Figure 8.8). Contact your local IT staff if you have problems

http://ncicb.nci.nih.gov/CDEBrowser
http://ncicb.nci.nih.gov/CDEBrowser

Chapter 8: Registering Metadata

downloading these files, as sometimes local firewalls prevent this feature from
functioning properly.

[Download Data Elements to Excel] [Download Data Elements as XML

(__Add to CDE cart) [1-400f820 =] nextao >
=] [Owned | -Registratian [Workflow |Public |]
. u .Long Name Document Text By Used By Context Statis Status D Versmn.
Acetylsalicylic Acid
L Lt] caBIG RELEASED (2185684|1.0
Randomization Randomization
| Indicator
I |Address City Mame |City DCP |caBIG Qualified RELEASED [2179801/1.0
-+ f =
et DCP [CCRCIP.caBIG |Qualiied RELEASED [2179604/1.0
I |Address Line 1 Text Address 1 DCP |caBIG Qualified RELEASED 2179598/1.0

gl P RS e] [e e Lt - P | Ar e s ern eoenn s o

Figure 8.8 Data Elements Download

Each of the components of the caCORE 3.2 infrastructure has been transformed from
their respective UML Object Models, EVS, caBIO, and caDSR. When available, the 3.2
version can be found in the caCORE Context under Classifications, Classification
Scheme caCORE version 3.2.

Reviewing UML-Derived caDSR Metadata

The UML Model Browser is a web-based tool designed to let UML Model users/owners
search for and view UML model components loaded in the caDSR database. It is an
intuitive way to view UML classes, attributes, the association between classes and
attributes, and their related ISO Components.

The following sections illustrate the data displayed by the Browser. For complete
instructions on using the UML Model Browser, click on the "Help" icon from the
Browser's main page.

Class Search
The UML Model Browser searches for model metadata based on either class or
attribute properties. A class search for class names containing "ValueDomain" displays
the following information in the result set (Figure 8.9).

Sort order :
1-50f5 v
. . Project
Class Name Project Plol?m Workflow Sub Project Name |Package Name oc . oc .
Name Version Public ID Wersion
Stauts
Cancer Data
Enumerated/alueDamain caClORE |3 RELEASED Standards Repository |gov.nih.nci.cadsr.domain[2231657 1.0
(caD5R)

P

Figure 8.9 UML Model Browser search for class or attribute properties

The "EnumeratedValueDomain" class was loaded in the caCORE project and belongs
to the caDSR sub-project - the caDSR UML model is loaded to the caDSR just as other
models are. This enabled the generation of the caDSR API via the caCORE code gen-
eration process.

145

caCORE SDK 3.2.1 Programmer’s Guide

Clicking on the Class Name link navigates to the list of attributes for that Class (Figure
8.10).

Attribute Name Data Type Definition DE Name D'E Public ID|Project Name|Sub Project Package Name

The particular

H —. Enurnerated

and vear this “alue Dormain
and y Administered 2232879 caCoORE gov.nih.nci.cadsr.domain
item became

ltem Begin Date
allowed. (150 -
11179) ava. util. Date

AdministeredComponent:beginDate Jjava.util. Date

Figure 8.10 Navigating to attributes list for a class

Clicking on the "OC Public ID" opens the caDSR Object Class Browser to display the
details for the Object Class with the Public ID listed for the Class.

Attribute Search
The alternative search option in the UML Model Browser is to search by attribute. A
search for attribute names containing "beginDate" displays the following information for
the result set (Figure 8.11).

1-210f21
Attribute Name Data Type |Definition DE Name DE Public ID|Project Name| Sub ProjectPackage Name
The particular day,
manth and year |Administered ltem
AdministeredComponent:beginDate java.util. Datejthis iterm became |Begin Date 2232097 caCORE gov.nih.nci.cadsr.domain
allowed. (IS0 java. util. Date
11179

Figure 8.11 UML Model Browser search for attributes

Clicking on the "DE Name" link opens the CDE Browser Data Element Details screen
for that data element.

Accessing UML-Derived caDSR Metadata

The NCICB provides several methods for retrieving the UML object model-derived
caDSR metadata for use in applications and deployment in data systems:

e caCORE caDSR Application Programming Interfaces (APIs), generated by fol-
lowing the methodologies and tools of the caCORE infrastructure

e caDSR curator tools provide a means to view and edit the UML derived Data
Elements, Data Element Concepts and Value Domains associated with each.
The CDEs derived from the model will not be visible using the CDE Browser
Classification Scheme tree function until the Classification Scheme workflow
status is set to Released, which can be changed when ready to make more
widely accessible, using the Admin Tool.

e Once the Classification Scheme workflow status is set to Released, the CDE
Browser may be used for public access to view, edit or download the UML
Model CDEs into Excel or XML file format

e UML Model Query Service, available with caCORE 3.2, which greatly simplifies
retrieval of the extensive set of metadata supporting the UML object model with
little or no knowledge of the caDSR metadata structures or ISO/IEC 11179 (see
UML Domain Model Query Service on page 147).

Note: The caCORE SDK process, in part, is applied to the caDSR resulting in the generation
of caDSR APIs and transformation of the caDSR UML object model into caDSR meta-

146

Chapter 8: Registering Metadata

data. The process began as described in the SDK by creating a caDSR UML domain
object model in EA, performing semantic integration using the semantic connector tool,
and transforming the EVS annotated XMI into caDSR metadata. The caDSR UML
object model metadata is also available through each of these means.

For information about using the caCORE caDSR APIs, see the caCORE 3.2 Technical
Guide. For links to the technical guide and access to the caDSR web based tools which
provide access for viewing, updating and downloading caDSR metadata, visit the
caDSR web site (http://ncicb.nci.nih.gov/NCICB/infrastructure/cacore_overview/cadsr).
Though a UML object model can be viewed in any of the caDSR tools using the
project’s Classification Scheme/Classification Scheme Items specified when the model
was loaded, the easiest and most accessible way is via the CDE Browser (http://
ncicb.nci.nih.gov/CDEBrowser provides a direct link to the CDE Browser). The detailed
views of CDEs in the browser provide access to all the underlying components of the
CDE including concepts, Object Class, Property, Data Element Concept, Value Domain
and classifications.

Note: The CDE Browser includes a Form Builder feature allowing you to organize CDEs into
collections with properties analogous to paper forms, for sharing and communicating
with end user communities. All caDSR published forms and templates from any Con-
text can be centrally accessed, viewed, copied or downloaded from the caBIG context,
Catalog of Published Forms Classification Scheme. caDSR tools are compatible with
Internet Explorer. Use of other browser software may result in unexpected results

UML Domain Model Query Service

The UML Domain Model Query Service is a Java application for retrieving UML object
model-derived caDSR metadata. The objective of the query service is to allow pro-
grammatic access to the transformed UML object model caDSR metadata with little or
no knowledge about the caDSR database schema or the ISO/IEC 11179.

The 3.2 version of this API provides four basic methods to address some of the most
likely types of queries. These methods are described in Table 8.2.

Method Name Description
findAllClasses This method retrieves all classes in a particu-
(Java.lang.String projectName, lar UML domain model. The parameters
float projectReleaseVersion) required are the projectName and projectRe-
leaseVersion.
findAssociatedClasses This method retrieves all the associated
(Java.lang.String projectName, domain object classes of a specific domain
float projectReleaseVersion, object class. The parameters are project-
jJava.lang.String packageName, Name, projectReleaseVersion, packageName
jJava.lang.String className) and className. For example, the classes
associated with “Gene” class.
findAttributeMetadata This method retrieves attribute level metadata.
(Java.lang.String projectName, The parameters are projectName, projectRe-
float projectReleaseVersion, leaseVersion, packageName, className and
jJava.lang.String packageName, attributeName. For example, the attribute
jJava.lang.String className, “alignmentLength”.

jJava.lang.String attributeName)

Table 8.2 UML Domain Query Service Method Summary

147

http://ncicb-dev.nci.nih.gov/NCICB/infrastructure/cacore_overview/cadsr
http://ncicb.nci.nih.gov/CDEBrowser
http://ncicb.nci.nih.gov/CDEBrowser
http://ncicb.nci.nih.gov/CDEBrowser

caCORE SDK 3.2.1 Programmer’s Guide

Method Name

Description

findAllAttributes
(Java.lang.String projectName,
float projectReleaseVersion,
jJava.lang.String packageName,
Java.lang.String className)

This method retrieves all the attributes of a
specific domain object class. The parameters
are projectName, projectReleaseVersion,
packageName, and className. For example,
all the attributes of the “Gene” class.

findClassMetadata
(Java.lang.String projectName,
float projectReleaseVersion,
jJava.lang.String packageName,
Java.lang.String className)

This method retrieves metadata for a UML
class. The parameters are projectName, pro-
jectReleaseVersion, packageName and class-
Name. For example, all the metadata for
“Gene” class.

findAssociationMetatada
(Java.lang.String projectName,
float projectReleaseVersion,
jJava.lang.String sourcePackage-
Name, java.lang.String source-
ClassName, java.lang.String
targetPackageName,
jJava.lang.String targetClassName)

This method retrieves metadata for an associ-
ation between two UML classes. The parame-
ters are projectName, projectReleaseVersion,
sourcePackageName, sourceClassName, tar-
getPackageName and targetClassName. For
example, metadata for the association

between “Gene” and “Protein” classes.

Table 8.2 UML Domain Query Service Method Summary (Continued)

The programmer invokes the API using parameter values from the UML elements of a
specific UML object model. These parameters are described in Table 8.3.

Parameter Description Example
projectName The name of the project. CaCORE
projectReleaseVersion The Release version number of the project. 3.2

packageName The name/alias of the package that the class | CaBIO
belongs to.

className The name of the UML class. Gene

attributeName The name of the UML attribute. symbol

Table 8.3 UML Domain Model Query Service Parameter description

Creating a Concept for Object Class and Property

148

All UML Classes and their Attributes are mapped to one or more concepts in the NCI
Thesaurus which is curated and served by Enterprise Vocabulary System (EVS). This
mapping is captured in the UML domain model during the semantic integration steps
described in Chapter 7 by annotating classes and their attributes using tagged values
(Name-Value pairs). The mapping process can be automated by the Semantic Connec-
tor utility which injects concept annotations into XMl by querying EVS using the caBIO
EVS API. It can also be accomplished at design time by searching for concepts in EVS
using its public web interface and then manually creating appropriate tagged values for
various UML elements in the UML modeling tool.

Chapter 8: Registering Metadata

Table 8.4 describes the class-level tagged values (using the example of Gene class) for

primary concepts:

Tag Name

Description

ObjectClassConceptCode

The unique NCI Thesaurus concept code
assigned to the primary concept associated with
the UML Class.

Example: C16612

ObjectClassConceptPreferredName

The NCI Thesaurus Preferred Name of the pri-
mary concept associated with the UML Class.
Example: Gene

ObjectClassConceptDefinition[n]

The NCI Thesaurus Definition of the primary con-
cept associated with the UML Class.

ObjectClassConceptDefinitionSource

The source of the definition of the primary con-
cept associated with the UML Class.
Example: NCI-GLOSS

Table 8.4 Object Class concept UML Class-level tagged values

Table 8.5 describes the class-level tags for Qualifier concepts. The specific order of the
Qualifier concepts conveys additional semantics. During semantic integration, an ordi-
nal number, denoted by the “N” in the tag name, is assigned each Qualifier concept in
relation to the primary concept. This number is used to create semantically meaningful
names and definitions in caDSR. To determine the ordinal position, the primary concept
is placed at the far right, each qualifier concept prepended, sequentially to form a
human understandable name. The ordinal position is determined by the resulting string
as follows: qualifierN qualifier2 qualifierl primaryConcept.

Name

Description

ObjectClassQualifierConceptCodeN*

The unique NCI Thesaurus concept code
assigned to the qualifier concept “N” associated
with the UML Class.

ObjectClassQualifierConceptPreferred-
NameN*

The NCI Thesaurus Preferred Name of the quali-
fier concept “N” associated with the UML Class.

ObjectClassQualifierConceptDefini-
tionN[n]*

The NCI Thesaurus Definition of the qualifier con-
cept “N” associated with the UML Class.

ObjectClassQualifierConceptDefinition-
SourceN*

The source of the definition being used for the
Qualifier concept “N” associated with the UML
Class.

Table 8.5 Object Class Qualifier concept UML Class-level tags

149

caCORE SDK 3.2.1 Programmer’s Guide

Table 8.6 describes the attribute-level tags for primary concepts:

Name

Description

PropertyConceptCode

The unique NCI Thesaurus concept code
assigned to the primary concept associated with
the UML Attribute.

PropertyConceptPreferredName

The NCI Thesaurus Preferred Name of the primary
concept associated with the UML Attribute.

PropertyConceptDefinition[n]

The NCI Thesaurus Definition of the primary con-
cept associated with the UML Attribute.

PropertyConceptDefinitionSource

The source of the definition of the primary concept
associated with the UML Attribute.

Table 8.6 Property concept UML Attribute-level tags

Table 8.7 describes the class-level tags for Qualifier concepts. To create names and
definitions for the Property, the specific order of the Qualifier concepts is denoted by the
“n” as described for Object Class Qualifiers above.

Tag Name

Description

PropertyQualifierConceptCodeN*

The unique NCI Thesaurus concept code
assigned to the qualifier concept “N” associated
with the UML Attribute.

PropertyQualifierConceptPreferredNa-
meN*

The NCI Thesaurus Preferred Name of the quali-
fier concept “N” associated with the UML
Attribute.

PropertyQualifierConceptDefinitionN[n]*

The NCI Thesaurus Definition of the qualifier
concept “N” associated with the UML Attribute.

PropertyQualifierConceptDefinition-
SourceN*

The source of the definition being used for the
Qualifier concept “N” associated with the UML
Attribute.

Table 8.7 Property Qualifier concept UML Class-level tags

When the UML domain model is exported to XMI, it contains all concept tag annota-
tions. UML Loader retrieves concept information by parsing them.

Creating New Concepts in caDSR

UML Loader first checks if a concept corresponding to the specified concept code
already exists in caDSR. If it does not exist, then a new concept is created in caDSR.
Data used for creating the new concept is shown in Table 8.8, using the example of

Gene UML class in caBIO 3.2.

Concept Attribute

Data Example

Preferred Name

Derived from ConceptCode tagged value.

C16612

Table 8.8 Concept Attribute details

Chapter 8: Registering Metadata

Concept Attribute Data Example
Long Name Derived from ConceptPreferredName Gene
tagged value.
Preferred Definition Derived from ConceptDefinition tagged
value(s).
Version 1.0 (Default) 1.0
Workflow Status RELEASED (Default) Released
Context CaBIG (Default) caBIG
Begin Date Current Timestamp 01/23/2005

Table 8.8 Concept Attribute details (Continued)

Creating an Alternate Definition

Definitions from sources other than NCI are captured as alternate definitions for a Con-
cept. Table 8.9 displays the details of the mapping.

Alternate Definition Data
Definition Derived from ConceptDefinition tagged value.
Context Specified as a run-time parameter

Table 8.9 Alternate Definition details

Updating Existing Concepts in caDSR

If a concept corresponding to the specified concept code already exists in caDSR, UML
Loader compares its existing definitions with the specified definitions and updates them
if necessary.

Mapping a UML Class to an Object Class

Each class in the UML domain model is mapped to a caDSR Object Class. UML
Loader resolves the semantic equivalence of two domain objects based on the NCI
concepts to which they are mapped, as described in the Introduction. To map a UML
class to a caDSR Object Class, the UML Loader retrieves the NCI concept codes of the
UML class from the tagged values in the XMI and checks if a caDSR Object Class
based on those values exists. If it exists, the domain object class is mapped to it; other-
wise, a new corresponding object class is created. When an existing object class is re-
used, a new classification is assigned to it. Additional details for classifying existing
object classes are discussed in sections Mapping UML Model Metadata to Classifica-
tion Scheme and Classification Scheme Items on page 161 and Assigning Classifica-
tions on page 162.

To summarize, if two domain objects’ UML classes are based on the same NCI con-
cept(s), they are mapped to the same caDSR Object Class. Details of new object class
creation are discussed in the following section.

151

caCORE SDK 3.2.1 Programmer’s Guide

Creating a New Object Class

Table 8.10 illustrates the details of a new object class that UML Loader creates.

Object Class o
Attribute Description Example
Preferred Name Derived from the concept codes of the underly- | C40992
ing concept(s). Usually the concept identi-
fier(s).
Long Name Derived from the long name of underlying con- | Homologous Protein
cept(s).
Preferred Defini- Derived from the preferred definition of under- | A protein similar in
tion lying concept(s). structure and evolu-
tionary origin to a pro-
tein in another
species.
Version 1.0 (default) 1.0
Workflow Status RELEASED (default) Released
Context caBIG (default) caBIG
Begin Date Current Timestamp 01/23/2005

Table 8.10 Object class attribute details

Creating an Alternate Name (Designation)

Two alternate names are created for each caDSR Object Class. Alternate names are
based on the exact UML class hame. The alternate name "Type" attribute of such alter-
nate name is "UML Class". An alternate name based on the fully qualified UML class
name (including the package name) is also created. The "Type" attribute for this alter-
nate name is "UML Qualified Class". Appropriate classification is assigned to the alter-
nate names. Details of assigning classifications are described in Mapping UML Model
Metadata to Classification Scheme and Classification Scheme Items on page 161 and
Assigning Classifications on page 162.

Creating an Alternate Definition

An alternate definition based on the UML class description of a domain object is cre-
ated for the caDSR Object Class. The value for the description comes from the XMl
documentation tag. The Alternate DefinitionType attribute of such alternate definition is
“UML Class”. Appropriate classification is assigned to the alternate name. Details of
assigning classifications are described in Mapping UML Model Metadata to Classifica-
tion Scheme and Classification Scheme Items on page 161 and Assigning Classifica-
tions on page 162.

Using an Existing Object Class

An UML Class can be explicitly mapped to a caDSR Object Class by mapping any of
the class's attributes. See Using an Existing CDE (Common Data Element) on

page 154. If an existing caDSR Object Class is re-used to map a UML class in a
domain object, appropriate classification is assigned to it. An alternate name and an

152

Chapter 8: Registering Metadata

alternate definition are also created for the existing caDSR Object Class based on the
details specified Creating an Alternate Name (Designation) on page 152 and Creating
an Alternate Definition on page 152.

Classifying an Object Class

UML-based caDSR Object Classes are classified using the principles described in
Mapping UML Model Metadata to Classification Scheme and Classification Scheme
Items on page 161 and Assigning Classifications on page 162.

Mapping a UML Attribute to a Property

Each attribute of a UML class is mapped to a caDSR Property. UML Loader resolves
the semantic equivalence of two domain objects' properties based on the concepts to
which they are mapped. To map a UML attribute to a caDSR Property, the UML Loader
retrieves the concept codes of the UML attribute from the tagged values in the XMI and
checks the existence of a caDSR Property based on those values. If it exists, the
domain object's UML attribute is mapped to it; otherwise, a new caDSR Property is cre-
ated. When an existing caDSR Property is re-used, a new classification is assigned to
it.

To summarize, if two domain objects' UML class attributes are based on the same NCI
concept (s), they are mapped to the same caDSR Property. Details of new Property
attributes display in Table 8.11.

Property Attribute Description Example

Preferred Name Derived from the concept codes of the underlying | C25552:C411167
concept(s). Usually the concept identifier(s).

Long Name Derived from the long name of underlying con- Lead:Organization-
cept(s). alUnit

Preferred Definition | Derived from the preferred definition of underlying | Be in charge of.:
concept(s). Organizational unit
like a laboratory,
institute or consor-

tium.
Version 1.0 (default) 1.0
Workflow Status RELEASED (default) Released
Context caBIG (default) caBIG
Begin Date Current Timestamp 01/23/2005

Table 8.11 Property attribute details

Creating an Alternate Name (Designation)

An alternate name based on an exact UML attribute name is created for the caDSR
Property. The Alternate Name Type of such alternate name is “UML Attribute”. Appro-
priate classification is assigned to the alternate name. Details of assigning classifica-
tions are described in Mapping UML Model Metadata to Classification Scheme and
Classification Scheme Items on page 161 and Assigning Classifications on page 162.

153

caCORE SDK 3.2.1 Programmer’s Guide

Creating an Alternate Definition

An alternate definition based on a UML attribute description is created for the caDSR
Property. The Alternate Definition Type of such alternate definition is “UML Attribute”.
Appropriate classification is assigned to the alternate name. Details of assigning classi-
fications are described in Mapping UML Model Metadata to Classification Scheme and
Classification Scheme Items on page 161 and Assigning Classifications on page 162.

Using an Existing CDE (Common Data Element)

Note:

For each UML Attribute the UML Loader encounters, it checks for the following tagged
values:

e CADSR_DE_ID

¢ CADSR_DE_VERSION
If both of these tagged values are present, no data element for this attribute is created.
Instead, the CDE identified by the provided public ID and version is reused. The prop-
erty, data element concept, value domain and object class for this CDE are also
reused, and are thus classified into the project using the appropriate classification
scheme/classification scheme item. If any concept annotation exists for this UML
Attribute or its parent UML Class, the concept annotations are ignored.

Mapping an attribute to an existing CDE automatically maps its parent UML Class to an
existing Object Class.

If an existing caDSR Property is re-used to map a UML attribute, an appropriate classi-
fication is assigned to it. An alternate name and an alternate definition are also created
for the existing caDSR Property based on the details specified in Creating an Alternate
Name (Designation) on page 153 and Creating an Alternate Definition on page 154.

Classifying a Property

Note:

UML-based caDSR Properties are classified using the principles described in Mapping
UML Model Metadata to Classification Scheme and Classification Scheme Items on
page 161 and Assigning Classifications on page 162.

For UML Model metadata to be consistently transformed and mapped across models, it
is recommended that the UML Attribute names do not include the UML Class name. If
for some reason they do, during the Semantic Integration steps, model owners should
ensure that EVS concepts mapped to the Attribute in the Semantic Connector report
represent only the Attribute portion of the Attribute name; concepts mapped to the
Attribute’s Class should not be repeated. For example, if you had not followed the nam-
ing conventions outlined for SDK, and have Class = ‘Gene’ and Attribute = ‘geneSym-
bol’ you would not use ‘geneSymbol’ for concept mapping. You would map the attribute
to the concept ‘symbol’ and ignore the term ‘gene’.

Creating Data Element Concepts

154

The relationship between a class and one of its attributes is represented by a caDSR
Data Element Concept (DEC). A DEC is based on a caDSR Object Class that corre-
sponds to the UML Class and a caDSR Property that corresponds to the UML class

Chapter 8: Registering Metadata

attribute. UML Loader creates the DEC based on the details in Table 8.12 if it does not
already exist. If it exists, it is re-used and an appropriate classification is assigned.

Data Element Concept

Attribute Description

Example

Preferred Name Derived from the Object Class 1111111v1.0:2222222v1.0
Public ID and version and Property
Public ID and version. A colon is
used as the separator character

between these values.

Long Name Derived from the Object Class
Long Name and Property Long
Name. A space is used as the sep-
arator character between these two

values.

Homologous Protein Align-
ment Length

Preferred Definition Object Class Preferred Definition

and Property Preferred Definition.

A protein similar in structure
and evolutionary origin to a

A colon is used as the separator
character between these two val-
ues.

protein in another species:
The linear extent in space
from one end to the other.

Often used synonymously
with distance.

Version Specified as a run-time parameter | 3.0
Workflow Status Specified as a run-time parameter | Draft New
Context Specified as a run-time parameter | caCORE
Begin Date Current Timestamp 01/23/2005

Object Class Long
Name

Object Class corresponding to the
UML Class

Homologous Protein

Property Long Name Property corresponding to the UML

Attribute

Alignment Length

Table 8.12 Data Element Concept details

Creating an Alternate Name (Designation)

An alternate name for the DEC based on the exact UML class name and attribute name
is created for the caDSR DEC. The format used for the name is “UML class hame:UML
attribute name”. The Alternate Name Type of such alternate name is “UML
Class:Attribute”. Appropriate classification is assigned to the alternate name. Details of
assigning classifications are described in Mapping UML Model Metadata to Classifica-
tion Scheme and Classification Scheme Items on page 161 and Assigning Classifica-
tions on page 162.

Creating an Alternate Definition

An alternate definition for the DEC based on the UML class description and attribute
description is created for the DEC. The Alternate Definition Type of such alternate defi-
nition is “UML Class:Attribute”. Appropriate classification is assigned to the alternate
definition. Details of assigning classifications are described in Mapping UML Model

155

caCORE SDK 3.2.1 Programmer’s Guide

Metadata to Classification Scheme and Classification Scheme Items on page 161 and
Assigning Classifications on page 162.

Using an Existing Data Element Concept

If an existing DEC is re-used to represent the relationship of a UML class and one of its
attributes, appropriate classification is assigned to it. An alternate name and an alter-
nate definition are also created for the DEC based on the details specified in sections
Mapping UML Model Metadata to Classification Scheme and Classification Scheme
Items on page 161 and Assigning Classifications on page 162.

Classifying a Data Element Concept

UML-based DECs are classified using the principles described in Mapping UML Model
Metadata to Classification Scheme and Classification Scheme Items on page 161 and
Assigning Classifications on page 162.

Mapping a UML Class to a Value Domain

Each class stereotyped as "CADSR Value Domain" in the UML domain model is
mapped to a caDSR Value Domain. The UML Loader resolves the semantic equiva-
lence of two domain objects based on its long name and context.

For each Class with Stereotype <<CADSR Value Domain>>, the UML Loader looks for
the following tagged Values:

e CADSR_ValueDomainDefinition
e CADSR_ValueDomainDatatype
e CADSR_ValueDomainType (E or N)
¢ CADSR_ConceptualDomainPubliclD
e CADSR_ConceptualDomainVersion
e CADSR_RepresentationPubliclD
e CADSR_RepresentationVersion
and optionally:
e ValueDomainConceptCode
¢ ValueDomainConceptPreferedName
¢ ValueDomainConceptDefinition[_n]
e ValueDomainConceptDefinitionSource
e ValueDomainQualifierConceptCodeN
e ValueDomainQualifierConceptPreferredNameN
e ValueDomainQualifierConceptDefinitionN[_n]

e ValueDomainQualifierConceptDefinitionSourceN

The list of tags above (ValueDomainConceptCode to ValueDomainQualifierConcept-
DefinitionSourceN[_n]) are used to indicate a 'top level' concept for a Value Domain.
This is also referred to as a "referenced Value Domain". In a non-enumerated (N) Value
Domain, the reference to a top level concept indicates that the values are not explicitly
listed as attributes of the Value Domain class, but that data values for the attribute are

156

Chapter 8: Registering Metadata

constrained to children of the top level concept. When a top level concept is present for
an enumerated domain (E), it indicates that the permitted data values are listed explic-
itly as attributes of the value domain class, and are children of the top level concept.

During the load process, the UML Loader starts by creating a Value Domain for each
class with Stereotype <<CADSR Value Domain>>. The Value Domain is created

according to the following table:

caDSR Field

Value Used

Long Name

UML Class Name

Preferred Name

Similar to the generated public 1D

Preferred Definition

From 'ValueDomainDefinition' tagged value

Value Domain Type

From 'ValueDomainType' tagged value

Context From run time default values provided by model
owner
Version 1.0

Workflow Status

Specified as Default (e.g DRAFT NEW)

Conceptual Domain

From 'ConceptualDomainPublicID' and ‘Conceptu-
alDomainVersion' tagged values

Datatype

From 'ValueDomainDatatype'

Begin Date

The date of the load

Concept Derivation Rule | Optionally created from the list of Concepts in
tagged values. Similar to Object Class Concept
Derivation Rules

Table 8.13 caDSR fields for creating a Value Domain

Value Meanings

For each attribute under each Class with Stereotype <<CADSR Value Domain>>, the
UML Loader looks for the following tagged values:

e ValueMeaningConceptCode

¢ ValueMeaningConceptPreferredName

e ValueMeaningConceptDefinition[_n]

¢ ValueMeaningConceptDefinitionSource

e ValueMeaningQualifierConceptCodeN

¢ ValueMeaningQualifierConceptPreferredNameN
¢ ValueMeaningQualifierConceptDefinitionN[_n]

e ValueMeaningQualifierConceptDefinitionSourceN

During the load process and after each Value Domain has been loaded, the UML
Loader looks for a matching caDSR Value Meaning based on the Value Meaning name

157

caCORE SDK 3.2.1 Programmer’s Guide

or the mapped concepts, if present. If an existing Value Meaning is found, the UML
Loader reuses it; if not, it creates a new Value Meaning according to the following table.

caDSR Field Value Used
Value Meaning Created from the concatenation of 'ValueMeaningConcept-
PreferredName' and qualifiers if present.
Value Meaning Description Concatenation of 'ValueMeaningConceptDefinition[_n]'
tagged values and qualifier definitions if present.
Begin Date The date of the load.
Concept Derivation Rule Created from the list of Concept in tagged values. Similar to

Object Class and Properties Concept Derivation Rules.

Table 8.14 caDSR fields used for Value Meaning

Permissible Values

For each Value Meaning, UML Loader creates a permissible value according to the fol-
lowing table:

caDSR Field Value Used
Value From the underlying attribute's name
Value Meaning The existing Value Meaning name, or
the Value Meaning created according
to Table 8.14.
Meaning Description The Value Meaning Description asso-

ciated with the existing Value Mean-
ing, or the one created according to
Table 8.14.

Begin Date The date of the load.
Table 8.15 caDSR fields used for Permissible Values

Using a Value Domain Defined within the Model

In order to indicate that a UML Attribute should use a value domain defined within the
model, the model owner adds a tagged value in EA of type 'CADSR Local Value
Domain' to the attribute. The value is the name given to the local value domain. Exam-
ple: The model owner creates a class with stereotype 'CADSR Value Domain' with
name 'My Value Domain'. For a UML attribute to use this value domain, the model
owner will add a tagged value: '"CADSR Local Value Domain' / 'My Value Domain’

Creating Data Elements

158

A UML attribute and its datatype are represented by a Data Element. In caDSR, a Data
Element is based on a Data Element Concept and a Value Domain. UML derived data
element created similarly based on the DEC derived from the combination of a UML
Class and one of its attributes, and a generic existing caDSR Value Domain that corre-
sponds to the datatype of the attribute or a Value Domain defined in the model. UML

Chapter 8: Registering Metadata

Loader creates the data elements based on the details displayed in Table 8.16 if they

do not already exist.

Data Element
Attribute

Description

Example

Preferred Name

Derived from the DEC Public ID and
version and the Value Domain Public
ID and version. A colon is the separa-
tor character.

3333333v1.0v:4444444v1.0

Long Name

Derived from the DEC Long Name
and VD Long Name. A space is the
separator character.

Homologous Protein Align-
ment Length java.lang.Long

Preferred Definition

Derived from the DEC Preferred Defi-
nition and Value Domain Preferred
Definition. The separator character is
a colon.

A protein similar in structure
and evolutionary origin to a
protein in another species:
The linear extent in space
from one end to the other.
Often used synonymously
with distance. Value Domain
for java language
‘java.lang.Long’ datatype.

Version Specified as a run-time parameter 3.2
Workflow Status Specified as a run-time parameter Draft New
Context Specified as a run-time parameter caCORE
Begin Date Current Timestamp 01/24/2005

Data Element Con-
cept Long Name

The Data Element Concept corre-
sponding to the UML Class and one
of its attributes.

Homologous Protein Align-
ment Length

Table 8.16 Data Element details

159

caCORE SDK 3.2.1 Programmer’s Guide

Data Element

Attribute Description Example

Value Domain Corresponds to the Datatype of the java.lang.Long
Attribute. Supported datatypes
include java classes and java primi-
tives.

Note: An updated file that defines the
mapping between data types and
Value Domains is located here: http://
cadsrsiw.nci.nih.gov/datatype-map-

ping.xml.

For the following java classes, the de-
fault value is 'null’

java.lang.String

java.lang.Double
java.lang.Boolean

java.lang.Short

java.lang.Long
java.lang.Integer
java.lang.Float
java.util.Date

For the following java primitives, the
default is listed after the class:

int0

short 0

long 0

float O

double O
boolean FALSE
char \u0000
byte 0

Table 8.16 Data Element details (Continued)

Creating an Alternate Name

Two alternate names are created for the Data Element derived in this manner:

1. The UML attribute’s class name and the attribute name. The Alternate Name
Type of such alternate name is “UML Class:Attribute”;

2. The fully qualified attribute name. The Alternate Name Type of such alternate
name is “UML Qualified Attr".
Appropriate classification is assigned to the alternate names. Details of assigning clas-
sifications are described in Mapping UML Model Metadata to Classification Scheme
and Classification Scheme Items on page 161 and Assigning Classifications on
page 162.

160

http://cadsrsiw.nci.nih.gov/datatype-mapping.xml
http://cadsrsiw.nci.nih.gov/datatype-mapping.xml
http://cadsrsiw.nci.nih.gov/datatype-mapping.xml

Chapter 8: Registering Metadata

Creating an Alternate Definition

An alternate definition based on a UML attribute description is created when a new
caDSR Data Element is created for a UML Class, Attribute and datatype. The Alternate
Definition Type of such alternate definition is “UML Attribute”. Appropriate classification
is assigned to the alternate name. Details of assigning classifications are described in
Mapping UML Model Metadata to Classification Scheme and Classification Scheme
Items on page 161 and Assigning Classifications on page 162.

Note: The UML attribute description was chosen as opposed to the combination of the
description of the class and attribute because, in practice, when defining an attribute for
a class, the notion of the class is generally incorporated in the attributes description.
E.g. Class = ‘Protein Homolog’ Attribute = ‘alignmentLength’ attribute definition = “The
alignment length of the protein.”

Using an Existing Data Element

There are two scenarios in which an existing data element is tied to a new UML Model
by the UML Loader rather than creating a new data element:

1. When the Context into which the UML model is being loaded is different from
the Context that owns the existing data element. In this case, a “USED_BY”
designation is added for the existing data element to capture the use by another

Context
2. When both Contexts are same but the UML Models are different.

In both cases, an appropriate classification is assigned to the existing data element and
the value for the UML Attribute “Name” and the fully qualified name are added as alter-

nate names for the existing Data Element as described above in Creating Alternate
Names on this page.

Classitying a Data Element

UML based data elements are classified using the process described in sections Map-
ping UML Model Metadata to Classification Scheme and Classification Scheme Items
on page 161 and Assigning Classifications on page 162.
Mapping UML Model Metadata to Classification Scheme and
Classification Scheme Items

The UML Loader uses one Classification Scheme (CS) and at least one Classification
Scheme Item (CSI) for each UML domain model. A UML class model very commonly is
organized into different packages. A CS is created based on the project name and
release information that are entered as parameters for the UML Loader.

There are two options for specifying a caDSR classification for UML Models:

1. The UML Loader can be configured to create a CSI corresponding to each
package in the UML class model. With this option, the UML Loader associates
the CSI with the CS. The UML Loader uses the package names from the XMI.

2. The UML Loader can be configured to ignore the packages in the UML class
model, and the user can specify one CSI for the entire UML class model. UML

161

caCORE SDK 3.2.1 Programmer’s Guide

Loader then creates only one CSI associated with the CS. This option should be
used for loading UML class models that do not contain any packages.

Note:

The Classification Scheme will not show up in the CDE Browser, which requires no

caDSR user account to view, until the workflow status is set to “Released”. This pro-
vides model owners an opportunity to use the caDSR curator tools to review and edit
the content until they are ready for more general access.

Table 8.17 displays Classification Scheme details. Table 8.18 displays Classification

Scheme Item details.

CS Attribute Name

Description

Example

Preferred Name

Project abbreviated name - Specified as a
run-time parameter

caCORE

Long Name

Project full name - Specified as a run-time
parameter

Cancer Common Onto-
logic Representation
Environment

Preferred Definition

Project description - Specified as a run-time
parameter

This is the classification
scheme for the
caCORE Java Pack-
ages that have been
transformed from UML
into caDSR Metadata.

CSl is specified as a run-time parameter.

Version Project Release version specified as a run- | 3.2
time parameter

Workflow status Draft New (default) Draft New
Context Specified as a run-time parameter caCORE
Begin Date Current Timestamp 01/25/2005
Type Project (Default) Project

Table 8.17 Classification Scheme details

Sl Aot Description Example

Name

Name Package name/alias from the XMl or a single | caBIO, caArray

Type

UML Package(Default)

UML Package

Table 8.18 Classification Scheme Item details

Assigning Classifications

UML Loader assigns classifications using the appropriate CS and CSI which are cre-
ated based on the details described in the preceding section.

162

Chapter 8: Registering Metadata

Mapping UML Associations to Object Class Relationships

Each Association in the UML domain model is mapped to an Object Class Relationship
in caDSR.

Creating a New Object Class Relationship

Table 8.19 illustrates the details of the new Object Class Relationship created by the

UML Loader.
Object Class Data
Relationship Attribute

Preferred Name Generated, equals source class corresponding Object Class pub-
lic ID + version; target class corresponding Object Class and ver-
sion.

Long Name Derived from the role name of underlying association.

Preferred Definition Derived from the type of association. Example of the derived value
for preferred definition:
Zero-to-Many
Zero-to-One
Many-to-One
One-to-Many
Many-to-Many
Generalizes

Version 1.0

Workflow Status Draft New — Specified as a parameter

Context Specified as a parameter

Begin Date Current Timestamp

Type HAS_A

Source Low Cardinality Derived from UML Association. The Source object is the class
from which the link is drawn.

Source High Cardinality | Derived from UML Association. The Source object is the class
from which the link is drawn.

Target Low Cardinality Derived from UML Association. The Target object is the class to
which the link is drawn.

Target High Cardinality Derived from UML Association. The Target object is the class to
which the link is drawn.

Direction Navigability.
Source-to-Target
Target-to-Source
Bidirectional

Table 8.19 New Object Class Relationship details

163

caCORE SDK 3.2.1 Programmer’s Guide

Classitying an Object Class Relationship

UML based object class relationships are classified using the process described in sec-
tions Mapping UML Model Metadata to Classification Scheme and Classification
Scheme Items on page 161 and Assigning Classifications on page 162.

Mapping UML Inheritance

164

Each Inheritance type association in the UML model is mapped to an Object Class
Relationship in caDSR with the same attributes described for Associations, except for
Object Class Relationship Type, which in this case is “IS_A".

Additionally, the child class inherits all attributes of the parent class. Data Element Con-
cepts based on the child class and each of its parent’s attributes are derived according
to the mapping rules outlined in Classifying a Data Element Concept on page 156. Data
Elements are created corresponding to each Data Element Concept plus an existing
caDSR Value Domain as described in Creating Data Elements on page 158; the parent
attribute’s datatype is used to map the Value Domain. See Table 8.20 and Table 8.21.

Data Element Concept
Attribute

Data

Preferred Name

Child Object Class Public ID + Object Class Version:
Parent Property Public ID + Property Version

Long Name

Child Object Class Long Name +
Parent Property Long Name

Preferred Definition

Child Object Class Preferred Definition +
Parent Property Preferred Definition

Version

1.0 (Specified as a parameter)

Workflow Status

Draft New (Specified as a parameter)

Context Specified as a parameter

Begin Date Current Timestamp

Object Class Object Class corresponding to the Child UML Class
Property Property corresponding to the Parent UML Attribute

Table 8.20 Inheritance Data Element Concept mapping

Data Element Attribute

Data

Preferred Name

DEC Public ID + DEC Version:
Value Domain Public ID + Value Domain Version

Long Name

DEC Long Name +
VD Long Name

Preferred Definition

Derived from the underlying attribute description in the UML class
diagram.

Version

1.0 — Specified as a parameter

Table 8.21 Inheritance Data Element mapping

Chapter 8: Registering Metadata

Data Element Attribute

Data

Workflow Status Draft New — Specified as a parameter
Context Specified as a parameter
Begin Date Current Timestamp

Data Element Concept

The Data Element Concept corresponding to the Child UML Class
and the Parent Attribute.

Value Domain

Corresponds to the Datatype of the Parent Attribute:
java.lang.String = Value Domain(VD) Name “java.lang.String”
java.lang.Boolean = VD “java.lang.Boolean”
java.lang.Long = VD “java.lang.Boolean”
java.lang.Integer = VD “java.lang.Boolean”
java.lang.Float = VD “java.lang.Float”

java.util.Date = VD “java.lang.Date”

int = VD “int”

long = VD “long”

boolean = VD “boolean”

char = VD “char”

double = VD “double”

float = VD “float”

byte = VD “byte”

short = VD “short”

Table 8.21 Inheritance Data Element mapping

Note: The caDSR team maintains a list of commonly asked questions and answers and tips
about the SIW and UML Loader on the UML Model Project page in GForge at http://
gforge.nci.nih.gov/plugins/wiki/index.php?id=64&type=g.

165

http://gforge.nci.nih.gov/plugins/wiki/index.php?id=64&type=g
http://gforge.nci.nih.gov/plugins/wiki/index.php?id=64&type=g

caCORE SDK 3.2.1 Programmer’s Guide

166

CHAPTER

GENERATING A CACORE-LIKE SYSTEM

This chapter describes the process for generating the code that produces a caCORE-
like system, executing tests on the system, and creating manual ORMs.

Topics in this chapter include:

e Generating Code on this page

e Using a Generated System on page 173

e Variations to Generating a caCORE-like System on page 174
e Generating a Writable API for an Application on page 182

Generating Code

At this point, you have created an object model and a data model, exported those mod-
els to XMI, and generated a DDL script from the data model. You have also annotated
your model with immutable concept codes from EVS and registered your metadata in
caDSR, thereby enabling semantic interoperability. This section describes how to gen-
erate the Java source code for a data access API using the XMl file you generated.

Updating the Property File

Because you went through the test procedures described in the caCORE SDK 3.2.1
Installation and Basic Test Guide (http://ncicb.nci.nih.gov/NCICB/infrastructure/
cacoresdk#Documentation), you have confirmed that you have a fully-functioning API,
ORM, and database for the example model. Before you generate any code, you must
update the deploy.properties file so that 1) you do not reinstall software that you
previously installed and 2) you are using the correct name for all of the filenames and
directories.

Open the property file {home_directory}/conf/deploy.properties and modify
the values to conform with the file displayed in Figure 9.1 and described in Table 9.1.
These user-defined values are used during the build step that follows.

167

http://ncicb.nci.nih.gov/NCICB/infrastructure/cacoresdk#Documentation
http://ncicb.nci.nih.gov/NCICB/infrastructure/cacoresdk#Documentation

caCORE SDK 3.2.1 Programmer’s Guide

168

Note:

The property file deploy.properties as shown in Figure 9.1 is a Windows specific
properties file. See the caCORE 3.2.1 SDK Installation and Basic Test Guide describing
modifications that must be made for UNIX/Linux systems.

deploy properties 2 =g

BASIC PROPERTIESR

e oH W

#
3Y3TEM PROPERTIES
#

my=ql home=C:/mysgl
j2se container home=c:/tomcat

#
PROJECT PROPERTIES
#

project name=ezample
webservice name=exampledervice

#
MODEL PROPERTIES
#

model filename=cabioEzampleDomainModel.zmi
fixed filename=fixed cabioExampleDomainModel.xmi

include package=.*domain.*
exclude package=
exclude_name=
external_server_name=

fix mmi=yes
#mi_preprocessor=gov.nih.nci.codegen.core.util.EAXMIPreprocessor

Figure 9.1 Example deploy.properties file

Property Name Description

application_name Application Context Name used for CSM security. This should
be the same name used in the UPT.

authentication_disab | Indicates whether the authentication should be disabled. This

led property is used only if the security is enabled.

cachepath Specify the path to the directory where you want your cache
files to be saved. This value is ignored if create_cache is set to
false.

container_type Type of the application server (for example, jboss or tomcat).

create_cache Set this value to yes to enable second-level caching. Specify

no if you do not want second-level caching.

create_mysql_user Specify yes to create a MySQL user account. If this is set to
yes, a new user account will be created based on the values
specified in “db_user” and db_password” (see above).

Table 9.1 deploy.properties descriptions

Chapter 9: Generating a caCORE-Like System

Property Name

Description

create_schema

Specify yes to create a schema for your database. For exam-
ple, the cabioexampleschema.SQL file contains the Data Defi-
nition Language (DDL) scripts that will be used to create the
schema for the provided example model. Specify no if your
database schema has already been created or you are using
another database.

csm_database dialect

The hibernate dialect to be used while connecting to the CSM's
Authorization Database (for example, org-hibernate.dia-
lect.OracleDialect).

csm_database_driver

The JDBC driver to be used while connecting to the CSM's
Authorization Database (for example, ora-
cle_jdbc.driver.OracleDriver).

csm_database_passwor
d

The password for the CSM's Authorization database.

csm_database url

The fully qualified JDBC URL to database/schema hosting the
CSM Authorization Schema for the application.

Note: This database could be different than the actual applica-
tion database/schema hosting the application data or could be
the same if the CSM tables are hosted in the same database/
schema (for example, jdbc:ora-
cle:thin:@foo.bar.com:1521:foodatabase)

csm_database user_ha
me

The user name for the CSM's Authorization database.

database_type

Enter the database platform that you are using. The following
values are currently supported: mysql, oracle, db2

datadump_name

Provide the name of your data file (for example, cabioexample-
data.SQL).

db_password

Provide the password for the database authentication.

db_server_name

Provide the name of your database host. This can be localhost,
a fully-qualified DNS name or an IP address.

db_user

Provide the user name for database authentication.

ddl_filename

Provide the name of your database DDL script (for example,
cabioexampleschema.SQL)

default_security_lev
el

Determines if the security provided through CSM is enabled or
disabled. 1 indicates security on by default, O indicates security
off by default

default_session_time
out

Determines the default timeout for client sessions when secu-
rity is enabled. It is set in milliseconds.

disable_writable_api
_generation

Determines whether writable APIs should be disabled or
enabled for this application. If this value is set to "yes", writable
APIs are disabled. To turn write functionality on, set this prop-
erty value to "no".

Table 9.1 deploy.properties descriptions (Continued)

169

caCORE SDK 3.2.1 Programmer’s Guide

170

Property Name

Description

exclude_package

Provide a list of packages to exclude from code generation sep-
arated by the pipe ‘|' symbol(s). 2For example:
exclude_package=.cabio.domain.*].*camod.domain

Fix_xmi

Specify yes to run the XMI pre-processor to convert an XMl file
to a valid NetBeans MDR file.

fixed_filename

Name of the file the contains the model from which the system
is to be generated. This file is different than the file represented
by the model _filename property as it represents the model
file created by the code generator from the original model.

import_data

Specify yes to import data to your database. For example, the
cabioexampledata.SQL file contains the data for the provided
sample model. Specify no if your database is already populated
with data or you are using another database.

include_package

Provide a list of packages to include in code generation sepa-
rated by the pipe ‘|’ symbol(s).b For example:
include_package=.*cabio.domain.*].*camod.domai
n.*.

install_mysqgl

Specify yes to install MySQL or specify no if MySQL or another
database is already installed. CAUTION: If you specify yes and
the mysql_home you enter (see below) contains an existing
MySQL installation, that version and any associated data will
be deleted.

install_tomcat

Specify yes to install Tomcat (http://jakarta.apache.org/tomcat/)
or specify no if Tomcat or another web container is already
installed. CAUTION: If you specify yes, any previous versions
of Tomcat may be overwritten which could adversely affect pro-
grams running on your computer.

Jj2se_container_home

Provide the root directory for your J2SE container (Tomcat or
JBosS).

Java_home

Used by the ANT task to download the installer for MySQL.

Jjboss _configuration

Specifies which configuration of Jboss is to be used.

logical_model

Provide the name of the XMl file created from your object and
data model. For example, the sample provided is cabioExam-
pleDomainModel.xmi. This file must reside in
{home_directory}/models/xmi.

model_Ffilename

Name of the file that contains the model from which the system
is to be generated. The XMl file that contains the model must
be placed in models/xmi folder.

mysqgl_home

Provide the home directory for MySQL.

project _name

Provide a descriptive name for your project. This name must be
one word and contain no spaces.

Table 9.1 deploy.properties descriptions (Continued)

Chapter 9: Generating a caCORE-Like System

Property Name Description

schema_name Provide a name for your database schema. If the schema does

not exist and you have set create_schema to yes (see above),
a new schema will be created.

start_container Indicates whether the web server is to be started at the end of
the build process.

start_mysql Indicates whether the MySQL server is to be started.

web_server_name Name or IP address of the webserver (for example,
cabio.nci.nih._gov or localhost)

web_server_port HTTP port of the web server (for example, 8080)

webservice_name Name of the generated webservice (for example, for a project
called myproject, the service name would be myprojectSer-
vice).

Xmi_preprocessor Provide the fully-qualified Java class name of the XMI pre-pro-

cessor to use. By default, the SDK provides a pre-processor for
EA files, gov.nih.nci.codegen.core.util. EAXMIPreprocessor.

Table 9.1 deploy.properties descriptions (Continued)

a.These properties use regular expressions to determine elements within the model's package tree
structure to include or exclude for code generation. Additional information about forming more
complex regular expressions can be found on the Internet.

b.These properties use regular expressions to determine elements within the model's package tree
structure to include or exclude for code generation. Additional information about forming more

complex regular expressions can be found on the Internet.

Building the System

Perform the following steps to build your system.

1.

In a Command Prompt window, enter cd {home_directory} to go to your
home directory (for example, in Windows c:\cacoretoolkit).

Enter ant bui ld-system.

Ant messages display as each task is processing. The build-system task
builds the entire system and deploys the software to the webapp directory of the
web application server installation specified in the deploy.properties file.

After your web application server has completely finished starting, run the fol-
lowing command to deploy the system web services: ant deployWs.

Selectively Generating Artifacts

Running ant bui ld-system generates all of the code and artifacts that are required
to build a caCORE-like system. Sometimes, however, it is desirable to only generate
certain portions of the system (particularly when validating the model to see whether
code generation will be successful).

171

gov.nih.nci.codegen.core.util.EAXMIPreprocessor

caCORE SDK 3.2.1 Programmer’s Guide

Documentation and Style Tools

The following targets can be run from the command prompt by entering ant <tar-

get>.

Ant Target

Description

bui ld-beans

Generates Java beans representing domain objects, copies
custom beans (see below) and compiles all beans

build-orm

Generates ORM configuration files from model, using custom
ORM files when specified

bui ld-schema

Creates database user and loads schema and data (when spec-
ified in deploy.properties)

build-artifacts

Create configuration and other required system files from model

generate-beans

Generate beans based on model specified in deploy.properties
(does not compile them)

generate-cache

Generate cache configuration files (used by ehCache)

generate-dao-conf

Generate data access object (DAO) configuration files from
model

generate-junit

Generate JUnit test classes from model

generate—orm—conf

Generate ORM configuration files from model (used by Hiber-
nate)

generate—schemas

Generate XML schemas from model (used by XML conversion
utility)

generate-wsdd

Generate Web service deployment descriptor (WSDD) from
model (used to deploy Web services)

generate-xml-map-

ping

Generate XML mapping files (used by XML conversion utility)

Table 9.2 Ant targets and descriptions

This section contains tools that are part of the SDK framework and are useful for docu-

mentation and styling.

e Javadoc — Execute the Ant task doc to generate Javadocs for your beans. Your

javadocs will

generated to the <{home_directory}/output/

{project_name}/doc directory. For more information on Javadoc see http://
java.sun.com/j2se/javadoc/.

e Jalopy — Execute the Ant task Fformat to make your code well formatted. The
default indentation format is used in the SDK. This task is configurable to
enforce coding standards that you wish to adhere to for your project. See http://
jalopy.sourceforge.net/manual.html for information on how to customize this

task.

Executing JUnit Tests

Note to Command screens that pop up during the build indicate that MySQL and Tomcat are
running. You must leave those windows open as you execute the SDK tests. Closing
them kills the associated applications.

Windows
Users:

172

http://java.sun.com/j2se/javadoc/
http://jalopy.sourceforge.net/manual.html

Chapter 9: Generating a caCORE-Like System

JUnit test cases can be automatically generated and run by using the Ant runtest
task located in the {home_directory}\output\{project_name}\pack-
age\thick-client\build.xml file. This task generates one test case for each
domain object which exercises all methods contained within the domain objects. The
test cases are generated to the {home_directory}\out-
put\{project_name}\{package_ structure}\test directory, and the results of
running the JUnit tests are output to {home_directory}\out-

put\{project _name}\junit directory. Figure 9.2 shows where these files are
located for the example model.

% C:\dan\devicaCore\cacoresdk_1. Ticacoresdkloutputiexampleisrcigovinihincitcabioldomaini. .. g @

File Edit View Favorites Tools Help lt'
O Back - 7 'ﬂ‘ / ! Search | Folders E\'
Address () C:\dan'\devicaCore\cacoresdk_ 1. 1Ycacoresdk\output\example\srctgow ynih YncYcabio\domain mpl test V| ﬂ Go
Folders X MName Size Type
=) output - r=_°°] ChromosomeTest. java 3KB JAVAFile
= I example ~ [CloneTest java 3KB JAVAFile
=) dasses [£] GeneTest.java 3KE JAVA File
) conf [”=_°’] LibraryTest.java 3KB JAVAFile
) package L r=j SegquenceTest.java JKB JAVAFile
=) sre [E] TargetTest java 3KB JAVA File
=) gov [£]) TavonTest. java 3KB JAVAFile
=) nih
= 2 nd
= IZ) cabio
= |2 domain
= I impl
) test
= ws
) commaon
) system bt
S I# < | b
7 objects (Disk free space: 4.79 GE) 19.9 KB _é My Computer

Figure 9.2 JUnit test files

Using a Generated System

Configuring Java Clients

During the process of generating a caCORE-like system, the Code Generator also pro-
duces and packages the components necessary to access the generated server from a
Java-based client. The {home_directory}/output/{project_name}/pack-
age/client directory contains these files. Most notably, a JAR file called
{project_name} client.jar is created in the 1i1b subdirectory that contains the
domain objects and framework classes required to access the running system. This file,
along with the rest of the contents of the I'ib and conf directories, must be on the
classpath of clients that access the generated system. Several example classes are
included in the ../client directory that demonstrate use of these files.

To access a caCORE-like system from your client application:

1. Copy the contents of the 1lib and conf subdirectories of
{home_directory}/output/{project name}/package/client to your
classpath.

173

caCORE SDK 3.2.1 Programmer’s Guide

2. Modify the file called remoteService.xml (located in the conf subdirectory)
to refer to the instance of the caCORE-like server to which you wish to connect.
The service URL is of the form:

http://{web _server name}:{web server port}/{project name}/
http/remoteService

Note that the port number is not necessary if the Web server is running on port
80.

3. In your client code, instantiate an object that implements the Application-
Service interface (typically using ApplicationServicePro-
vider .getRemotelnstance()) and use this object to query the caCORE-
like system.

Details about the service interfaces and examples of their use can be found in Chapter
3 of the caCORE 3.2 Technical Guide.

Configuring Non-Java Clients

In addition to the Java interface, caCORE-like systems can also be accessed using the
Web services and XML-HTTP interfaces. For more information on how to configure and
use these interfaces, refer to Chapter 3 of the caCORE 3.2 Technical Guide.

Variations to Generating a caCORE-like System

This section contains variations to the normal process described in previous sections of
this chapter.

Using Second-Level Caching

174

Hibernate has multiple levels of built in caching mechanisms. The first and second-level
caches resolve circular/shared references and repeated requests for the same instance
in a particular session. By default, the first level cache is turned on in caCORE-like sys-
tems, but due to the stateless nature of the generated API, when sessions are returned
to the factories at the end of each request the first-level cache is cleared and does not
provide any performance enhancement.

Hibernate features an extremely granular (class or collection role) second-level cache
and offers various pluggable implementations for it. The SDK is set up to use the
Ehcache (http://ehcache.sourceforge.net./) implementation (Hibernate—default). A sec-
ond-level caching strategy improves performance for frequently run queries. Ehcache
also provides a memory to disk persistence caching strategy, which is highly scalable.

The SDK code generator can enable second-level caching by setting the create-cache
parameter to yes in the deploy.properties file and specifying where the cache
files should be written to in your system in the cachepath property setting.

If activated, the default-generated caching configuration is set to read-only. This cach-
ing strategy is generally appropriate for systems using databases that are not subject to
frequent updates. The time-to-live setting for the cache is set to 100000 seconds or a
little over 27 hours. After this point, the cache will be flushed. The output of the gener-
ate-cache Ant task is the ehcache . xml file which contains system cache settings.
To customize this file, you need to modify the UML13EHCacheTransformer . java file

http://ehcache.sourceforge.net./
http://ncicb.nci.nih.gov/NCICB/infrastructure/cacore_project_doc
http://ncicb.nci.nih.gov/NCICB/infrastructure/cacore_project_doc

Chapter 9: Generating a caCORE-Like System

located in the gov.nih._nci.codegen.core.transformer package of the SDK
src directory.

To properly understand caching strategies and what will work best in specific scenarios
for your systems, it is recommended that developers read the ehcache documentation
located at http://ehcache.sourceforge.net/documentation/#mozTocld747622.

Using Custom OR Mappings

ORM using Hibernate allows you to serialize/de-serialize object queries to and from
relational database result sets. If you did not create a data model as described in Chap-
ter 5 Creating the UML Models, (for reasons such as you already have a database
schema), then you must do a manual data mapping.

ORMs are defined in an XML document. For example, if you want to manually create
an ORM for a Gene object in the provided example model, then you must create an
XML file similar to that shown in Figure 9.3.

B Gene.hbm.xml - Notepad

File ~ Edit - Format View Help

<7xml version="1.0" encoding="UTF-8"7> ~
<!DOCTYPE hibernate-mapping PUBLIC “-//Hibernate/Hibernate Mapping DTD 2.0//EN" “http://hibernate.sourc

<hibernate-mapping package="gov.nih.nci.cabio.domain">
<class name="Gene" table="GENE" lazy="false">»
<id name="id"” type="java.lang.Long"” column="GENE_ID">
<generator class="assigned" />
</id>
<property name="titlle" type="java.lang.string” column="GENE_TITLE" />
<property name="symbol” type:"jaua.1ang.strin?“ column="GENE_SYMBOL" />
<property name="locusLinkSummary" type="java.lang.String" column="LOCUS_LINK_SUMMARY" />
<property name="OMIMID" type="java.lang.String” column="OMIM_ID" />
<property name="locusLinkId” type="java.lang.5tring” column="LOCUS_LINK_ID" />
<property name="clusterId" type="java.lang.Long" column="CLUSTER_ID" />
<5et name="TibraryCcollection” table="LIBRARY_GENE" Tazy="false"»
<key column="GENE_ID" />
<many-to-many class="Library” column="LIBRARY_ID" />
</5et>
<many-to-one name="chromosome” class="Chromosome” column="CHROMOSOME_ID" />
<many-to-one name="taxon" class="Taxon" column="TAXON_ID" />
<set name="sequenceCollection™ table="GENE_SEQUENCE" lazy="Talse"»
<key column="GENE_ID" /=
<many-to-many class="Sequence” column="SEQUENCE_ID" />
</58t>
zset name="targetCollection” table="GENE_TARGET" lazy="false"=
<key column="GENE_ID" /=
«many-to-many class="Target” column="TARGET_ID" /»
</5et>
</class>
</hibernate-mapping>

< > |

Figure 9.3 Hibernate ORM

Perform the following steps to use a manual ORM with the caCORE SDK.

1. Create a manual ORM file for each domain object as shown in Figure 9.3. For a
detailed explanation of how ORM works using Hibernate (http://www.hiber-
nate.org/hib_docs/reference/en/html/), see Chapter 5 Basic O/R Mapping (http:/
/www.hibernate.org/hib_docs/reference/en/html/mapping.html).

2. Create a new directory called {home_directory}/custom/
{project_name}.

175

http://ehcache.sourceforge.net/documentation/#mozTocId747622
http://www.hibernate.org/hib_docs/reference/en/html/
http://www.hibernate.org/hib_docs/reference/en/html/
http://www.hibernate.org/hib_docs/reference/en/html/mapping.html

caCORE SDK 3.2.1 Programmer’s Guide

3.

Save the manually created ORM files to the directory you just created, using the
same package structure as the domain objects themselves. See Figure 9.4 for
an example from the provided sample model.

8% C:\dan\devicaCore\cacoresdk_1.1\cacoresdkioutputiexampleisrcigovinihincilcabio\domain |._| |E| E|
File Edit View Favorites Tools Help ';,-'
O Back - () TJ‘ /) search ‘ Folders E -

Address || C:\dan\devicaCorecacoresdk_ 1. 1\cacoresdk\output\example\src\govinih \nd\cabio \domain V| a Go

Folders x Mame Size Type

= 1) output o | [Dimpl File Folder
= [Z) example CD2ws File Folder
) classes Chromosome. hbm. xml 1KE XML Document
) conf I?] Chromosome.java 4KB JAVA File
) package = Clone.hbm. xml 2KB XML Document
=2) sre [£] clone java SKB JAVAFle
= I gov Gene.hbm. xml 2KB XML Document
= 123 nih [£] Gene.java 9KB JAVAFile
= IC3) nd Library.hbm.xml 2KE XML Document
B I3 cabio 2] Library.java GKBE JAVA File
=] Sequence.hbm,xm 2KB XML Document
=) impl |Z] sequence java GKE JAVA File
= ws Target.hbm.xml 1KB XML Document
3 common [£] Target.java 3KB JAVA File
) system Taxon.hbm.xml 2KE XML Document
) web o [£] Taxon.java SKB JAVAFle
[. b
< | < | »

Figure 9.4 ORM directory structure

4.

From the Command Prompt, go to your home directory (for example, in Win-
dows c:\cacoretoolkit) and run the ant build-system command.

The SDK will attempt to generate ORM files from the UML model but will over-
ride any auto-generated files with the ones that it finds in the custom directory.
In this manner, you can provide custom OR mappings for as few or as many
domain objects as necessary.

Using Custom Classes

176

Developers may wish to replace some or all of the automatically generated Java class
files representing the domain objects in their model with files from other sources (hand-
coded or generated by another tool).

Perform the following steps to use custom class files with the caCORE SDK.

1.

3.

Create a directory called {home_directory}/custom/{project_name}, if
it does not already exist.

Save each custom class file to the directory you just created, using the appro-
priate package structure.

Run the ant bui ld-system or the ant Fix-xmi command from the project's
home directory.

The SDK will overwrite its generated classes with the ones that it finds in the custom
directory and use those to build the server and client packages.

Chapter 9: Generating a caCORE-Like System

Generating a Thick-Client

The thick client is an alternate version of the remote client (Java client) and allows
users to eliminate the remote communication layer between the SDK-generated server
API and the SDK generated remote client. An application using the remote client or the
thick client will work in the same fashion when the clients are swapped with each other.
The thick client communicates directly with the database; thus it has to co-exist in the
environment where the database resides. As a result, the thick client can not be distrib-

uted to the user community unless the users of the thick client have a local instance of
the database.

Note: The thick client is generated automatically when the system is generated with the code
generator using the build-system target.

Java
API

Java Client

Application Data Object-
Service Source Relational
Layer Delegation Mapping

Non-ORM

Mapping
Non-

relational

data source

Figure 9.5 Thick client architecture

Generating a Thick Client for caGRID

The thick client generated by the caCORE SDK is compliant with caGRID. When secu-
rity is turned ON in the SDK, caGRID requires that authentication is turned OFF. This
can be done by setting authentication_disabled=yes in the deploy.proper-
ties file for caCORE SDK and then regenerating the system.

Implementing a Custom XMI Preprocessor

The caCORE SDK requires XMl files used by the semantic integration tools and the
Code Generator to be valid NetBeans Metadata Repository (MDR) files. Currently, this
means that not all files saved or exported by UML modeling tools can be natively used
by the SDK—even if they state conformance with UML 1.3 and the XMI 1.1 standard.
(Additional information about NetBeans MDR can be found at http://mdr.netbeans.org/.)

The SDK framework includes an extensible mechanism to convert, or “fix” XMl files to
the proper structure. Out of the box, support is provided for fixing files output by Enter-
prise Architect. In addition, an implementing class is provided that does no actual pro-

177

http://mdr.netbeans.org/

caCORE SDK 3.2.1 Programmer’s Guide

cessing (i.e. the input XMl is simply saved as the output file). The class diagram for the
XMI preprocessor component is shown in Figure 9.6.

id XMI Preprocessor /

util::EAXMIPreprocessor

log: Logger = Logger.getLogger

collapseAttributes(Element) : void
«interface» - detachElements(List) : void
+ fix(String, String) : void

- fixIDs(Element) : void
+ fix(String, String) : void J---- - - fixOperations(Element) : void
fixSterotypes(Element) : void
fixTaggedValues(Element) : void
__________________________________ - removeDiagramsElements(Element) : void
removeDifference(Element) : void
removeMEStereotypes(Element) : void
removeMETaggedValues(Element) : void

framework::XMIPreprocessor

util::EmptyXMIPreprocessor

log: Logger = Logger.getLogger

+ fix(String, String) : void

Figure 9.6 Class diagram for the XMI preprocessor component

Classes implementing the XMIPreprocessor interface must expose a fix() method
which takes two strings as parameters: the full path and file name of the input XMlI, and
the full path and file name of a new XMl file to output. If directed to do so in the
deploy.properties file, the SDK build script will call the implementing class and provide it
with the input and output filenames to be used.

To use a custom implementation of the XMI preprocessor:
1. Compile the preprocessor implementation and archive it to a jar file

2. Copy the jar file to the {home_directory}/11ib directory (or otherwise make
sure that it is located on the classpath used by the SDK)

3. In deploy.properties, set xmi_preprocessor to the fully-qualified name of the
implementing class (e.g., org.example.xmi.MyToolXMIPreprocessor)
and make sure that fix_xmi=yes

4. Run ant build-system or ant Fix-ea.

178

Chapter 9: Generating a caCORE-Like System

Customizing the Build Process

Controlling the Build Process

The Ant build script, bui Id.xml, allows highly granular control over the entire build
process. Table 9.3 describes the targets and their functions.

Ant Target Description

build-artifacts Generates artifacts from model

build-beans Generates beans from model, copies custom beans and com-
piles all beans

build-framework Compiles and packages SDK framework files

build-orm Generates beans from model, copies custom beans and com-
piles all beans

build-schema Creates database user and loads schema and data (when spec-
ified in deploy.properties)

build-system Runs entire SDK code generation process

clean-all Removes all generated code and all artifacts related to all
projects

compile-source Compiles the generated system

compile-generator Compiles the SDK code generator classes

copy-custom-beans Adds custom-written beans to the project src directory

copy-custom-orm Adds custom-written OR mapping files to the project directory

copy-project-frame- | Copies SDK framework files to project directory, adding project-

work specific properties

copy-server-Ffile Copies .war file to J2EE container deployment directory

copy-template-files | Copies code generation templates to project output directory

create-control-files | Creates control files required by code transformers for the
project specified in deploy.properties

create-output-dirs Creates output directories for the SDK framework

create-project-dirs | Creates output directories for the project specified in
deploy.properties

deploy-server Deploys system to J2EE container

deployWs Deploys Web services to system described in deploy.properties

disable-writable-api | Disables functions that enable write functionality to the API

doc Creates Javadoc HTML documentation for both the SDK frame-
work and the system defined in deploy.properties

fix-xmi Pre-processes XMl file to ensure that it can be parsed by Net-
Beans MDR component

format Formats generated source code

generate-OR-mapping | Generates OR mapping from model

Table 9.3 Targets and their functions in the Ant build script

179

caCORE SDK 3.2.1 Programmer’s Guide

Ant Target

Description

generate-artifacts

Generates configuration and other required system files from
model

generate-beans

Generates beans based on model specified in deploy.properties

generate-cache

Generates cache configuration files

generate-common-
package-util

Generates common package utility class

generate-common-
role-util

Generates common role utility class

generate-dao-conf

Generates DAO configuration files from model

generate-junit

Generates JUnit test classes from model

generate—orm—conf

Generates ORM configuration files from model

generate—schemas

Generates XML schemas from model

generate-wsdd

Generates web services deployment descriptor

generate-xml-mapping

Generates XML mapping files

help

Default target that lists commonly used targets within this build
script

init-project

Initializes project build by creating output directories and neces-
sary files

jetc

Compiles Java JET templates for the project specified in
deploy.properties

package-client

Creates client.zip file

package-framework

Packages compiled SDK framework classes as a jar

package-server

Creates .war file for server

package-system

Creates .war file for server and client.zip file for client

runwWSdemo Runs Web Services-based demo client for provided SDK exam-
ple system located in the build.xml file within the client subdirec-
tory

runXMLdemo Runs demo of XML conversion utility on provided SDK example
system located in the build.xml file within the client subdirectory

rundemo Runs Java-based demo client for provided SDK example sys-
tem located in the build.xml file within the client subdirectory

runtest Runs JUnit test located in the build.xml file within the thick-client

subdirectory

semantic-connector

Runs Semantic Integration Workbench using Java Web Start

show-properties

Display a list of all properties currently set

undeployWs

Un-deploys Web services to system described in deploy.proper-
ties

Table 9.3 Targets and their functions in the Ant build script (Continued)

Chapter 9: Generating a caCORE-Like System

Modifying Build Locations and Filenames

All of the file and path names used by the build.xml file are contained in Ant properties
located in a separate file called build.properties. This is a standard Java property file
that can be consumed by the java.util.Properties class (see_http://java.sun.com/j2se/
1.4.2/docs/api/javalutil/Properties.html for more information).

The build.properties file is broken down into five sections that define properties relating
to the SDK directories, the developer’s project, files used by the SDK, external URLSs,
and custom build directives. Developers can use these settings to make changes to
output directories, control code generation, etc., but should employ particular care
when modifying this file in any way.

Customizing Build Targets

Note:

It is recommended that developers wishing to use this feature have a full understanding
of the Ant paradigm and be well-versed in creating and modifying Ant scripts.

In addition to the control provided at the target level, the build script is fully customiz-
able by developers wishing to modify the specific tasks that occur at each stage in the
process. Changes to the build process can be of three kinds: adding tasks within a tar-
get, replacing the set of tasks within a target, or skipping the execution of the tasks in a
target.

In order to make these changes possible, each target within the build process follows
the model shown in Figure 9.7. For each target accessible to the command line, there
are two private targets (main and custom) executed as dependencies to the public tar-
get. The main target contains the tasks required to build a caCORE-like system out-of-
the-box. The custom targets are empty and can be modified by developers wishing to
modify the process.

The execution of each of these targets is controlled by property values. By default, the
main target is always called and the custom target is not.

cd Build Script
target
{unless (target.main.ignore)} {if (target.custom.use)}
starget.main target.custom

Figure 9.7 Targets within the build process

The following segments of code demonstrate the structure of each target. The first sec-
tion can be found in build.xml:

181

http://java.sun.com/j2se/1.4.2/docs/api/java/util/Properties.html
http://java.sun.com/j2se/1.4.2/docs/api/java/util/Properties.html

caCORE SDK 3.2.1 Programmer’s Guide

<target name="'deployWs"
depends=""-deployWS.main,-deployWS.custom®
description="Deploy Web services'/>

<target name="-deployWS.main" unless="deployWS.main.ignore">
<SDKecho message="'Deploying web services'/>
<java classname=""org.apache.axis.client.AdminClient"
fork=""true">
<classpath refid="classpath'/>
<arg value="-1${url.project.axisservice}'"/>
<arg value="${dir.output.project.conf}/
${file.wsdd.deploy}'"/>
</java>
</target>
The following comes from the custom build script file:

<target name="-deployWS.custom" if="deployWS.custom.use"/>

To modify the flow of the script, two control properties can be defined for each target in
a separate custom properties file. Reference to these properties is made to attributes of
the main and custom targets, respectively. The effect of setting these properties are
summarized in Table 9.4.

target.main.ignore is commented out (i.e. not set) | -target.main will execute
target.custom.use is commented out (i.e. not set) | -target.custom will not execute
target.main.ignore = yes -target.main will not execute
target.custom.use is commented out -target.custom will not execute
target.main.ignore = yes -target.main will not execute
target.custom.use = yes -target.custom will execute
target.main.ignore is commented out -target.main will execute
target.custom.use = yes -target.custom will execute

Table 9.4 Control properties for targets

The filenames for the custom build and properties files are defined in the main
build.properties file. By default, these files are called bui 1d-custom.xml and
build-custom.properties and a skeleton version of each of these is packaged
with the SDK.

Generating a Writable API for an Application

182

In previous releases, the caCORE SDK could only generate readable APIs that allowed
various mechanisms to query the underlying data. The caCORE 3.2.1 SDK provides
the capability to write, modify or delete data in the database.

In order to enable the writable APIs, the disable_writable_api_generation should be set
to "no" while generation of the application using caCORE SDK. Enabling these APIs
will add the following new methods to the ApplicationService Interface of the caCORE
SDK generated system.

Chapter 9: Generating a caCORE-Like System

public abstract Object createObject(Object object) throws ApplicationException;
public abstract Object updateObject(Object object) throws ApplicationException;
public abstract void removeObject(Object object) throws ApplicationException;

public abstract List getObjects(Object object) throws ApplicationException;
Figure 9.8 Methods added to ApplicationService for writable APIs

All of these methods take generic java Object as input. These objects can be any of the
domain objects of the generated application. The return type of these methods is also a
generic java Object that should be typecast into an appropriate domain object.

The createObject method allows the client application to create a new object. It accepts
a domain object as input and persists it into the database table (determined by the OR
mapping). Then this method returns the newly created object to the client application.
The returned object now includes values that were auto generated by the database. If
there is any error during the creation of the domain object then an ApplicationException
is thrown explaining the error.

The updateObject method allows the client application to update an existing object. It
accepts any domain object as input then, updates it in the database. The updated
object is then returned back to the client application. If an error occurs during the updat-
ing of the domain object, then an ApplicationException is thrown explaining the error.

The removeObject method accepts a domain object which needs to be removed from
the underlying database. It does not return a value. If an error occurs during the dele-
tion of the domain object, then an ApplicationException is thrown explaining the error.

The getObjects method allows the client application to query for a list of domain objects
of a particular type. It accepts a domain object as input whose attribute values is used
as query criteria. The resulting set is returned to the client application in the form of a
ListProxy implementation of java List Object. If an error occurs during the querying
operation, then an ApplicationException is thrown explaining the error.

183

caCORE SDK 3.2.1 Programmer’s Guide

184

CHAPTER

INTEGRATING CSM WITH A CACORE

SDK GENERATED APPLICATION

This chapter describes how to configure and use the integrated security provided by
NCICB's Common Security Module (CSM) services in a caCORE SDK generated appli-
cation.

Topics in this chapter include:

CSM Overview on this page

Session Management Overview on page 186

Configuring CSM for the Generated Application on page 186
Configuring the Application's Authorization Data Using UPT on page 187
Using the CSM-Enabled ApplicationService API on page 187

Using the CSM-Enabled ApplicationService Web Services on page 188
Using the CSM-Enabled HTTP Interface on page 190

CSM Overview

This chapter addresses the following topics:

Security - This topic includes CSM's mechanisms for authentication, authoriza-
tion, and user provisioning. For more details on CSM itself, refer to the CSM
Chapter in the caCORE Technical Guide.

Session management - Session management eliminates the need to authenti-
cate every request sent to the server. Session management also facilitates
tracking the user on the server.

The NCICB Common Security Module (CSM), first developed for the caCORE 3.0
release, provides a flexible solution for application security and access control. CSM
provides a common starting point for any development team that has security require-

185

caCORE SDK 3.2.1 Programmer’s Guide

ments, and thus helps to avoid duplication of effort and inconsistent security implemen-
tations.

CSM has three main functions:
1. Authentication to validate and verify a user's credentials
2. Authorization to grant or deny access to data, methods, and objects

3. User Authorization Provisioning to allow an administrator to create and assign
authorization roles and privileges.

CSM's integration with the caCORE SDK requires configuring CSM for your applica-
tion. For instructions on configuring CSM, refer to the CSM Guide for Application Devel-
opers on the CSM section of the NCICB Downloads page (http://ncicb.nci.nih.gov/
download/downloadcsm.jsp). After installing and configuring CSM, application adminis-
trator(s) will use the User Provisioning Tool (UPT) (see the UPT User Guide.pdf at http:/
[ncicb.nci.nih.gov/download/downloadcsm.jsp) to create an authorization policy for the
application. An authorization policy is the knowledge of what to protect. Within the UPT,
users can be given different roles (and permissions) for domain objects. Any change in
the authorization policy is reflected in the application at run time. This means the CSM
service continuously provides the latest authorization policy to the application service.

The caCORE SDK generates two components - client and server. Only the server com-
ponent is integrated with CSM for the purpose of authentication and authorization. The
CSM service integration is not obtrusive; there is a flag to turn the CSM service on or
off.

Session Management Overview

The session management service has been provided as a part of the CSM solution.
Once a user successfully logs into an application, the Session Manager (on the server
side) generates a unique key for the user session. When the user sends another
request, the server does not ask the user to authenticate again as long as the session
has not expired. Application administrators can configure the duration of the session
timeout by setting the default_session_timeout property in the deploy.properties
file.

Configuring CSM for the Generated Application

186

Instructions for CSM configuration can be found in the CSM Guide for Application
Developers at http://ncicb.nci.nih.gov/download/downloadcsm.jsp.

e This service uses the Authentication and Authorization services provided by
CSM. With SDK 3.2.1 there is no need to configure additional properties or
hibernate configuration for connecting to the CSM's Authorization Database. You
can specify the CSM's Authorization Database to be used directly at the time of
generating the system using the deploy.properties. However you still need to
configure the Authentication Service. Note that there is no need for having an
ApplicationSecurityConfig file for either Authentication or Authorization. For this
configuration, follow the Authentication section of the CSM Guide.

e The application context name should match the name used in the
deploy.properties file (mentioned in a previous step).

http://ncicb.nci.nih.gov/download/downloadcsm.jsp
http://ncicb.nci.nih.gov/download/downloadcsm.jsp
http://ncicb.nci.nih.gov/download/downloadcsm.jsp

Chapter 10: Integrating CSM with a caCORE SDK Generated Application

e To enable security the default _security level property in the
deploy.properties file should be set to 1 at the time of the generation of the
application.

e To specify the Authorization Database to be used for Authorization purposes,
populate the csm_database_url, csm_database_user_name,
csm_database_password, csm_database_dialect, and csm_database_driver
parameters with the appropriate values. This generates the hibernate configura-
tion file needed to connect to the Authorization Database and automatically
places it in appropriate class paths.

Configuring the Application's Authorization Data Using UPT

e The domain objects in your application should be created as protection elements
in the UPT. The fully qualified class hame of the domain object (no need to spec-
ify the Impl classes as separate protection elements) is used as the object ID for
each protection element.

e Application administrators will be aware of the authorization policy for these pro-
tection elements. They can grant correspondingly appropriate privileges on the
domain objects.

e The writeable APIs use the authorization schemes listed below. They use the
name of the domain objects passed to them as protection element object IDs.
Based on the operation it is performing, the corresponding privileges are used
while invoking the checkPermission method of a CSM API. This determines if
the user has access privileges. Since all of the methods of ApplicationService
are query operations, the privilege used for all of them is "READ". Below is a list
of methods and the corresponding privilege.
createObject - uses the privilege "CREATE"
updateObject - uses the privilege "UPDATE"

removeObject - uses the privilege "DELETE"
getObjects - uses the privilege "READ"

All other Methods of ApplicationService use the privilege "READ"

The UPT User Guide at http://ncicb.nci.nih.gov/download/downloadcsm.jsp provides a
detailed description of how to use and configure authorization data using the UPT.

Using the CSM-Enabled ApplicationService API

The code example below shows how to query a caDSR domain object called "DataEle-
ment."

1. To start the client session, enter the userld and password.

2. Obtain a reference to the application service. This reference is provided by the
ApplicationServiceProvider class.

3. Once a reference to the service is obtained, all methods on the service are
available. Multiple methods of the ApplicationService can be invoked within a
session. There is no need to initialize the session before every method call.

187

http://ncicb.nci.nih.gov/download/downloadcsm.jsp

caCORE SDK 3.2.1 Programmer’s Guide

Using the CSM-Enabled ApplicationService Web Services

188

The code example below shows how to query an example domain object called "Gene"
using the web services that are secured using CSM.

1. To invoke the secured web services, first create a web services call pointing to
the server hosting the services and setting various other required arguments as
shown in the example below.

Then create a SOAPHeaderElement and name it "CSMSecurityHeader".
Set the prefix of the header element to "csm".

Add child elements to supply the user credentials. The user name should be
provided as element name "username" whereas the password should be pro-
vided as element "password".

5. Once the header element is populated, add it to the SOAP call and continue
with querying the service to obtain the result.

6. If there are any Authentication or Authorization errors, the server will respond
accordingly with an error message. Otherwise, a response is returned.

import java.net.URL;

import org.apache.axis.AxisFault;

import org.apache.axis.client.Call;

import org.apache.axis.client._Service;

import org.apache.axis.message.SOAPHeaderElement;

import org.apache.axis.utils.Options;

import javax.xml._namespace.QName;
import javax.xml.rpc.ParameterMode;
import javax.xml.soap.SOAPElement;
import gov.nih.nci.cabio.domain.ws.>;

import java.util_HashMap;

public class WSTestClient
{

public static void main(String [] args) throws Exception {

Service service = new Service();
Call call (Call) service.createCall();

/***/

QName gnGene = new
QName(*'urn:ws.domain.cabio.nci.nih.gov", "Gene');
call._registerTypeMapping(Gene.class, gnGene,
new
org.apache.axis.encoding.ser.BeanSerializerFactory(Gene.class
, gnGene),

Chapter 10: Integrating CSM with a caCORE SDK Generated Application

new
org.apache.axis.encoding.ser.BeanDeserializerFactory(Gene.cla
ss, gnGene));

/

**/

String url = "http://localhost:8080/example/ws/
exampleService™;

call_setTargetEndpointAddress(new java.net.URL(url));

call_setOperationName(new QName(*'exampleService",
"'queryObject™));

call .addParameter(argl™,
org.apache.axis.encoding.XMLType.XSD_STRING,
ParameterMode.IN);

call_addParameter(*'arg2', qnGene, ParameterMode.IN);

call._setReturnType(org.apache.axis.encoding.XMLType.SOAP_ARRA
Y);

SOAPHeaderElement headerElement = new
SOAPHeaderElement(call _.getOperationName() -getNamespaceURI(),"
CSMSecurityHeader'™);

headerElement.setPrefix('csm');

headerElement.setMustUnderstand(false);

SOAPElement usernameElement =
headerElement.addChildElement(*'username');

usernameElement.addTextNode(*'userld™);

SOAPElement passwordElement =
headerElement.addChildElement(*'password');

passwordElement.addTextNode(*'password');

call .addHeader (headerElement);

gov.nih_nci.cabio.domain.ws.Gene gene = new
gov.nih.nci.cabio.domain.ws.Gene();

gene.setSymbol (""IL*"");

try {
Object[] resultList = (Object[])call.invoke(nhew

Object[] { ""gov.nih.nci.cabio.domain.ws.Gene", gene });

System.out.printIn(""Total objects found: " +
resultList. length);

if (resultList.length > 0) {
for(int resultlndex = 0; resultlndex <
resultList._length; resultlndex++) {
Gene returnedGene = (Gene)resultList[resultindex];
System.out.printin(
"Symbol: " + returnedGene.getSymbol() + "\n" +
"\tName " + returnedGene.getTitle() + "\n" +

"3

189

caCORE SDK 3.2.1 Programmer’s Guide

}

}
} catch (Exception e) {

e.printStackTrace();
}
}
}

Using the CSM-Enabled HTTP Interface

If security is turned on, then both HTTP interfaces, getHTML (Happy.jsp) and getXML,
are secured. In order to access them, user credentials must be provided.

getHTML Interface

The get HTML interface can be accessed by invoking Happy.jsp. Once the object to be
queried is selected and criteria is entered, a username and password are required in
the javascript windows. These credentials are appended to the query that is routed to
the server and used to authenticate and authorize the user. If there is a security error, it
is displayed in the browser. Otherwise, the queried result is displayed. The returned
result set can be accessed by clicking the links. However, if a new browser is opened,
reauthentication is required.

Alternatively credentials can be provided directly in the browser's address bar or as a
URL of an HTTP Request to obtain the result as shown below. The following is an
example URL to obtain all the chromosomes from the example model of the SDK.

http://1ocalhost:8080/example//
GetHTML?query=gov.nih.nci.cabio.domain.Chromosome&gov.nih.
nci.cabio.domain.Chromosome&username=<<USERNAME>>&password
=<<PASSWORD>>

getXML Interface

This interface can be accessed by generating an HTTP Request either programmati-
cally or via a browser to obtain the result in an XML format. User credentials must be
appended to the actual query as shown below.

http://1ocalhost:8080/example//
GetXML?query=gov.nih.nci.cabio.domain.Chromosome&gov.nih.n
ci.cabio.domain.Chromosome&username=<<USERNAME>>&password=
<<PASSWORD>>

190

import
import
import
import
import
import

import
import

public
{

publ

Ap
Applic
Ap
Cl

Chapter 10: Integrating CSM with a caCORE SDK Generated Application

7. When finished, call terminateSession to end the session on the server
(Figure 10.1).

jJava.util_Date;

Java.util_List;

gov.nih.nci.cadsr.domain.impl_DataElementimpl;
gov.nih_nci.system.applicationservice.ApplicationService;
gov.nih_nci.system_.applicationservice.ApplicationServiceProvider;
gov.nih_nci.system.comm.client.ClientSession;

org.-hibernate.criterion._DetachedCriteria;
org-hibernate.criterion.Expression;

class TestClient

ic static void main(String[] args)

plicationServiceProvider applicationServiceProvider = new
ationServiceProvider();

plicationService appService = applicationServiceProvider._getApplicationService();
ientSession cs = ClientSession.getlnstance();

try

{

ca

{

}
tr

{

cs.startSession('userld', "password™);
tch (Exception ex)

System.out.printIn(ex.getMessage());

y

DetachedCriteria deCrit = DetachedCriteria.forClass(DataElementimpl._class);
deCrit.add(Expression.eq('publiclID", new Long(2199715)));

int count = appService.getQueryRowCount(deCrit, DataElementlmpl.class.getName());
String val = String.valueOf(count);

System.out.printIn(*"The size of the records is " + val);

List listR = appService.query(deCrit, DataElementimpl.class.getName()):
System.out.printIn(*"The size of the records is second time is " + listR.size());
cs.terminateSession();

catch (Exception e)

{

}
}
}

e.printStackTrace();

Figure 10.1 Using the CSM-enabled caCORE generated application in a client application

Note: If the authentication is disabled, the "password" passed in the startSession method of

ClientSession Class is ignored. However the "userld" is needed to establish the ses-
sion with the server.

191

caCORE SDK 3.2.1 Programmer’s Guide

192

APPENDIX

UNIFIED MODELING LANGUAGE

The caCORE team bases its software development primarily on Unified Modeling Lan-
guage (UML). This appendix is designed to familiarize the reader who has not worked
with UML with its background and notation.

Topics in this appendix include:
e UML Modeling on this page
e Use-Case Documents and Diagrams on page 194
e Class Diagrams on page 196
e Package Diagrams on page 200
e Component Diagrams on page 201
e Sequence Diagrams on page 202

Note: Throughout this guide, references to the Unified Modeling Language refer to the
approved version 1.3 of the standard.

UML Modeling

The UML is an international standard notation for specifying, visualizing, and docu-
menting the artifacts of an object-oriented software development system. Defined by
the Object Management Group, the UML emerged as the result of several complemen-
tary systems of software notation and has now become the de facto standard for visual
modeling. For a brief tutorial on UML, refer to http://bdn.borland.com/article/
0,1410,31863.00.html.

The underlying tenet of any object-oriented programming begins with the construction
of a model. In its entirety, the UML is composed of nine different types of modeling dia-
grams, which form, in essence, a software blueprint.

Only a subset of the diagrams, those used in caCORE development, is described in
this chapter.

193

http://www.omg.org/
http://bdn.borland.com/article/0,1410,31863,00.html
http://bdn.borland.com/article/0,1410,31863,00.html

caCORE SDK 3.2.1 Programmer’s Guide

Note:

e Use-case diagrams

e Class diagrams

e Package diagrams

e Component diagrams

e Sequence diagrams

The caCORE development team applies use-case analysis in the early design stages
to informally capture high-level system requirements. Later in the design stage, as
classes and their relations to one another begin to emerge, class diagrams help to
define the static attributes, functionalities, and relations that must be implemented. As
design continues to progress, other types of interaction diagrams are used to capture
the dynamic behaviors and cooperative activities the objects must execute. Finally,
additional diagrams, such as the package and sequence diagrams can be used to rep-
resent pragmatic information such as the physical locations of source modules and the
allocations of resources.

Each diagram type captures a different view of the system, emphasizing specific
aspects of the design such as the class hierarchy, message-passing behaviors
between objects, the configuration of physical components, and user interface capabili-
ties.

Not all UML artifacts discussed in this chapter are necessary for using the caCORE
SDK. They are included in this chapter to provide a more complete overview of UML.

While many good development tools provide support for generating UML diagrams, the
Enterprise Architect (EA) software was used to create the screen shots in the caCORE
Software Development Kit Programmer's Guide. The resulting documents, originally
generated during design and development, provide value throughout the software life
cycle as they can rapidly familiarize new users of the system with the logic and struc-
ture of the underlying design elements.

Use-Case Documents and Diagrams

194

A good starting point for capturing system requirements is to develop a structured tex-
tual description, often called a use-case document, of how users will interact with the
system. While there is no hard and fast predefined structure for this artifact, use-case
documents typically consist of one or more actors, a process, a list of steps, and a set
of pre- and post-conditions. In many cases, it describes the post-conditions associated

Appendix A: Unified Modeling Language

with success as well as failure. An example use-case document is represented in Fig-
ure A.1.

Find Gene(s) for a given search criteria (keyword)
Usecase 1D:100300

Actor

e caBIO Application developer

Starting Condition

The actor establishes reference to the caBIO software

Flow of Events

1. The actor sets the search criteria (Use case ID 101300) using one or more keywords
in the criteria.

2. Invoke the search use case (Use case ID 105300) and pass the search criteria
instantiated at step 1.

3. Arvresult set (Use case ID 110300) is returned to the actor.

End Condition
The actor has obtained a collection of Genes needed for his application.

Figure A.1 Use-case document

Using the use-case document as a model, a use-case diagram is then created to con-
firm the requirements stated in the text-based use-case document.

A use-case diagram, which is language independent and graphically described, uses
simple ball and stick figures with labeled ellipses and arrows to show how users or
other software agents might interact with the system. The emphasis is on what a sys-
tem does rather than how. Each “use-case” (an ellipse) describes a particular activity
that an “actor” (a stick figure) performs or triggers. The “communications” between
actors and use-cases are depicted by connecting lines or arrows.

The example use-case diagram Figure A.2 can be interpreted as follows:

e A caBIO application triggers the actions to build a search query, connect to
server, and search server.

195

caCORE SDK 3.2.1 Programmer’s Guide

e The caBIlO application receives the output from the search.

Find Genes

Build Gene Search

Criteri=

Search Data Store

wextends -

_=7 wextends

£

Build Objects from

.{-_{_ _____________

wesdends

Resultzet

caBl0 Application
Deweloper

Figure A.2 Building a search query use-case

Class Diagrams

The system designer uses use-case diagrams to identify the classes that must be
implemented in the system, their attributes and behaviors, and the relationships and
cooperative activities that must be realized. A class diagram is used later in the design
process to give an overview of the system, showing the hierarchy of classes and their
static relationships at varying levels of detail. Figure A.3 shows an abbreviated version
of a UML Class diagram depicting many of the caBIO domain objects.

dormain: Gene
= d: Long
domain: q HE
Chromosomae | ohiemeseme +geneCollection - titla: Stl.ng. +geneCollection +targeiCollection Semen e
= symbal: Sking Id: Long
id: Long | 0.5, locuslinkSummarn: Sting |0-° Ll R Stiing
name: Shing OMIMID: Sting nams; String
0.2 locuglinkld: Sting
i olusterld: Long
+ohromaosomeCollection o . \o =

+genaCollection "+ gensCollaction

+geneCollection

-ﬁuquenccﬁolltdion\ D.."

dormain:: Sequence

+tason (0.1 +iaxen 0.1

id: Long

196

dormain. Taxon

id: Long
seientificHame; String
ethnicityOrStiain: Sting
abbraviation: String
commaonlame: String
isFrefaned; Boolean

*libranyCallection

name: Sting
keyword: Sting
dezeription: Sthing

+ ik any

langth: Long

isReferénceSequence: Boolean

dessiption: Sting
asciiSting: Sting
aecesrionMumben Siing

accessionMumbeVersion: Sting

type: Long

#sequenceCollection

domain:Library +telone 0.1

L
id Ll‘bt‘\ﬂ. chorrain: Clons
type: String

+cloneCalledtion |

RSita1: String 0.1
FSite2: String
unigeneld: Leng
oreationDate: [rate
labHest: Sting
olonesTolrate: Long
sequencesToDale: Long

Figure A.3 caBIO class diagram

0.

id: Leng

warified: Boolean
insenSize: Long
acoessionMumber. String
name: SHing

warsion: String

shrain: String

Appendix A: Unified Modeling Language

Class objects can have a variety of possible relationships to one another, including “is
derived from,” “contains,” “uses,” “is associated with,” etc. The UML provides specific
notations to designate these different kinds of relations, and enforces a uniform layout
of the objects’ attributes and methods — thus reducing the learning curve involved in
interpreting new software specifications or learning how to navigate in a new program-
ming environment.

Figure A.4 (a) is a schematic for a UML class representation, the fundamental element
of a class diagram. Figure A.4 (b) is an example of how a simple class might be repre-
sented in this scheme. The enclosing box is divided into three sections: The topmost
section provides the name of the class, and is often used as the identifier for the class;
the middle section contains a list of attributes (structures) for the class. (The attribute in
the class diagram maps into a column name in the data model and an attribute within
the Java class.); the bottom section lists the object’s operations (methods). Figure A.4
(b) specifies the Gene class as having a single attribute called sequence and a single
operation called getSequence().

Class Gene
-attribute -sequence
+operation() +getSequence()

(@) (b)
Figure A.4 (a) Schematic for a UML class (b) A simple class called Gene

Naming Conventions

Naming conventions are very important when creating class diagrams. The caCORE
follows the formatting convention for Java APIs in that a class starts with an uppercase
letter and an attribute starts with a lowercase letter. Names contain no underscores. If
the name contains two words, then both words are capitalized, with no space between
words. If an attribute contains two words, the second word is capitalized with no space
between words. Boolean terms (has, is) are used as prefixes to words for test cases.

The operations and attributes of an object are called its features. The features, along
with the class name, constitute the signature, or classifier, of the object. The UML pro-
vides explicit notation for the permissions assigned to a feature, and UML tools vary
with respect to how they represent their private, public, and protected notations for their
class diagrams.

The caBIO classes represented in Figure A.3 show only class names and attributes;
the operations are suppressed in that diagram. This is an example of a UML view:
Details are hidden where they might obscure the bigger picture the diagram is intended
to convey. Most UML design tools provide means for selectively suppressing either or
both attributes and operation compartments of the class without removing the informa-
tion from the underlying design model. In Figure A.3, the emphasis is on the relation-
ships and attributes that are defined among the objects, rather than on operations.

The following notations (as shown in Figure A.3 and Figure A.7) are used to indicate
that a feature is public or private:

e “" prefix signifies a private feature
e “+” signifies a public feature

197

caCORE SDK 3.2.1 Programmer’s Guide

In Figure A.4 for example, the Gene object’s sequence attribute is private and can only
be accessed using the public getSequence () method.

Relationships Between Classes

198

Note:

Not all figures used in this chapter appear in the demonstration class diagram, Figure 9.
They are, however, examples of models that may be found in caCORE.

A quick glance at Figure A.3 demonstrates relationships between some of the classes.
Generally, the relationships occurring among the caBIO objects are of the following
types: association, aggregation, generalization, and multiplicity, described as follows:

Association — The most primitive of these relationships is association, which repre-
sents the ability of one instance to send a message to another instance. Association is
depicted by a simple solid line connecting the two classes.

Directionality — UML relations can have directionality (sometimes called navigability
), as in Figure 11. Here, a Gene object is uniquely associated with a Taxon object, with
an arrow denoting bi-directional navigability. Specifically, the Gene object has access to
the Taxon object (i.e., there is a getTaxon() method), and the Taxon object has access
to the Gene object. (There is a corresponding getGeneCollection() method.) Role
names also display in Figure A.3 and Figure A.5, clarifying the nature of the association
between the two classes. For example, a taxon (rolename identified in Figure A.5) is a
line item of each Gene object. The (+) indicates public accessibility.

+8) 0N roke name

Gene +geneCollection has +Lacon Taxon

\ Bi-directonal assocition /

Figure A.5 A one-to-one association with bi-directional navigability

Multiplicity — Optionally, a UML relation can have a label providing additional seman-
tic information, as well as numerical ranges such as 1..n at its endpoints, called multi-
plicity. These cardinality constraints indicate that the relationship is one-to-one, one-to-
many, many-to-one, or many-to-many, according to the ranges specified and their
placement. Table A.1 displays the most commonly used multiplicities.

Multiplicities Interpretation
0.1 Zero or one instance. The notation n..m indicates n to m instances.
0.*or* Zero to many; No limit on the number of instances (including none). An
asterisk (*) is used to represent a multiplicity of many.
1 Exactly one instance
1.* At least one instance to many

Table A.1 Multiplicities table

Figure A.6 depicts a bidirectional many-to-one relation between Sequence objects and
Clone objects. Each Sequence may have at most one Clone associated with it, while a
Clone may be associated with many Sequences. To get information about a Clone from
the Sequence object requires calling the getSequenceClone() method. Each Clone in

Appendix A: Unified Modeling Language

turn can return its array of associated Sequence objects using the getSequences()
method. This bidirectional relationship is shown using a single undirected line between
the two objects.

+1 +1 n |
Clone | Sequence

Figure A.6 A bidirectional many-to-one relation

Aggregation — Another relationship exhibited by caCORE objects is aggregation, in
which the relationship is between a whole and its parts. This relationship is exactly the
same as an association, with the exception that instances cannot have cyclic aggrega-
tion relationships (i.e., a part cannot contain its whole). Aggregation is represented by a
line with a diamond end next to the class representing the whole, as shown in the
Clone-to-Library relation of Figure A.7. As illustrated, a Library can contain Clones but
not vice-versa.

In the UML, the empty diamond of aggregation designates that the whole maintains a
reference to its part. More specifically, this means that while the Library is composed of
Clones, these contained objects may have been created prior to the Library object’s
creation, and so will not be automatically destroyed when the Library goes out of scope.

Sequence 1

+1..n

Aggregation association >T uRiplc ity associations

. +1
comprises generated from

Library e T Clone 3 o i Trace

Figure A.7 Aggregation and multiplicity associations

Additionally, Figure A.7 shows a more complex network of relations. This diagram indi-
cates that:

one or more Sequences is associated with a Clone.

b. the Clone is contained in a Library, which comprises one or more
Clones.

c. the Clone may have one or more Traces.

Only the relationship between the Library and the Clone is an aggregation. The others
are simple associations.

Generalization — Generalization is an inheritance link indicating that one class is a
subclass of another. Figure A.8 depicts a generalization relationship between the
SequenceVariant parent class and the Repeat and SNP classes. Classes participating
in generalization relationships form a hierarchy, as depicted here.

In generalization, the more specific element is fully consistent with the more general
element (it has all of its properties, members, and relationships) and may contain addi-
tional information. Both the SNP and Repeat objects follow that definition.

199

caCORE SDK 3.2.1 Programmer’s Guide

The superclass-to-subclass relationship is represented by a connecting line with an
empty arrowhead at its end pointing to the superclass, as shown in the SequenceVari-
ant-to-Repeat and SequenceVariant-to-SNP relations of Figure A.8.

sa
SNP : ‘ SequenceVarant ‘

+1 \G
eneralization associaion
I isa

+1

Allelel has a Repeat
+1

+1

Figure A.8 Generalization relationship

In summary, class diagrams represent the static structure of a set of classes. Class dia-
grams, along with use-cases, are the starting point when modeling a set of classes.
Recall that an object is an instance of a class. Therefore, when the diagram references
objects, it is representing dynamic behavior, whereas when it is referencing classes, it
iS representing the static structure.

Package Diagrams

Large-scale software design is a highly complex activity. As the number of classes
grows to satisfy the evolving requirements of an application, the overall architectural
design can quickly become obscured by this proliferation of design elements. To sim-
plify complex UML diagrams, classes can be organized into packages representing log-
ically related groupings. Packaging can be applied to any type of UML diagram; a
package diagram is any UML diagram composed only of packages.

Most commonly, packaging is used to simplify use-case and class diagrams. The pack-
age diagram is not one of the nine standard UML diagrams, but since it provides a con-
venient way of depicting the organization of software components into packages, it is
described here.

A UML package is depicted as a labeled rectangle with a small tab attached to its upper
left corner, somewhat resembling a file folder (Figure A.9). This image represents a
package diagram generated in EA. “gov” is the top level package; “+nih” is a sub-pack-
age to gov, with the “+” indicating that sub-packages to nih exist. The dotted arrows
connecting packages as displayed in Figure A.10 represent dependencies: one pack-

200

Appendix A: Unified Modeling Language

age depends on another if changes in one could force changes in the other. This figure
is the hierarchical representation of Figure A.9.

gov

_‘| + nih

Figure A.9 Package diagram generated in EA

Figure A.10 Hierarchical representation of a package diagram

The concept of a package in a software application is similar but not identical to the
notion of a UML package.

The organization of software components into packages is used to increase reusability
and to minimize compile-time dependencies. It is highly unusual to reuse a single class,
but quite common to reuse a collection of related classes that collaborate to produce
some desired functionality. The UML models of the caCORE software that are available
on the web published pages approximately reflect the actual Java package structure
but do not have a one-to-one correspondence.

on the web published pages approximately reflect the actual Java package structure
but do not have a one-to-one correspondence.

Component Diagrams

A component diagram is a physical analog of a class diagram. Its purpose is to show
the organizations and dependencies among various software components comprising
the system, including source code components, run time components, or an executable
component.

In complex systems, the physical implementation of a defined service is provided by a
group of classes rather than a single class. A component is an easy way to represent
the grouping together of such implementation classes.

A Component diagram consists of the following:

201

caCORE SDK 3.2.1 Programmer’s Guide

e Component
e Class/Interface/Object

¢ Relation/Association
A generic component diagram's main icon is a rectangle that has two rectangles over-
laid on its left side (Figure A.11). The component name appears inside the icon. If the
component is a member of a package, you can prefix the component's name with the
name of the package. Figure A.12 represents a component diagram as it is represented

in EA.
[package name]: DAO {
ComponentName
Figure A.11 Generic component diagram Figure A.12 Component diagram as

represented in EA

Component diagrams and class diagrams represent both the static structure and the
dynamic behavior of the system. Component diagrams are optional since they are not
used for code generation.

Sequence Diagrams

202

A sequence diagram describes the exchange of messages being passed from object to
object over time. The flow of logic within a system is modeled visually, validating the
logic of a usage scenario. In a sequence diagram, bottlenecks can be detected within
an object-oriented design, and complex classes can be identified.

Figure A.13 is an example of a sequence diagram. The vertical lines in the diagram
with the boxes along the top row represent instantiated objects. The vertical dimension
displays the sequence of messages in the time order that they occur; the horizontal
dimension shows the object instances to which the messages are sent. The diagram is
read from left to right, top to bottom, following the sequential execution of events.

This sequence diagram explains the sequence of execution of the toolkit at the runtime.
The User query from the client traverses the following sequence path before reaching
the database.

4. The user uses search() method in ApplicationService and queries the server.

5. This call is picked up at HTTPClient as query() with Request as the input
parameter.

6. HTTPClient calls the HTTPServer (Interface Proxy for HTTP Tunneling) and
sends the same Request to BaseDelegate.

BaseDelegate calls ServiceLocator to find the name of Data Access Object.

Using this name BaseDelegate creates the corresponding DAO factory and
passes the Request object.

Appendix A: Unified Modeling Language

9. In this scenario the ORMDAO is the right DAO to be called.

10. ORMDAOImpl contains specific implementation about the data source and con-
nects to the data source.

Note: Sequence diagrams are optional, since they are not used for code generation.

203

caCORE SDK 3.2.1 Programmer’s Guide

(arball Lanh=asundsay

1

i

|

1

1

1

i

1

1

1
-
-

|

fanbal Em:_u_u”mmco%mw_

?

4
%

LA e L) Lo h_zm_mu_ Jopae4 0

(atl epy saloiuona m___wums:am EjE1aki= A gEseH
1

{isahba.) fianb=asundsay
1

j=s===s====

ﬁmw_:amhcm__a Kuanb=asuod
]

L

¥
1
i
1
1
1
l
l
1
i
|

]
S JELI LW 02 U L Aok

{zanbal) E_Im_au

@S LodSE 18 Lo 00 L LU Aok

odﬁ_zw_o”cto__aEumu_O{n_Exo””omu__aosmu_O{n_””omu__L2238_tmmQESo_m”__amm__mﬁmm_mn_mmmm_;Bmmm_mo__hmzmm&u:._#xen___Em__on_.E._uma_zmmcozm”___QQ,a___mo_ammcazmu__Qginmu_ammcozmo__%q_

Figure A.13 Sequence Diagram

204

APPENDIX

SOFTWARE CONFIGURATION
MANAGEMENT

This appendix describes the defined set of software configuration management (SCM)
processes centered on a number of open source tools developed by NCICB. In particu-
lar, NCICB uses CVS (https://www.cvshome.org/) for version control and Ant (http://
ant.apache.org/) for build management.

The SCM procedures in place at NCICB are documented in a series of white papers,
including the following:

e SCM - Project Charter

e SCM - NCICB Change Control Plan
e SCM - Version Control Guidelines

e SCM — Deployment Guidelines

e SCM - CVS Users Guide

e SCM — Ant Users Guide

These documents are publicly available and can be obtained by following the appropri-
ate links on the Programming and API Support page at http://ncicbsupport.nci.nih.gov/
SwWi.

Very broadly, an SCM practice must address the following four primary functions:

1. Configuration identification: consists of identifying those elements (configuration
items) of a system that are to be managed. As a good rule of thumb, all non-
derived resources (object files, executables, or any other resource that can be
derived from a controlled resource) should be managed.

2. Configuration control: consists of the evaluation, coordination, approval/disap-
proval, and implementation of changes to configuration items.

3. Status accounting: consists of the recording and reporting of information
needed to manage a configuration efficiently — for example, the status of pro-
posed changes and implementation of approved changes.

205

https://www.cvshome.org/
http://ant.apache.org/
http://ant.apache.org/
http://ncicbsupport.nci.nih.gov/sw/
http://ncicbsupport.nci.nih.gov/sw/
http://ncicbsupport.nci.nih.gov/sw/

caCORE SDK 3.2.1 Programmer’s Guide

4. Audits and reviews: consist of activities carried out to ensure that the SCM sys-
tem is functioning correctly, and to ensure that the configuration has been
tested to demonstrate that it meets its functional requirements and that it con-
tains all deliverable entities.

A full discussion of identification, accounting, and auditing is beyond the scope of this
document, but the notion of configuration control includes the following core concepts:

Version control — refers to the mechanisms used to keep track of the history of
changes to a product component (configuration item) throughout the software develop-
ment life cycle. There are numerous tools available, both open source and commercial,
to support version control, but the open source tool CVS is used at NCICB for this pur-
pose.

Build management — refers to the discipline of efficiently building the whole or a sub-
set of a version of a product from the selected configuration of product components.
The open source tool Ant is used at NCICB for this purpose.

Change control — refers to the discipline of evaluating, coordinating, approving or dis-
approving, and implementing changes to artifacts that are used to construct and main-
tain a software system. NCICB has an organization-wide change control board that
meets regularly to discuss and evaluate the impact of software change requests.

Version control, build management, and change control are the key processes of a suc-
cessful software configuration management practice, and are the baseline processes
that should always be in place for any software development project.

206

APPENDIX

PERFORMANCE ISSUES

This appendix explains a known performance issue with Hibernate v3.0.5.

Hibernate Issue with Enabling Security in the SDK

In order to become CFR 21 / part 11 compliant, the CSM APIs had to implement Audit
Logging, which has to log each and every operation performed by the user on the data
stored in the security schema. It also has keep track of all the changes made to the
data. To aid in doing so, CSM uses features provided by the Common Logging Module
(CLM). The CLM APIs are wrapped over log4j and uses it to log into a database
through a JDBC Appender.

In order to track the changes performed to the object states, CLM uses Hibernate's
Interceptor Model to intercept all the user actions. It intercepts all the create, update,
and delete operations performed by the user on the objects. Based on the operation
that the user is performing, it creates audit logs and stores the appropriate object state.

However, the Interceptor Model is available in Hibernate v3.0.5 and above. caCORE
SDK has traditionally used Hibernate v3.0.2. During the merging of the CSM SDK
Adapter features into the caCORE SDK project, there were issues discovered with the
usage of the Hibernate v3.0.5. It was enabling the eager fetching of the child objects
even if the lazy initialization was enabled. As the result of this, there were performance
issues when the queried object had many associated child objects.

To overcome this issue, the caCORE SDK (as well as the caCORE APIs) is packaged
and distributed with Hibernate v3.0.2 by default. Hence, for all regular users who do not
want to enable security, this version provides optimal performance.

The projects that need security services provided by CSM must upgrade to Hibernate
v3.0.5. This might result in the eager fetching issue mentioned above and cause a per-
formance issue. However this performance issue becomes evident only in the case of
objects that have a huge collection of associated objects.

207

caCORE SDK 3.2.1 Programmer’s Guide

208

APPENDIX

REFERENCES

Technical Manuals/Articles

10.
11.
12.
13.

14.

National Cancer Institute. caCORE 3.2 Technical Guide
http://ncicb.nci.nih.gov/INCICB/infrastructure/cacore project doc

Java Bean Specification:
http://java.sun.com/products/javabeans/docs/spec.html

Foundations of Object-Relational Mapping:
http://www.chimu.com/publications/objectRelational/

Object-Relational Mapping articles and products:
http://www.service-architecture.com/object-relational-mapping/

Hibernate Reference Documentation:
http://www.hibernate.org/hib_docs/reference/en/html/

Basic O/R Mapping:
http://www.hibernate.ora/hib_docs/reference/en/html/mapping.html

Java Programming: http://java.sun.com/learning/new?2java/index.html

Jalopy User Manual:_http://jalopy.sourceforge.net/manual.html

Javadoc tool: http://java.sun.com/j2sel/javadoc/

JDiff: http://javadiff.sourceforge.net/

JUnit http://junit.sourceforge.net/

Extensible Markup Language: http://www.w3.0rg/TR/REC-xml/

XML Metadata Interchange:
http://www.omg.org/technology/documents/formal/xmi.htm

Ehcache: http://ehcache.sourceforge.net/documentation/

209

http://ncicb.nci.nih.gov/NCICB/infrastructure/cacore_project_doc
http://java.sun.com/products/javabeans/docs/spec.html
http://www.chimu.com/publications/objectRelational/
http://www.service-architecture.com/object-relational-mapping/
http://www.hibernate.org/hib_docs/reference/en/html/
http://www.hibernate.org/hib_docs/reference/en/html/mapping.html
http://java.sun.com/learning/new2java/index.html
http://jalopy.sourceforge.net/manual.html
http://jalopy.sourceforge.net/manual.html
http://javadiff.sourceforge.net/
http://junit.sourceforge.net/
http://www.w3.org/TR/REC-xml/
http://www.omg.org/technology/documents/formal/xmi.htm
http://ncicb.nci.nih.gov/NCICB/infrastructure/cacore_project_doc

caCORE SDK 3.2.1 Programmer’s Guide

Scientific Publications

1. Covitz P.A., Hartel F., Schaefer C., De Coronado S., Sahni H., Gustafson S.,
Buetow K. H. (2003). caCORE: A common infrastructure for cancer informatics.
Bioinformatics. 19: 2404-2412.

2. Golbeck J., Fragoso G., Hartel F., Hendler J., Oberthaler J., Parsia B. (2003).
The National Cancer Institute's thésaurus and ontology. Journal on Web
Semantics. 1:75-80.

3. Hartel EW., Coronado S., Dionne R., Fragoso G. and Golbeck J. (2005). Model-
ing a description logic vocabulary for cancer research. Journal of Biomedical
Informatics, 38, in press. (http://www.sciencedirect.com/)

caBIG Material

1. caBIG: http://cabig.nci.nih.gov/

2. caBIG Compatibility Guidelines:
http://cabig.nci.nih.gov/quidelines _documentation

caCORE Material

caCORE: http://ncicb.nci.nih.gov/NCICB/infrastructure
caBIO: http://ncicb.nci.nih.gov/NCICB/infrastructure/cacore overview/caBlO

caDSR: http://ncicb.nci.nih.gov/NCICB/infrastructure/cacore overview/cadsr

EVS: http://ncicb.nci.nih.gov/NCICB/infrastructure/cacore overview/vocabulary

a > wbnh Pk

CSM: http://ncicb.nci.nih.gov/NCICB/infrastructure/cacore _overview/csm

Modeling Concepts

1. Enterprise Architect Online Manual:
http://www.sparxsystems.com.au/EAUserGuide/index.html

2. OMG Model Driven Architecture (MDA) Guide Version 1.0.1:
http://www.omqg.org/docs/omg/03-06-01.pdf

3. Object Management Group: http://www.omg.org/

Applications Currently Using caCORE

1. BIOgopher: http://biogopher.nci.nih.gov/BlIOgopher/index.jsp

2. BIO Browser: http://www.jonnywray.com/java/index.html

3. caPathway: http://cgap.nci.nih.gov/Pathways

210

http://www.sciencedirect.com/
http://cabig.nci.nih.gov/
http://cabig.nci.nih.gov/guidelines_documentation
http://ncicb.nci.nih.gov/NCICB/infrastructure
http://ncicb.nci.nih.gov/NCICB/infrastructure/cacore_overview/caBIO
http://ncicb-dev.nci.nih.gov/NCICB/infrastructure/cacore_overview/cadsr
http://ncicb-dev.nci.nih.gov/NCICB/infrastructure/cacore_overview/vocabulary
http://www.omg.org/docs/omg/03-06-01.pdf
http://www.omg.org/
http://cgap.nci.nih.gov/Pathways
http://biogopher.nci.nih.gov/BIOgopher/index.jsp
http://www.jonnywray.com/java/index.html
http://ncicb-dev.nci.nih.gov/NCICB/infrastructure/cacore_overview/csm
http://www.sparxsystems.com.au/EAUserGuide/index.html

Appendix D: References

Software Products

N o o bk~ wDdP

Hibernate: http://www.hibernate.ora/5.html

Tomcat: http://jakarta.apache.org/tomcat/

Enterprise Architect: http://www.sparxsystems.com.au/

Apache WebServices Axis: http://ws.apache.org/axis/

MySQL: http://www.mysql.com/

Concurrent Versions System (CVS): https://www.cvshome.org/

Ant: http://ant.apache.orqg/

211

http://www.hibernate.org/5.html
http://jakarta.apache.org/tomcat/
http://www.sparxsystems.com.au/
http://ws.apache.org/axis/
http://www.mysql.com/
https://www.cvshome.org/
http://ant.apache.org/

caCORE SDK 3.2.1 Programmer’s Guide

212

GLOSSARY

This glossary describes acronyms, objects, tools and other terms referred to in the chapters or

appendixes of this guide.

Term

Definition

{home_directory

}

Indicates the directory where you installed the SDK

{package__
structure}

Indicates the package structure from the UML models

{project_name}

Indicates the project_name specified in the deploy . properties file

AGT

Artifact Generation Tool

AOP Aspect Oriented Programming
API Application Programming Interface
Writeable API Methods exposed by the CSM to create, update and delete a domain object.

These methods are generated using the code generation component.

Application Service

This refers to the CSM interface which exposes all the writeable as well as
business methods for a particular application

BO Business Object

C3D Cancer Centralized Clinical Database

caBIG cancer Biomedical Informatics Grid

caBIO Cancer Bioinformatics Infrastructure Objects

caCORE cancer Common Ontologic Representation Environment

caDSR Cancer Data Standards Repository

caMOD Cancer Models Database

cardinality Cardinality describes the minimum and maximum number of associated
objects within a set

CASE Computer Aided Software Engineering

CCR Center of Cancer Research

CDE Common Data Element

CGAP Cancer Genome Anatomy Project

CMAP Cancer Molecular Analysis Project

CODEGEN Code generator tool

213

caCORE SDK 3.2.1 Programmer’s Guide

214

Term

Definition

Code Generator Tool

The SDK tool that leverages Model-Driven Architecture to convert a UML
model to a fully-functioning caCORE-like system

Cs Classification Scheme

Csl Classification Scheme Item

CSM Common Security Module

CTEP Cancer Therapy Evaluation Program

CVS Concurrent Versions System

DAO Data Access Objects

DAS Distributed Annotation System

DCP Division of Cancer Prevention

DDL Data Definition Language

DEC Data Element Concept

DOM Document Object Model

DTD Document Type Definition

DU Deployment Unit

EA Enterprise Architect

EBI European Bioinformatics Institute

EMF Eclipse Modeling Framework

EVS Enterprise Vocabulary Services

FK Foreign Key - A collection of columns (attributes) that enforce a relationship
to a Primary Key in another table used in data model tables in Enterprise
Architect

FreeMarker A "template engine"; a generic tool to generate text output (anything from
HTML or RTF to auto generated source code) based on templates

GAI CGAP Genetic Annotation Initiative

GEDP Gene Expression Data Portal

IDE Integrated Development Environment

ISO International Organization for Standardization

JAF JavaBeans Activation Framework

Jalopy Source code formatting tool for the Sun Java Programming Language_(http://
jalopy.sourceforge.net/manual.html)

JAR Java Archive

Javadoc Tool for generating API documentation in HTML format from doc comments in
source code (http:/java.sun.com/j2se/javadoc/)

JDBC Java Database Connectivity

JDiff Javadoc doc-let which generates an HTML report of all the packages,
classes, constructors, methods, and fields which have been removed, added
or changed in any way, including their documentation, when two APIs are
compared (http://javadiff.sourceforge.net/)

JET Java Emitter Templates

JMI Java Metadata Interface

http://jalopy.sourceforge.net/manual.html
http://java.sun.com/j2se/javadoc/
http://javadiff.sourceforge.net/

Term

Definition

JSP JavaServer Pages

JUnit A simple framework to write repeatable tests (http://junit.sourceforge.net/)

MDR Metadata Repository

metadata Definitional data that provides information about or documentation of other
data.

MMHCC Mouse Models of Human Cancers Consortium

multiplicity Multiplicity of an association end indicates the number of objects of the class
on that end that may be associated with a single object of the class on the
other end

MVC Model-View-Controller, a design pattern

NCI National Cancer Institute

NCICB National Cancer Institute Center for Bioinformatics

NSC Nomenclature Standards Committee

navigability Navigability defines the visibility of an object to its associated source/target
object at the other end of an association.
Navigability is the same as directionality.

OMG Object Management Group

OR Object Relation

ORM Object Relational Mapping

PCDATA Parsed Character DATA

persistence layer

Data storage layer, usually in a relational database system

PK

Primary Key — Key used to uniquely identify a data model table in Enterprise
Architect.

QA Quality Assurance

RDBMS Relational Database Management System
RUP Rational Unified Process

SCM Software Configuration Management
SDK Software Development Kit

Semantic Connector

The SDK tool that links model elements to NCICB EVS concepts.

SPORE

Specialized Programs of Research

SQL

Structured Query Language

Tagged value

A UML construct that represents a name-value pair; can be attached to any-
thing in a UML model. Often used by UML modeling tools to store tool-spe-
cific information

UML Unified Modeling Language

UML Loader SDK tool that converts a domain model in UML to corresponding common
data elements (CDESs) in caDSR.

UPT User Provisioning Tool

URI Uniform Resource Identifier

URL Uniform Resource Locators

WSDL Web Services Description Language

215

http://junit.sourceforge.net/

caCORE SDK 3.2.1 Programmer’s Guide

Term Definition

XMI XML Metadata Interchange (http://www.omg.org/technology/documents/for-
mal/xmi.htm) - The main purpose of XMl is to enable easy interchange of
metadata between modeling tools (based on the OMG-UML) and metadata
repositories (OMG-MOF) in distributed heterogeneous environments

XML Extensible Markup Language (http://www.w3.0rg/TR/REC-xml/) - XML is a
subset of Standard Generalized Markup Language (SGML). Its goal is to
enable generic SGML to be served, received, and processed on the Web in
the way that is now possible with HTML. XML has been designed for ease of
implementation and for interoperability with both SGML and HTML

XP Extreme Programming

216

http://www.omg.org/technology/documents/formal/xmi.htm
http://www.omg.org/technology/documents/formal/xmi.htm
http://www.w3.org/TR/REC-xml/

INDEX

A alternate UML Attribute 153

alternate UML Attribute definitions 154
alternate UML Class definitions 152
API for retrieving metadata 147

Administered component 139, 140
Agent class 9

Ant, build management 205 metadata 140

Ant tasks object class attribute details 152
build-system 171 UML Loader 139
fix-ea 92 Capturing system requirements 194
folrmat, Jalopy 24,172 Cardinality 46, 56
alopy 24, 172 : : Iy L
Javadoc 23, 172 gla)rgmahty See also Multiplicity 56

run-test 173
AP], retrieving UML caDSR metadata 147
Association

class diagram example 44

described 198
Association Properties dialog 45, 47
Attributes dialog 54
Audits and reviews 206

browser 147

registering 139
Change control 206
Class attributes dialog 41
Class detail dialog 41
Class diagrams

agent 9

caBIO classes 197

caBIO example 37, 46, 196

B creating additional classes 43
Build management 206 creating dependencies 51
build-system task, executing 171 creating for caCORE-like system 36
creating logical model object diagram 43

C described 196
caBIO fund.amental elements 197

caBIO classes 197 nammg conventions 197

defined 6 private feature 197

described 7 public feature 197

Class general dialog 50

example Agent class 8 A

example class diagram 37, 46, 196 Class%f%cat%on Scheme 140, 147, 161

example data model 49 Classification Scheme Items 140, 161
Caching, Hibernate 174 Code, generating 13, 167
caCORE 5 Code Generator

applications 12 description 27

infrastructure description 5 Common Data Element See also CDE 10
caCORE CDE Browser 144 Component diagrams 201
caDSR 6, 10, 11 Concept

accessing UML derived metadata 146 attribute details 150

administered component 140 creating alternate definitions 151

administered components 139 updating existing 151

217

caCORE SDK 3.2.1 Programmer’s Guide

Concurrent Versions System

description 205

saving model 36
Configuration control 205
Configuration identification 205
Constraints, UML models 32
Constraints for SDK

attribute types 42

dependencies 53

multiplicity 46

navigability 47

only UML class elements 40

role names 45

tagged values 54

XMI 92
Controlled vocabularies 10, 12
Correlation tables

creating 61

described 60

GENE_SEQUENCE example 61
correlation-table tagged value 62
Creating attributes for classes in EA 41
Creating attribute to column mappings 54
Creating caCORE-like system

building system 171

class diagrams 36

data models 48

generating code 13, 167

generating Data Definition Language 64

generating XMI 63

introduction 32

prerequisites 31

procedures 2, 3, 31, 89

semantic integration 90

sequence diagrams 63

software configuration management 205

UML loader 139

updating deploy.properties 167

use-case artifacts 35
Creating data models in EA 50
Creating dependencies 51
Creating manual ORM 175
Creating models

additional classes 43

class diagrams 39

creating relationships between classes 43

new projects 38
Creating new class in EA 39
CSM SDK-Adaptor

component of caCORE 6

CVS See also Concurrent Versions System 36

218

D

Database
Data Modeling Profile 48
modeling database features 48
starting without 48
Data Definition Language, generating 64
Data Element Concept 12, 154
Data Element Concept See also DEC 154
Data elements
classifying 161
creating alternate definitions 161
creating alternate names 160
defined 10
described 158
using existing 161
Data models
caBIO example 49
creating 49
creating dependencies 51
creating tables 50
described 48
GENE_SEQUENCE example 61
GENE example 60
mappings 49
naming conventions 50
opening 48
SEQUENCE example 60
DataSource stereotype 53
Data types
object 42
primitive 42
DB2 50
DEC 164
attribute details 155
creating alternate definitions 155
creating alternate names 155
defined 10
existing 156
Dependency associations 51
Dependency properties dialog 53
deploy.properties
example file 168
Directionality
described 198
selecting 47
Directionality See also Navigability 198
Directory structure
ORM 176
doc task 23, 172
Documentation tool 23, 172
Drivers 23

E

EHCache 174
Entering tagged values
correlation-table 62
implements-association 62
inverse-of 63
mapped-attributes 55
Enterprise Architect
creating attribute to column mappings 54
creating class diagram 39
creating data model 50
creating dependencies 51, 53
creating logical model object diagram 43
creating new project 38
displaying project view 39
exporting UML model to XMI 91
generating Data Definition Language 64
installing 31
introduction 32
opening caBIO class diagram 36
opening caBIO data model 48
opening mapping diagrams 51
EVS 6, 11, 148
concepts 139
Executing tests
JUnit tests 173
Exporting UML model 63
Export package to XML dialog 91

F

Foreign keys
constraint dialog 60
correlation tables 61
creating 59

format task 24, 172

G

Generalization 199
Generate DDL dialog 64
Generating
code 13,167
Data Definition Language 64
XMI 63

H

Hibernate 48, 175
second-level caching 174

I

implements-association tagged value 62
Inheritance 164
inverse-of tagged value 63

ISO/IEC 11179 10, 146

J

Jalopy ant task 24, 172
jar files 16
Java

download 17

SDK requirement 17
Javadoc ant task 23, 172
JUnit tests 173

K
Key fields 56

L
Logical Model object diagram 43

M

Many-to-many
creating mappings 57
defined 56

Mapping diagram 51

Index

Mapping UML model attribute into caDSR 11

Metadata 8, 10, 90
Model Driven Architecture 7
Modeling constraints, summary 32
Multiplicity

described 56, 198

selecting 46
MySQL 23

in Enterprise Architect 50

N

Naming conventions

attribute names 41, 54

class diagrams 197

data models 50

filenames 91

role names 46

UML models 197
Navigability

constraints 47

selecting 47
Navigability See also Directionality 198
NCICB caCORE infrastructure 5
NCI thesaurus 148

(@)

Object class relationship 163
Object Relational Mapping
approach 49

219

caCORE SDK 3.2.1 Programmer’s Guide

creating 48 defined 198
creating manually 175 described 45
Hibernate 48 naming conventions 46
One-to-many run-test task 173
creating mappings 57
defined 56 S
One-to-one

SCM See Software Configuration

;r:f?:él 5; I;?ppings > Management 13

Opening models Scope, defining public, protected, private, or
caBIO class diagram 36 package 42
caBIO data model 49 SDK process .

Optional software for SDK 23 workflow details 27

Oracle workflow illustration 25

workflow overview 25
SDK See Software Development Kit 1
Second-level caching, Hibernate 174

in Enterprise Architect 50
Overview, chapters 2

P Semantic integration
described 90
Package diagrams process 148
described 200 Semantic interoperability 7
Packages of software components 201 Sequence diagrams
Paste element dialog 43 described 63, 202
Prerequisites, creating caCORE-like system 31 example 202
Primary keys SIW
correlation tables 61 description 92
creating 58 exiting 103
defined 56 launching 93
Primitive data types 42 setting preferences 118
Private feature 197 user modes 94
Project view in EA 39 workflow 96
Public feature 197 Software configuration management 205
audits and reviews 206
R build management 206

change control 206
configuration control 205
configuration identification 205

Rational Unified Process 7
Reading materials 2

Registering status accounting 205
UML model CDEs in caDSR 139 version control 206
Relational model See Data model 56 Software Development Kit
Relationships in class diagrams components 16
aggregation 199 defined 1
association 44, 198 optional software 23
association between Gene and Chromosome 45 required software 16
creating between classes in EA 44 Source
dependency associations 51 described 60
directionality 47, 198 role 45
generalization 199 Status accounting 205

multiplicity 46, 198

typesin EA 44
Required software for SDK 16
Resources 2
Role names

constraints 45

Stereotypes 49, 53

Structured Query Language 64

Submitting UML model to caDSR 141

Sun Microsystems Java Bean Specification
naming conventions 34

220

Index

T using existing DECs 156
UML modeling tool
download 17
Enterprise Architecture 17
requirement 17
UML Model Query Service 146
UML See also Unified Modeling Language 193
Unified Modeling Language
caCORE 7
class diagrams 196
component diagrams 201
data modeling profile 48
introduction 193

Table-to-class mapping diagram 51
Tagged values
correlation-table 62
described 54
dialog 55
implements-association 62
inverse-of 63
mapped-attributes 55
selecting 54
UML attribute-level 150
UML class level 149

Target : :
described 60 naming conventions 197
role 47 package diagrams 200

Tests sequence diagrams 202
JUnit tests 173 stereotypes 53

Tools tools 32

tutorial 193
types of diagrams 193
use-case diagram 195
U use-case document 194
UML version 1.3 63
mapping attributes 125 Use-case
updating model definitions 123 creating artifacts 35
UML Attribute 153 creating diagrams 36
UML attribute-level tagged values 150 diagram 195
UML class-level tagged values 149 document 194
UML Domain Model Query Service 147 performing analysis 35
UML Loader 12 producing documents 35

attribute name constraints 154
classifying caDSR property 154 \%

Enterprise Architect 32

classifying existing DECs 156

classifying object class 153

classifying object class relationship 164

creating alternate UML Attribute definitions 154

creating alternate UML Attributes 153

creating alternate UML Class definitions 152

creating concepts for classes and attributes 148

creating data element concepts 154

creating data elements 158

creating DECs, alternate definitions 155

creating DECs, alternate names 155

creating new concepts in caDSR 150

creating new object class 152

defined 139

description 26

mapping UML associations to object class
relationships 163

mapping UML attribute to caDSR property 153

mapping UML class to caDSR Object Class 151

mapping UML inheritance 164

run-time parameters 140

setting runtime parameters 122

specifying caDSR classification 161

Value domain 10, 147, 158, 164
Verifying caDSR metadata 144
Version control 206
Vocabularies, controlled 10, 12

X
XMI

file constraints 92
generating 63

XML
document for ORM 175

221

caCORE SDK 3.2.1 Programmer’s Guide

222

	Credits and Resources
	Table of Contents
	Chpt 1: Using the Software Development Kit Programmer’s Guide
	Introduction
	Recommended Reading
	Organization of this Guide

	Chpt 2: NCICB caCORE Infrastructure
	caCORE Infrastructure Overview
	caCORE Development Principles
	caBIG

	caBIO as an Example System
	Model Driven Architecture
	n-tier Architecture and Consistent APIs
	Metadata and Controlled Vocabularies
	Registration of Metadata in the caDSR

	Examples of caCORE-Like Systems
	Finalizing the Development Process
	Software Configuration Management

	Chpt 3: caCORE Software Development Kit Architecture
	caCORE 3.2.1 SDK Minimal System Requirements
	caCORE SDK Package
	caCORE SDK Software and Technology Requirements
	Additional Software

	Documentation and Style Tools
	SDK Installation

	Chpt 4: caCORE SDK Process Workflow
	Overview of the SDK Process Workflow
	caCORE SDK Components and Their Functions
	Semantic Integration Workbench
	UML Loader
	Code Generator

	caCORE SDK Process Flow Details
	Step-by Step Workflow
	End Result: A caCORE-Like System

	Chpt 5: Creating the UML Models
	Prerequisites
	Introduction
	Modeling Constraints
	Naming Best Practices
	Creating Use-Case Artifacts
	Creating a Class Diagram
	Opening the caBIO Example Model
	Creating a New Project
	Creating a New Element (Class)

	Creating a Data Model
	Opening an Example Data Model
	Creating a New Data Model

	Creating a Sequence Diagram
	Generating XMI
	Generating Data Definition Language

	Chpt 6: caAdapter Model Mapping Service
	Overview
	caAdapter Minimal System Requirements
	Downloading caAdapter
	Installing caAdapter
	Verifying Installation

	Using caAdapter
	Exporting an XMI File from EA
	Creating an Object Model to Data Model Map Specification
	Opening an Existing Object to Database Map Specification
	Creating a Basic Mapping Line
	Generating XMI for caCORE SDK Integration
	Mapping Inheritance

	User Interface Legend
	Node Colors
	Node Details
	Mapping Line Colors

	Chpt 7: Performing Semantic Integration
	Introduction
	Generating the XMI File for the SIW
	Semantic Integration Workbench
	Launching the SIW
	SIW User Modes

	Suggested Workflow for the SIW
	Using the XMI Roundtrip Mode
	Running the Semantic Connector
	Exiting the SIW

	Curating XMI Files
	Browsing the Navigation Tree
	Annotation Basics
	Identifying Errors in the Source File
	Verifying the Curated XMI File
	Editing Annotation Details
	Saving Changes to a File

	Reviewing an Annotated Model
	Errors Tab
	Viewing Associations

	Setting Preferences
	Viewing Association
	UML Description
	Search EVS
	Use Private API
	Display Primary Concept First
	Display Inherited Attributes
	Sort Element by Name
	Use Pre-Production Thesaurus to Validate Concepts

	Setting UML Loader Run-Time Parameters
	Updating UML Model Definitions
	Updating UML Model Definitions Workflow

	Errors and Log Tabs
	The Errors Tab
	The Log Tab

	Mapping UML Attributes
	Mapping a UML Attribute to an Existing Common Data Element
	Mapping a UML Attribute to an Existing Value Domain

	Validating Concept Mappings Against EVS
	Creating Value Domains
	Value Meanings
	Pointing a UML Attribute to a Value Domain

	Troubleshooting
	Beginning to Use the SIW “Midstream”
	The Status Bar
	The Tabs
	EVS Search Dialog

	Chpt 8: Registering Metadata
	UML Loader
	Submitting a UML Model to caDSR
	Reviewing UML-Derived caDSR Metadata
	Accessing UML-Derived caDSR Metadata
	UML Domain Model Query Service

	Creating a Concept for Object Class and Property
	Creating New Concepts in caDSR
	Creating an Alternate Definition
	Updating Existing Concepts in caDSR

	Mapping a UML Class to an Object Class
	Creating a New Object Class
	Creating an Alternate Name (Designation)
	Creating an Alternate Definition
	Using an Existing Object Class
	Classifying an Object Class

	Mapping a UML Attribute to a Property
	Creating an Alternate Name (Designation)
	Creating an Alternate Definition
	Using an Existing CDE (Common Data Element)
	Classifying a Property

	Creating Data Element Concepts
	Creating an Alternate Name (Designation)
	Creating an Alternate Definition
	Using an Existing Data Element Concept
	Classifying a Data Element Concept

	Mapping a UML Class to a Value Domain
	Value Meanings
	Permissible Values
	Using a Value Domain Defined within the Model

	Creating Data Elements
	Creating an Alternate Name
	Creating an Alternate Definition
	Using an Existing Data Element
	Classifying a Data Element

	Mapping UML Model Metadata to Classification Scheme and Classification Scheme Items
	Assigning Classifications

	Mapping UML Associations to Object Class Relationships
	Creating a New Object Class Relationship
	Classifying an Object Class Relationship

	Mapping UML Inheritance

	Chpt 9: Generating a caCORE-Like System
	Generating Code
	Updating the Property File
	Building the System
	Selectively Generating Artifacts
	Documentation and Style Tools
	Executing JUnit Tests

	Using a Generated System
	Configuring Java Clients
	Configuring Non-Java Clients

	Variations to Generating a caCORE-like System
	Using Second-Level Caching
	Using Custom OR Mappings
	Using Custom Classes
	Generating a Thick-Client
	Implementing a Custom XMI Preprocessor
	Customizing the Build Process

	Generating a Writable API for an Application

	Chpt 10: Integrating CSM with a caCORE SDK Generated Application
	CSM Overview
	Session Management Overview
	Configuring CSM for the Generated Application
	Configuring the Application's Authorization Data Using UPT
	Using the CSM-Enabled ApplicationService API
	Using the CSM-Enabled ApplicationService Web Services
	Using the CSM-Enabled HTTP Interface
	getHTML Interface
	getXML Interface

	Appdx A: Unified Modeling Language
	UML Modeling
	Use-Case Documents and Diagrams
	Class Diagrams
	Naming Conventions
	Relationships Between Classes

	Package Diagrams
	Component Diagrams
	Sequence Diagrams

	Appdx B: Software Configuration Management
	Appdx C: Performance Issues
	Hibernate Issue with Enabling Security in the SDK

	Appdx D: References
	Technical Manuals/Articles
	Scientific Publications
	caBIG Material
	caCORE Material
	Modeling Concepts
	Applications Currently Using caCORE
	Software Products

	Glossary
	Index

